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A new intersection algorithm for iso-surface volume ray tracing increases performance by roughly a
factor of three compared to previous accurate intersection algorithms while offering similar perfor-
mance as previous algorithms that only approximated the solution. The image shows some of the test
data sets: Bonsai tree, aneurism, engine, and skull.

Abstract

Visualizing iso-surfaces of volumetric data sets is
becoming increasingly important for many practi-
cal applications. One crucial task in iso-surface ray
tracing is to find the correct intersection of a ray
with the trilinear-interpolated implicit surface de-
fined by the data values at the vertices of a given
voxel. Currently available solutions are either accu-
rate but slow or they provide fast but only approxi-
mate solutions.

In this paper, we analyze the available techniques
and present a new intersection algorithm. We com-
pare and evaluate the new algorithm against previ-
ous approaches using both synthetic test cases and
real world data sets.

The new algorithm is roughly three times faster
but provides the same image quality and better nu-
merical stability as previous accurate solutions.

1 Introduction

Volume rendering is an important addition to the
more common surface rendering methods. It visu-
alizes data values that are provided at samples dis-
tributed in 3D space. Whiledirect volume render-
ing [Lev90] computes the interaction of light with
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the volume along the entire length of a viewing ray,
iso-surface renderingfirst computes one or more
surfaces through an implicit function defined on the
volume data values. This surface is then shaded us-
ing normal surface shading techniques. In this pa-
per we consider only the latter case of isosurface
rendering.

Isosurface rendering allows for transparently in-
tegrating volume primitives into a surface rendering
system. In particular we aim at interactively render-
ing these iso-surfaces by full ray tracing. Ray trac-
ing offers the advantage that the surface must never
be computed and represented explicitly [PSL+98]
as commonly done with the marching cube algo-
rithm [LC87] for rendering on rasterization devices.
With ray tracing the necessary ray-surface intersec-
tions are computed on the fly at all relevant voxels,
which allows for instantly changing the iso-value
without the need for a costly re-computation of an
iso-surface representation.

Furthermore, we target full ray tracing for the
ability to fully integrate volume rendering with
standard surface rendering, including advanced ef-
fects such as shadows, reflections, and many others.

Because data values are only provided at dicrete
locations in space, values for in-between points are
usually derived through trilinear interpolation of the
data values provided at the vertices of each voxel.
As a result the function is a cubic polynomial along
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any straight line or ray passing through the voxel.
The required ray-surface intersection is then given
as the first non-negative root of this polynomial
along the ray.

More accurate and smoother interpolation meth-
ods do exist, e.g. [RZNS04], but they are signif-
icantly more expensive to compute, which makes
them less suited for the interactive applications tar-
geted here.

In this paper we concentrate on the intersection
computation between rays and the voxel data and
ignore the issue of efficiently locating those vox-
els in the volume data set that may contain the sur-
face. For efficient traversal of isosurface data sets
see e.g. [PSL+98].

The following presentation is organized as fol-
lows: We first present previous work on accurate
intersection methods in Section 2 before looking at
faster but approximate solution in Section 3. Our
new algorithm is then presented in Section 4. We
compare the quality and evaluate the performance
of the different intersection methods in Section 5
before concluding and suggesting future work in
Section 6.

2 Accurate Intersection Method

Given a cell with the data valuesρijk (i, j, k ∈
{0, 1}) at its eight vertices, the densityρ at any
point (u, v, w) ∈ [0, 1]3 can be computed by tri-
linear interpolation, i.e.

ρ(u, v, w) =
∑

i,j,k∈{0,1}

uivjwkρijk,

where u0 = u, u1 = 1 − u, v0 = v, etc
(see [Shi02]). If the spatial location of this cell is
V = [x0..x1] × [y0..y1] × [z0..z1], thenρ(p) of
any three-dimensional pointp ∈ V can be com-
puted by first transformingp to the unit coordinate
system, yielding
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Using this notation, for a rayR(t) = a + tb with
origin a and directionb, which overlaps the voxel
V in the intervaltin and tout, the densityρ(t) =
ρ(R(t)) for each point on the interval is defined as
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Expanding then yields a cubic polynomial

ρ(t) = At3 + Bt2 + Ct + D

whose coefficients (see [PSL+98, Shi02]) are
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Finding the intersection of the ray with the implic-
itly defined iso-surfaceρ(t) = ρiso then amounts
to determining the smallestt ∈ [tin, tout] for which
the polynomial

f(t) := ρ(t)− ρiso

is zero, i.e. we are looking for the smallest root off
in the interval[tin, tout].

2.1 Schwarze’s Analytic Inversion

Given the cubic polynomial in the ray parameter
the most commonly used method for analytically
computing the intersection for iso-surface rendering
is the Schwarze approach [Sch90, PSL+98]. This
method first checks for special cases (small coeffi-
cientsA and/orB) where the polynomial does not
have full degree and solves those more directly. But
even the special case of a quadratic polynomial al-
ready involves a costly square root operation.

The most common case of a full cubic polyno-
mial is solved using Cardano’s formula involving
several cosines and even more costly inverse co-
sine operations. Furthermore, we need to compute
all roots to locate the first one along the ray that is
within the current voxel.

As usual, this algebraic solution is prone to nu-
merical problems. Our target of interactive volume
rendering furthermore suggests the use of single
precision floating point values, which makes these
issues even worse with respect to numerical stabil-
ity. Consequently, it is difficult to tune this approach
in order to completely avoid incorrectly computed
intersections.
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While the Schwarze approach is commonly ap-
plied and is mathematically the most accurate solu-
tion for computing intersection in volume ray trac-
ing, in practice it has too many drawbacks.

3 Approximate Methods

In contrast to this correct analytic methods approx-
imative methods trade quality for speed by not ac-
curately computing the intersection with the cubic
polynomial.

3.1 Simple Midpoint Algorithm

The most simplistic algorithm consists of assuming
an intersection for every voxel where the iso-value
is within the range of data values at the vertices. In
this case the intersection point is usually set to the
mid point between the ray’s entry and exit point.

While this method is fast it obviously leads to
blocky artifacts of the size of voxels. We thus use
this method only as a reference for performance
comparisons.

3.2 Linear Interpolation

A still simplistic, but already much more useful ap-
proach is to assume a linear function within a voxel
and to simply interpolate the intersection point from
the iso-values at the respective entry and exit points
of the ray,ρ(tin) andρ(tout).

Algorithm 1 Pseudo code for linear interpolating
the intersection position.

// linear interpolation
ρin := ρ(R(tin)); ρout := ρ(R(tout))
if sign(ρin − ρiso) = sign(ρout − ρiso) then

return NOHIT
end if
returnthit := tin + (tout − tin) ρiso−ρin

ρout−ρin

Note that this approach is already significantly
more costly than the midpoint algorithm, since it
requires two costly trilinear interpolations for com-
puting ρ(tin) and ρ(tout). Though these values
could also be computed with bilinear interpolation
on the voxel side, we compute it via full trilin-
ear interpolation, since this code is not slower than

first determining the correct input values for the bi-
linear interpolation. More importantly only the gen-
eral trilinear interpolation is suitable for implement-
ing in ray-parallel SIMD code, where different rays
might require interpolations from different vertices.

Linear interpolation provides a good approxima-
tion in many cases where the function is close to
linear. However, it will obviously fail to find the
correct intersection in more complex cases, such as
if the function hastwo roots, in which case the entry
and exit densities are either both larger thanρiso, or
both are smaller, and no intersection is found at all.

3.3 Neubauer’s Method

Neubauer at al. [NMHW02] suggested a method
that uses repeated linear interpolation. This
method builds on the linear interpolation just de-
scribed but refines the results by looking at the tri-
linearly interpolated data value at the intersection
point. This intersection point splits the ray segment
within the voxel into two parts. Based on the data
value at the computed intersection this approach
chooses to recursively apply the linear interpolation
to that segment that contains the iso-value.

Typically, this approach is applied a fixed number
of times (2-3), even though an adaptive termination
criterion is equally possible.

Algorithm 2 Pseudo code for Neubauer’s algorithm
using repeated linear interpolation.

// Neubauer: repeated linear interpolation
t0 := tin; t1 := tout

ρ0 := ρ(R(t0)); ρ1 := ρ(R(t1))
if sign(ρ0 − ρiso) = sign(ρ1 − ρiso) then

return NOHIT
end if
for i=1..N do

t := t0 + (t1 − t0)
ρiso−ρ0
ρ1−ρ0

if sign(ρ(R(t)) − ρiso) = sign(ρ0 − ρiso)
then

t0 := t; ρ0 = ρ(R(t))
else

t1 := t; ρ1 = ρ(R(t))
end if

end for
returnthit := t0 + (t1 − t0)

ρiso−ρ0
ρ1−ρ0

Unfortunately this approach suffers from similar
problems as the previous technique in that it some-
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times fails to locate valid intersections. Nonethe-
less, in those cases where it does correctly identify
them at all it computes them more accurately. A
new failure case appears in that the approach can
falsely return the last intersection point in the case
that three intersections are contained within a voxel
but two of them are within the first ray segment.

4 Isolation and Iterative Root Finding

Roughly speaking, we have so far discussed meth-
ods that are either slow and correct, or fast and
sometimes incorrect. Therefore, we have derived
a new algorithm, that aims at being as fast as the
Neubauer method, but as correct as the Schwarze
method. Our new intersection method is based on
two key observations:
• We are only interested in the first intersection

with the implicit function and there is no need
to compute all intersections as in the case of
Schwarze.

• Repeated linear interpolationdoesfind the cor-
rect root fast and reliablyif the start interval
for the iteration containsexactlyone root.

In our approach we therefore first isolate the roots
by computing the extrema of the polynomial. This
requires solving a simple quadratic equation. These
two extrema then split the ray segment into at most
three parts.

We step through these segments from front to
back, computing the data values at its start and end
point from the cubic polynomial, which is pretty ef-
ficient once the polynomials coefficients are known.
Once the interval is found, we can guarantee that
it (a) contains (exactly) one root (f is continu-
ous, contains zero, and does not have extrema in
that interval), (b) that the root lies in the interval
[tin, tout], and (c) it is the first root in this interval.

After the interval is found, we locate the root us-
ing repeated linear interpolation (as in Neubauer) or
simply via recursive bi-section. Again, it is usually
faster to apply a fixed number of 2-3 iterations than
to apply an adaptive termination criterion.

Since we already know the coefficients of the
polynomial we can quickly and efficiently compute
any data value along the ray. This does no longer
involve any costly trilinear interpolation. This ad-
vantage comes at the cost for computing the coeffi-
cients and the extrema in the first place.

As shown below this approach is roughly a factor
of three faster than the Schwarze code while pro-
viding the same guarantees on correctness and even
better numerical stability. It is also well suited for a
data parallel SIMD implementation.

Algorithm 3 Pseudo code for the new intersection
algorithm.

t0 = tin; t1 = tout; f0 = f(t0); f1 = f(t1)
// Find extrema by looking atf ′(t) = 3At2 +
2Bt + C
if f ′ has real roots then

e0 = smaller root of f ′

if e0 ∈ [t0, t1] then
if sign(f(e0)) = sign(f0) then

// Advance the ray to the second segment
t0 := e0; f0 := f(e0)

else
t1 := e0; f1 := f(e0)

end if
end if
e1 = second root of f ′

if e1 ∈ [t0, t1] then
if sign(f(e1)) = sign(f0) then

// Advance the ray to the third segment
t0 := e1; f0 := f(e1)

else
t1 := e1; f1 := f(e1)

end if
end if

end if
if sign(f0) = sign(f1) then

return NOHIT;
end if
// now, know we’ve got a root int0, t1
// find it via repeated linear interpolation
for i=1..N do

t := t0 + (t1 − t0)
−f0

f1−f0

if sign(f(R(t))) = sign(f0) then
t0 := t; f0 = f(R(t))

else
t1 := t; f1 = f(R(t))

end if
end for
returnthit := t0 + (t1 − t0)

−f0
f1−f0

666



4.1 Parallel SIMD Implementation

Wald et al. [WSBW01] already demonstrated the
performance advantage of exploiting the SIMD in-
structions on today’s processors using a data paral-
lel approach, where the computations are performed
on multiple rays in parallel. Modern SIMD instruc-
tion sets allow for operating on up to four float-
ing values in a single instruction, which can im-
prove performance significantly if the algorithm are
SIMD friendly.

However, this is not the case for the Schwarze
intersector due to its complex control flow for han-
dling special cases and the evaluation of complex
trigonometric functions. The repeated linear inter-
polation approach from Neubauer is better suited
for a SIMD implementation but still needs to han-
dle the case of inconsistent decisions of which ray
segment needs to be handled in the next iteration.

Our new intersection technique is based on
Neubauer’s algorithm but adds a SIMD friendly
computation of the polynomial’s coefficients at the
beginning. Stepping through the segments is less
suited for SIMD computation because it needs to
evaluate both possible cases for each of the tests
(see Algorithm 3) and use conditional assignement
to record the results. Even though, this adds only
little SIMD overhead and still results in fast SIMD
compuations as shown below.

5 Experiments and Results

In the following we compare the different volume
intersection algorithms in terms of performance and
visual quality.

For all experiments, we have used an AMD
Opteron Processor running at 1.8 GHz. Perfor-
mance data has been collected by timing the call to
the intersection functions. As the timing overhead
may dominate the total execution time, the intersec-
tion kernel is being called several thousand times
between for better accuracy.

In order to measure the performance of the dif-
ferent methods, we performed two different exper-
iments. In the first setup, we used purely synthetic
data rendered at2562 resolution in which we fed
the different algorithms with seven typical march-
ing cubes configurations, with the voxel corners be-
ing either 0 or 1, and the iso-value used for intersec-
tion asρiso = 0.5. For each of these configurations,

Figure 1: Test scene for testing how the various al-
gorithms handle the special case where a ray has
more than one intersection with the iso-surface. top
left: linear, top right: Neubauer (2 iterations), bot-
tom left: Neubauer (10 iterations), bottom right: ac-
curate cubic intersection (Schwarze and the new al-
gorithm provide the same results). As can be seen,
only the cubic algorithms correctly handle all cases.
The shading artifacts are due to incorrect normals in
this test case and have no influence on the results.

we computed the minimum, maximum, and average
execution times.

In the second setup, we have integrated all inter-
section kernels into a realtime iso-surface ray trac-
ing system [Wal04] rendering images at640× 480
resolution. As before, each kernel is called several
times in order to factor out any influence of the mea-
surement procedure. This procedure is then applied
to several real-world data sets. These results should
be general enough to also apply to other data sets
and application areas.

5.1 Comparison of Accuracy

Figure 1 shows the artifacts produced by the dif-
ferent approximative algorithms. It clearly demon-
strates that the approximate algorithms produce sig-
nificant errors for some of the more complex voxel
configurations. While these cases are not too fre-
quent, we would like to avoid these problems using
a fully accurate but still fast algorithm that can be
used in an interactive context.
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5.2 Comparison of Performance

The performance for the different synthetic voxel
configurations are almost identical so that we only
present the aggregate results over all seven mea-
sured configurations (see Table 1). On average we
can compute roughly three million intersection per
second for these test cases. The min and max values
are due to the different execution times for different
ray and voxel configurations.

For the SIMD versions we perform the same
measurements but have to account for the fact that
multiple rays are processed in parallel for each in-
tersection. The results (see Table 2) show that the
best performance improvements can be realized for
the low-quality midpoint and linear algorithms (by
a factor of roughly 3 and 2, respectively). The
only other algorithm that benefits significantly is
the new intersection algorithm, which clearly shows
that the complex control flow conflicts strongly with
the performance gain through SIMD computations.
For the new algorithm we still see an increase in
performance by about 50%.

Performance in Real-World Datasets

For the synthetic test cases we selected some of
the more complex cases, which are not representa-
tive. More interesting and practically relevant are
the performance measurements when using com-
monly used data sets. For this we have selected the
Bonsai Tree, the Aneurism and the Engine data set
(see Table 3).

For these realistic data sets we see that the new
algorithm shows a speedup between roughly a fac-
tor 1.7 and 1.9 compared to the Schwarze algorithm
that generates images of the same high quality. The
new algorithm has similar performance than the ap-
proximate Neubauer method but always generated
accurate images without artifacts.

Again, we were also interested in checking our
SIMD implementation with real data sets (see Ta-
ble 4). For the Neubauer code we see a strong per-
formace improvement by a factor between 2.3 and
2.6 compared to the sequential code. The Neubauer
code seems particularly well suited to some config-
urations that were not in our synthetic test suite.

For our new algorithm the improvement is
smaller due to the more complex control flow but
we still achieve about 60% higher performance
through the use of SSE. With the SSE implementa-

intersector correct min max avg
midpoint - 1.28 33.3 26.88
linear - 0.46 7.54 6.84
Neubauer - 0.56 3.18 3.04
Schwarze + 0.44 3.26 3.03
New + 0.57 3.23 2.92

Table 1: Performance comparison of the different
ray-voxel intersection techniques, for synthetic ex-
perimental setups, measured in million ray-voxel
intersections on a 1.8GHz AMD Opteron CPU.
Data for real-world data set are given in Table 3.

intersector correct min max avg
midpoint - 2.59 98.41 85.48
linear - 1.17 13.93 13.35
Neubauer - 0.19 8.01 3.04
Schwarze + 0.24 2.20 1.98
New + 0.85 4.80 4.35

Table 2: SIMD performance of the different ray-cell
intersection techniques for synthetic experimental
setups, measured in million ray-cell intersections.
We see a strong improvement for the new code
while the Schwarze code actually gets slower.

Method correct bonsai aneurism engine
midpoint - 26.21 26.18 26.22
linear - 6.65 6.65 6.68
neubauer - 2.93 2.94 2.94
Schwarze + 1.60 1.56 1.48
New + 2.76 2.80 2.73

Table 3: Single ray intersection performance for
real-world scenes. As for the synthetic datasets,
the new method provides significantly better perfor-
mance than approximative techniques while being
as accurate as the much slower Schwarze method.

Method correct bonsai aneurism engine
midpoint - 87.71 87.12 87.13
linear - 13.68 13.66 13.67
Neubauer - 7.65 7.60 6.94
Schwarze + 1.49 1.39 1.44
New + 4.37 4.56 4.39

Table 4: SIMD intersection performance for real-
world scenes. Again, our new algorithm is signif-
icantly faster than the Schwarze method, but com-
putes the same correct results.

tion of the new accurate algorithm we consistently
achieve about 60% of the performance of the ap-
proximate Neubauer algorithm for these realistic
data sets. However, we still have the advantage that
we compute the correct intersection in all cases.
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Figure 2: A test scene showing mixed surface
and iso-surface volume rendering interactively with
roughly 2 frames per second at640× 480 pixels on
a dual Intel Pentium-4 2.2 GHz system.

6 Conclusions and Future Work

In this paper we have investigated the use of differ-
ent ray-voxel intersection algorithms for iso-surface
volume rendering using ray tracing. These algo-
rithms differ in their achieved accuracy and perfor-
mance, as well as their suitability for a SIMD im-
plementation.

In particular we have compared the accurate
but slow and numerically unstable Schwarze code
against the fast approach by Neubauer, which is
prone to approximation artifacts. As an alternative
we developed a new approach that integrates the ad-
vantages of both methods, providing the most accu-
rate results with the best performance.

In contrast to the Schwarze code both the new
and the Neubauer code benefit significantly from
the use of SIMD processing. Due to its simpler con-
trol flow, the Neubauer algorithm achieves the best
performance for SIMD operations but is prone to
image artifacts. Our new algorithm clearly outper-
forms the Schwarze algorithm while providing the
same correct image.

All discussed algorithms have been inte-
grated into the OpenRT realtime ray tracing
system [Wal04], where they provide fully inte-
grated volume and surface rendering. In this system
an iso-surface volume is just another surface prim-
itive and all applications and advanced rendering
techniques can deal with them without any issues.
Figure 2) shows a volume data set rendered with
reflections and transparency via surface primitives.
Even the recently developed techniques for realtime

computation of global illumination [BWS03] could
now be applied also to volume objects.

In the near future, we will investigate how to ac-
celerate higher-order interpolation techniques such
as the one proposed by Rössl et al. [RZNS04]. Fi-
nally, it seems interesting to investigate special op-
timizations for time-varying datasets.
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