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ABSTRACT

With modern computational resources rapidly advancing towards exascale, large-scale

simulations useful for understanding natural and man-made phenomena are becoming in-

creasingly accessible. As a result, the size and complexity of data representing such phenom-

ena are also increasing, making the role of data analysis to propel science even more integral.

This dissertation presents research on addressing some of the contemporary challenges in

the analysis of vector fields—an important type of scientific data useful for representing a

multitude of physical phenomena, such as wind flow and ocean currents. In particular, new

theories and computational frameworks to enable consistent feature extraction from

vector fields are presented.

One of the most fundamental challenges in the analysis of vector fields is that their

features are defined with respect to reference frames. Unfortunately, there is no single

“correct” reference frame for analysis, and an unsuitable frame may cause features of interest

to remain undetected, thus creating serious physical consequences. This work develops new

reference frames that enable extraction of localized features that other techniques and frames

fail to detect. As a result, these reference frames objectify the notion of “correctness” of

features for certain goals by revealing the phenomena of importance from the underlying

data. An important consequence of using these local frames is that the analysis of unsteady

(time-varying) vector fields can be reduced to the analysis of sequences of steady (time-

independent) vector fields, which can be performed using simpler and scalable techniques

that allow better data management by accessing the data on a per-time-step basis.

Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most

techniques are numerical in nature. The residing numerical errors can violate consistency

with the underlying theory by breaching important fundamental laws, which may lead

to serious physical consequences. This dissertation considers consistency as the most

fundamental characteristic of computational analysis that must always be preserved, and

presents a new discrete theory that uses combinatorial representations and algorithms

to provide consistency guarantees during vector field analysis along with the uncertainty

visualization of unavoidable discretization errors.



Together, the two main contributions of this dissertation address two important concerns

regarding feature extraction from scientific data: correctness and precision. The work

presented here also opens new avenues for further research by exploring more-general

reference frames and more-sophisticated domain discretizations.
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CHAPTER 1

INTRODUCTION

“Without understanding data,

you’re just another person with an opinion!”

Data analysis is an expansive field consequential for multifaceted scientific progress.

Typically, all of our scientific endeavors to understand natural and artificial phenomena

generate data containing a wealth of information. In order to uncover the mysteries of the

universe, it is imperative to analyze this data. The typical role of data analysis in the

process of scientific discovery is illustrated in Figure 1.1.

The contemporary notion of data analysis may appear pertinent only to modern and

complex scientific data; nevertheless, the earliest and much simpler ideas of analyzing data

can be traced back to ancient scientific history. According to a famous anecdote, about

2200 years ago, Archimedes, the great Greek mathematician and philosopher, was posed

with the problem of investigating whether a golden crown contained impurities in the form

of silver—a lesser valued metal. Using the densities of the two metals, known at his time,

Archimedes came up with the ingenious idea of analyzing the volume of water displaced

by the crown in order to accurately calculate the amounts of gold and silver present in the
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Figure 1.1. Data analysis plays an integral role in the process of scientific discovery, as it
allows drawing important insights from the underlying phenomena, and provides feedback
enabling improvement of hypotheses and designs.
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crown—a concept used to date, and known as the Law of Buoyancy.

More than two millennia later, while science has made enormous progress, our quest

for understanding the unknown still exists. Pioneered by the early inventions of Blaise

Pascal and Charles Babbage, the use of calculators and computers has increased immensely

in the past century. This increasing use has allowed relegating many tedious tasks to

machines, thus freeing the human mind to seek the answers to questions with much greater

significance and complexity. Modern scientific progress relies greatly on the strong col-

laborations between domain scientists and computer scientists, where domain scientists

perform experiments to understand important natural or artificial physical processes, and

the role of computer scientists is to enable new technologies to simulate and/or analyze

these phenomena. At the time of this dissertation, petascale1 computing is already avail-

able, and e↵orts are being made to achieve exascale1 capabilities. Such high-performance

computing (HPC) resources equip the scientists for performing simulations at previously

impossible proportions, generating large-scale complex data to represent underlying physical

phenomena ranging from subatomic to astronomical.

1.1 Types of Scientific Data
Data resulting from scientific experiments can have many forms, each with di↵erent

characteristic features. For example, data can be spatial or nonspatial, continuous or

discrete, single- or multivalued, steady (time-independent) or unsteady (time-dependent),

etc. Common types of nonspatial data include text- or graph-based data. Spatial data is

typically defined on one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D)

Euclidean spaces, or surfaces (sometimes referred to as 2.5D), with a possible additional

dimension of time. Most common forms of spatial data found in scientific experiments are

steady or unsteady scalar, vector, and tensor fields.

A scalar field represents the magnitude of a property at each spatial location, for

example, temperature and pressure for a geographical region. Scalar fields have been studied

extensively in the past few decades, with a large number of e�cient techniques for analyzing

them. Vector fields generalize scalar fields as they represent properties with both a direction

and a magnitude. Common examples of vector fields are velocity fields, fluid flows, magnetic

fields, and gradients of scalar fields. Tensor fields further generalize vector fields, and can

1Petascale and exascale computing, respectively, can perform 1015 and 1018 floating-point operations per
second.
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be imagined as assigning a vector of variable length and direction to each point in space,

for example, the gradient of vector fields, and stress and strain tensors.

Di↵erent types of data have di↵erent characteristic features, and require di↵erent types

of analysis. From scalar to vector to tensor data, the complexity increases and so do the

challenges in the corresponding analysis. Furthermore, regardless of the type of data, certain

challenges arise due to the computational nature of analysis frameworks.

1.2 Computational Challenges in Data Analysis
The analysis of the data—in particular, large-scale complex data—poses several chal-

lenges to computer scientists. Contemporary computational challenges are di�cult, and

addressing even a single one of them in depth may require one or more dedicated Ph.D.

dissertations. Although the primary goal of this dissertation is not to provide comprehensive

solutions to these computational challenges in general, it is important to develop a good

understanding of them, as the research presented in this dissertation develops new and

e↵ective analysis techniques that address some of these computational challenges in the

context of vector fields.

1.2.1 Challenges Due to the Numerical Nature of Analysis

Although computing resources can work at extremely high speeds, the underlying pro-

cessors are binary in nature. They must convert smooth analog signals to nonsmooth

digital representations, which limits their ability to represent signals of arbitrary precision.

A direct consequence of this limitation is that real numbers, which have infinite precision,

must be represented using floating-point numbers, which have finite precision. Numerical

representation of data using floating-point numbers on computing machines, and the use

of floating-point arithmetic to analyze such data, create unavoidable errors [70]. Since

computational models for data analysis are adapted from mathematical models defined for

smooth functions, it is widely accepted that any computer application based on numerical

techniques can produce only an approximation to theoretical results, unless the theory itself

contains a discrete model.

Nevertheless, the fundamental numerical nature of computing can cause serious prob-

lems, especially when the same application is run on di↵erent machines with di↵erent

underlying architectures or using di↵erent compilers. Although numerical errors cannot

be eliminated altogether, any application must be able to at least guarantee obtaining the

same, albeit approximate, results on di↵erent platforms. Therefore, achieving numerical

robustness is an important characteristic for analysis applications. Understanding numerical



4

robustness is one of the main goals of scientific computing and numerical analysis, and has

led to various research areas such as numerical verification and validation [152], sensitivity

and uncertainty analysis [21], etc. In particular, we focus on two kinds of problems that

arise due to the lack of numerical robustness in computational models.

1.2.1.1 Inaccuracy and uncertainty. This work uses the term inaccuracy to refer

to the varying degrees of accuracy in analysis. It can mean obtaining an approximate

solution instead of an exact one, or can imply the existence of false positives or false

negatives in the results. For example, through the analysis of a projectile motion, one

can determine the value of gravitational acceleration to be 10 m/s2, 9.8 m/s2, or 9.81 m/s2,

reflecting multiple levels of inaccuracy. Another example of inaccuracy is the incorrect

identification of cancerous cells in the analysis of a brain’s magnetic resonance imaging

(MRI) scan. In general, inaccuracy is closely related to the notion of uncertainty, where a

certain confidence level is associated with the results, for example, considering the value of

gravitational acceleration to be accurate up to 0, 1, or 2 decimal digits, or considering it to

be only 80% likely that a certain region shown in the MRI scan contains cancerous cells. As

a result, uncertainty quantification and uncertainty visualization are integral to the process

of analysis for deriving scientific insights.

One way of addressing the problem of inaccuracy can be to represent data and perform

numerical arithmetic with more precision, for example, using 64 bits for representation and

processing of floating-point data instead of 32 bits. Although this approach may be suitable

for certain applications, it is not su�cient for data analysis for two reasons. First, the

precision of the representation cannot be increased arbitrarily, and the precision required

to faithfully analyze a given data may not be known in advance. The second and more

important reason is that the goal of data analysis is to understand some physical process

when its true behavior is not known. In the absence of the “ground truth”, it is not possible

to define inaccuracy in an objective manner. For example, during the study of the MRI

scan, analysts do not know where the actual cancerous cells are. In fact, identification of

the ground truth in this case requires cutting through the patient’s brain—a task with huge

physiological costs that defeats the purpose of exploratory analysis altogether.

1.2.1.2 Inconsistency. In the example of projectile motion discussed above, de-

pending upon the error tolerance of the application, various levels of inaccuracy may be

accepted. However, if at any instant, the analysis shows that the gravitational acceleration

is acting upward instead of downward, then the analysis immediately loses all merit, because

this result is inconsistent with the fundamental theory of gravity. This dissertation uses
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the term inconsistency to represent scenarios where the analysis produces physically invalid

results such as the one discussed above. Restated, inconsistency implies that the results of

computational analysis are not consistent with the underlying theory, and certain rules and

invariants of the theory are violated.

It should be noted that inconsistency is not an extreme case of inaccuracy, but can be

highly data-dependent, and can be caused by only small amounts of errors. Section 1.4.4 will

discuss inconsistency in the context of vector fields with specific examples to motivate the

need for consistent analysis, demonstrating that inconsistent analysis produces physically

meaningless results, and any practical insights drawn from such analysis are incorrect and

can lead to disastrous consequences. These examples insist that inconsistent analysis is far

worse than inaccurate analysis.

The work presented in this dissertation is founded upon the notion that consistency is the

most fundamental characteristic of analysis. Unlike inaccuracy, which requires knowing the

true results, inconsistency can be defined objectively without requiring the knowledge of the

ground truth. Whereas inaccuracy is simply a function of the precision of the application, we

consider consistency to be more important and an objective metric for numerical robustness,

and argue that a consistent but potentially less accurate analysis may be favorable over a

more accurate yet potentially inconsistent solution.

1.2.2 Challenges Due to the Large Scales of Data

Most forms of innovation start with small and simple ideas and experiments. With

the evolution of ideas, however, it is crucial to scale them up to allow a real scientific

impact. Modern HPC resources allow generation of terabytes and petabytes of complex

data that need to be analyzed. At the same time, these computational resources also

o↵er opportunities to design scalable and parallel applications for analysis. A typical

supercomputer contains thousands of computing nodes with each node further containing

multiple processing units. In order to utilize these resources, algorithms and applications

must be designed in a scalable and parallelizable manner, so as to run simultaneously on

the many cores of supercomputers. The task of parallelization is often nontrivial and has

many constituents, for example, designing parallel file systems, optimizing internode com-

munication, synchronization, load-balancing, etc. As a result, scalability and parallelization

of applications are important computational challenges that must be addressed.

As modern large-scale simulations and experiments continue to generate increasing

amounts of data, e�cient storage andmanagement of the resulting data also becomes impor-

tant. The data-access patterns of computer applications are of particular importance, since
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loading blocks of data—especially noncontiguous blocks—in and out of memory typically

creates performance bottlenecks. Therefore, applications that require frequent reloading of

blocks of data into memory are ine�cient and potentially prohibitive for large-scale data.

Furthermore, since the compute power of modern machines continues to grow faster than

the corresponding input/output (I/O) rates, the latter disallow storing the amount of data

required for faithful analysis. For example, although highly accurate simulations are being

used to generate data, due to I/O bottlenecks, typically data for only the 500th simulation

time-step is stored on disk. This reduced temporal resolution is often suboptimal to capture

the behavior of the underlying process in a faithful manner. One solution to address

this limitation is to develop in situ techniques, where the simulation or the experiment

is temporarily halted, the current state of data is analyzed, and only the analysis results

are written to disk. However, such in situ analysis techniques must be designed to perform

a temporally local analysis, since the information corresponding to the past and the future

is usually not available.

1.3 Vector Fields and Their Analysis
Vector fields assign a direction and a magnitude to every point in the domain. They are

an important form of data, and are used to represent a wide variety of natural and artificial

phenomena. For example, vector fields represent wind patterns [15] and ocean currents [133]

useful for the modeling and analysis of weather and aerodynamical designs. Vector fields are

used to capture the flow behavior of fuel in the study of turbulent combustion to understand

mixing, circulation, and transport problems [88, 222, 223]. Astronomical phenomena such

as solar convection in astrophysics [194] are also represented using vector fields. Vector fields

also represent force fields such as gravitational and magnetic fields. Dynamical systems in

nature, such as the balance between the populations of prey and predator species, can also

be represented as vector fields. Some of the many use cases of vector fields are shown in

Figure 1.2. Due to the wide applicability of vector fields, their analysis is indispensable in

a large number of applications.

Most vector fields of interest change with time, and are called unsteady or time-varying

vector fields, whereas those vector fields that do not change with time are called steady

vector fields. In most common scenarios, vector fields represent flow of material, such as

ocean currents and wind patterns; therefore, they are often simply called flows.

Similar to the analysis of other forms of data, a typical goal of vector field analysis is to

extract important features, and understand the overall behavior of the data in a qualitative
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Figure 1.2. Vector fields are used to represent a wide variety of physical phenomena.

and/or a quantitative manner. In the case of vector fields, features of interest include

vortices (regions of rotating material), critical points (points where material is created or

destroyed), material boundaries (boundaries that the material cannot cross), separation and

attachment lines (where flow separates and attaches, respectively), shocks (discontinuities

in the field), etc. The techniques for vector field analysis often aim to extract some or all

types of features.

1.3.1 Paradigms of Vector Field Analysis

The techniques for vector field analysis can be broadly classified into three classes

briefly discussed in this section. A more detailed discussion along with the advantages

and limitations of these classes of techniques can be found in Chapter 2.

1.3.1.1 Pathline-based analysis. Pathlines are paths of massless2 material parti-

cles as they are advected in the vector field. Since particle paths capture the overall dynamic

behavior of the material represented by the vector field (wind, ocean, etc.), this class forms

the most fundamental type of analysis of vector fields. A large number of analysis techniques

2Particles are assumed to be massless so that they do not have any inertia, and their motion represents
the influence of the underlying vector field only.
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compute these paths—through numerical integration—and use them either directly [203] or

indirectly [80, 81] to extract features of interest.

1.3.1.2 Streamline-based analysis. Streamlines are curves that are instantaneously

tangent to the vector field at every point in space. They encode the direction that a

moving particle will take at a given point in space and time, and, therefore, describe

the spatial behavior of the field at a given instant in time. In the case of steady vector

fields, streamlines capture the particle behavior, and, therefore, coincide with pathlines.

Consequently, streamline-based analysis and visualization [20, 89, 208] have been very

successful for steady vector fields.

1.3.1.3 Indicator-based analysis. The third class of vector field analysis tech-

niques extracts the features of interest indirectly through carefully chosen scalar indicator

functions that may represent position-based or particle-based properties of the data. For

example, vortices can be extracted using indicators such as Q- [97] and �
2

-criterion [100].

The primary advantage of using scalar indicators is that it allows utilizing robust scalar

analysis techniques instead of more di�cult vector field analysis.

1.4 Challenges in Vector Field Analysis
Due to the fundamental dynamic nature of vector fields, their analysis is particularly

challenging—especially as compared to the analysis of scalar fields. This section discusses

some important mathematical and algorithmic challenges in vector field analysis, many of

which will be addressed by this dissertation.

1.4.1 Challenges Due to Nontrivial Features

Perhaps the most fundamental challenges in vector field analysis exist in the understand-

ing of complex features. Although 2D steady vector fields have been studied thoroughly

in the past two decades using e↵ective techniques such as vector field topology [89], the

more important cases—the 3D and the unsteady—are still not well understood, especially

because features in such vector fields are more complex and often nontrivial to define. In

particular, many important features are defined only intuitively, and a rigorous mathemat-

ical formulation does not exist.

For example, vortices are important to identify in a variety of physical applications.

They induce drag and can reduce lift in airplanes; hence, they must be minimized. On the

other hand, in combustion and mixing phenomena vortices may be desirable as they can

increase stirring. Nevertheless, despite their importance, vortices do not have a universally

accepted definition—a challenge well represented by the numerous research articles in the
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field that try to define vortices, for example, “The Dilemma of Defining a Vortex” [97]

and “The Objective Definition of a Vortex” [82]. Some of the most common techniques to

detect vortex derive indicators such as Q- [97] and �
2

-criterion [100], which highlight vortical

properties of the flow that may su�ce as a proxy for vortices. Similarly, material boundaries

(boundaries that separate material) in unsteady flows are also not well understood. They

are often extracted indirectly as the ridges of the finite-time Lyapunov exponent [80, 81],

which has also been questioned [83].

1.4.2 Challenges Due to the Dependence Upon Reference Frames

Fields are physical quantities that are represented—both mathematically and compu-

tationally—as functions of space and time. Such a representation must assume a reference

frame to define a coordinate system. It is well known from classical relativity that the

velocity of an object as measured by a moving observer (reference frame) depends upon the

observer’s velocity itself [112]. Therefore, vector fields, which define velocity fields, vary with

moving reference frames. They must be measured and analyzed in an implicitly assumed

reference frame; streamlines and streamline-based features such as critical points, orbits,

etc., can be defined only for a given reference frame. With a changing reference frame, such

features may move around, appear or disappear, or even change types. Consequently, the

dependence on reference frame is an important challenge in the representation and analysis

of vector fields. In particular, the fundamental question is how to determine the “correct”

reference frame that exhibits the “correct” features.

In principle, this problem is equivalent to that of determining the “correct” reference

frame for defining the laws of physics. Every experiment performed on Earth can be

represented in many reference frames—the rotating reference frame of Earth, the revolving

reference frame around the Sun, and so on. However, since an absolute (“correct”) reference

frame cannot be found, one may assume the reference frame used in a laboratory on Earth

to be static, and derive physical laws in this frame. Such laws will be valid in infinitely

many frames moving uniformly with respect to the laboratory.

Similar to these ideas in physics, the choice of the reference frames in the representation

and analysis of vector fields is also subjective—there does not exist a single “correct”

general-purpose reference frame. The choice of the reference frame is typically made out of

convenience for performing the experiment or simulation; however, it generally cannot be

guaranteed that the reference frame preferred for the experiment is also suitable for analysis.

Figure 1.3 illustrates an example where the reference frame chosen for a flow simulation is

not suitable to extract the desired rotational behavior—the von Kármán vortex street—from



10 253EXPERIMENTAL HYDRODYNAMICS OF SWIMMING

FIG. 10. Comparison of theoretically expected patterns of wake flow behind a stationary cylinder (A) and a heaving and pitching foil (B).
Incident fluid flow in both panels is from left to right. The bluff body in A generates a drag wake composed of staggered counterrotating
vortices with interspersed jet flow (gray arrows) oriented upstream (i.e., a von Kármán street). As the streamlined foil in B oscillates it also
leaves a staggered wake of vortices, but because the sense of vortex rotation is opposite to that shown in A this wake is termed a reverse von
Kármán street. This actively generated wake produces jet flow between alternating vortex pairs that is oriented downstream. In reaction to
these momentum jets, forward thrust is exerted on the foil.

each stride is partitioned among the three fin systems
as shown in Figure 11A; note that the soft dorsal fin
contributes 12% of total thrust on average. During
slow turning maneuvers in sunfish (described above),
the soft dorsal fin is also active, shedding a laterally
oriented momentum jet at the end of the body-rotation
phase (Drucker and Lauder, 2001a). Both the pectoral
and dorsal fins, therefore, exert laterally oriented wake
forces during this unsteady swimming behavior, with
the dorsal fin generating an average of 35% of the total
(Fig. 11B). The fact that the soft dorsal fin produces
approximately 10% of the total thrust generated by all
fins during steady swimming, and more than one-third
of the total lateral force during turning, underlines its
active role in propulsion. The partitioning of swim-
ming force among multiple fins is likely a widespread
characteristic of the teleost locomotor system, but as
yet has received very little experimental study.

9. DPIV shows that wake interaction among fins may
enhance thrust production
The observation that more than one fin can shed a

vortex wake at the same time suggests the possibility
of hydrodynamic interaction among nearby propulsors.
Theoretical studies of fish locomotion have empha-
sized the potential for wake interaction among fish fins

to increase propulsive efficiency (Lighthill, 1970; Wu,
1971; Yates, 1983; Weihs, 1989). Experimental work
in non-biological systems has demonstrated that vortex
trails shed by upstream bodies can intercept and affect
the strength of developing vortices generated by bod-
ies downstream. Specifically, it has been shown that
the drag wake of an upstream bluff body can interact
in either a constructive or destructive way with the
near-field thrust wake produced by a downstream os-
cillating foil (Gopalkrishnan et al., 1994; Anderson,
1996; Triantafyllou et al., 2000). The type of interac-
tion observed depends on the sign of vortex rotation
and the encounter phase of the foil with respect to the
upstream vortices. For two adjacent foils shedding a
thrust wake, as in a swimming fish, annihilation or
reinforcement of vorticity will also depend on encoun-
ter kinematics.
Using DPIV, Drucker and Lauder (2001a) examined

the dynamics of wake interaction between the soft dor-
sal fin and tail of bluegill sunfish. Given the proximity
of these fins (see Fig. 11A), both constructive and de-
structive interactions among wake vortices are theo-
retically possible. During steady swimming slightly
above the gait transition speed (1.1 L sec21), both fins
exhibit a sinusoidal pattern of motion with a mean
phase lag of 120 msec. A horizontal laser light sheet
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Figure 1.3. Streamline-based visualization of a simulated flow (left) fails to capture the
expected rotational features (right), due to an unsuitable reference frame.

the flow. These features are especially important to identify in many engineering problems,

such as the design of tall buildings and towers; failure to identify these structures correctly

can lead to structure instabilities in design. Nevertheless, since there does not exist a

“correct” reference frame, analysis tasks should define their own preferred reference frame

to extract the features of interest, such as the von Kármán vortex street in the above

example; this reference frame suitable for analysis may or may not be the same as the one

suitable for simulation or experiment.

1.4.3 Challenges Due to the Temporal Dimension of Vector Fields

For unsteady flows, the features of interest are spatiotemporal in nature, meaning that

they require spatial as well as temporal coordinates to describe their existence. Such features

are typically extracted through analysis that is performed simultaneously in space and time.

In particular, commonly used techniques are based on pathlines, which represent paths

of material particles over time when advected in the flow. Typically, a large number of

pathlines are traced for a finite amount of time; the pathlines are then used to extract

important features from data. Examples of such analysis are the computation of pathline-

based topology [203] and the detection of material boundaries using the finite-time Lyapunov

exponent (FTLE) field [80].

However, such techniques are computationally expensive, since they must trace a large

number of pathlines, of which typically only certain special ones are of importance. For

example, a typical computation of the FTLE computes pathlines for every grid point in

the domain. Furthermore, these pathlines are computed using numerical integration such

as Runge-Kutta schemes, and require interpolation as well as integration of vectors in both

space and time. As a result, they lack numerical robustness, and are a↵ected by errors

and uncertainties that are often nontrivial to track. Finally, they require simultaneous

access to data across space and time, thus raising challenges of data management. In

particular, even though pathline computation is parallelizable with respect to particles,

the same spatiotemporal blocks of data may need to be loaded in and out of memory
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multiple times, thus making them unattractive for large-scale data. Moreover, since pathline

computation is temporally nonlocal, such techniques typically cannot be applied in situ

using the data for a single time-step only. Especially considering the future of data analysis,

where e�cient and scalable techniques will be required to work at exascale, the approaches

based on pathlines are not promising, despite the parallelization they o↵er.

In comparison, the analysis of time-varying scalar fields is much simpler: typically,

features are extracted for instantaneous snapshots of data—that is, the field at each time-

step—and these features are then tracked in time to understand their complete spatiotem-

poral behavior. However, it is well known that this model of analysis does not produce

meaningful results for vector fields because the instantaneous features extracted from vector

fields do not capture the underlying behavior in general. This limitation is closely related

to the dependence upon reference frames, and it has been noted by many researchers

that instantantaneous features are physically meaningful only under certain distinguished

reference frames, but what these frames may be is not yet clear.

1.4.4 Challenges Due to Numerical Extraction of Dynamic Behavior

Vector fields are dynamic in nature; even small local perturbations in data (or in

analysis) can have large global consequences. For example, even a small error in locating

or advecting a particle in the field can cause it to flow to a significantly di↵erent region.

Therefore, the computational challenges of numerical analysis are even more pronounced

in the case of vector fields. In particular, the computation of streamlines—which, in the

case of steady flows, represent the paths of massless particles traveling along the flow—is

typically performed numerically using Runge-Kutta (RK) integration schemes [170]. The

small errors incurred at each step of this numerical integration can accumulate and cause

the computed streamline to deviate drastically from the “true” streamline.

Despite these problems, many of the standard techniques for vector field analysis rely

on variants of RK methods. However, robust computation of flow becomes a formidable

task, since the errors in numerical integration schemes can compound quickly. This lack

of numerical robustness can create inaccurate and/or inconsistent analysis (as defined

in Section 1.2.1), where any structures derived from streamlines—such as vector field

topology [89], which is an abstract representation of the global flow behavior—are unreliable

at best and possibly misleading at worst. Apart from the obvious problem of potentially

including an incorrect structure in the analysis, numerical techniques can cause a more

subtle yet equally important problem. Since the error in streamline tracing is nontrivial to

capture, it is typically not shown. Hiding these inaccuracies and uncertainties inherent in
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the numerical integration creates the perception of certainty. The user is presented with

crisp streamlines and clean topological segmentations, implying a false sense of accuracy.

Furthermore, in the worst cases, these numerical errors in streamline computation may

cause two distinct streamlines to intersect, as illustrated in Figure 1.4. Since streamlines are

tangent curves to the vector field, an intersection implies two tangents at a single point—a

physically invalid result that violates a fundamental property of vector fields that any two

streamlines must be disjoint (that is, the uniqueness of the solution of an ordinary di↵erential

equation). The intersecting streamlines shown in Figure 1.4 are separatrices—streamlines

of saddle points. In 2D, separatrices represent separation and attachments lines [89, 106]

and are crucial to detect for optimal designing of aircrafts, where flow separation and

attachment along the aircraft wings can significantly increase the drag and raise its stall

speed—conditions that are particularly dangerous during takeo↵ and landing. In this case,

an inconsistent analysis can lead to faulty designs and structural failures, potentially causing

catastrophic disasters.

Figure 1.5 illustrates another manifestation of inconsistency in vector field analysis that

can be attributed to numerical techniques. When critical points are computed through

numerical solutions of linear systems, there may exist false positives and false negatives.

These results can violate the Poincaré index theorem (Theorem 2.3), which determines the

Figure 1.4. Inconsistent streamlines computed using numerical integration. With respect
to the orientation of the red streamline—marked with an arrow—the green streamline
switches from its left to its right, as the two streamlines travel counterclockwise (top zoom-in
to bottom zoom-in). Thus, the accumulation of integration errors causes the two streamlines
to intersect, creating inconsistent results.
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(a) (b) (c)

Figure 1.5. Inconsistent critical points detected using numerical techniques. (a) The
actual configuration: a single critical points exists on the edge BC. Numerical techniques
for identifying triangles containing critical points might test positive for (b) both ABC and
BDC, or (c) neither of them—both of which are inconsistent results.

presence of critical points in a given region of a vector field—an inconsistency with severe

consequences. For example, in the analysis of an MRI brain scan of an Alzheimer’s patient,

an important goal is to detect where the patient may be losing brain matter—a task that

can be performed by detecting the critical points of the deformation vector field of the brain

matter [126]. A false negative, in this scenario, can mislead the diagnosis, and ultimately

prevent the treatment and understanding of the disease.

In general, computing the topological skeleton, which includes separatrices, critical

points, and periodic orbits in the 2D case, can be numerically unstable due to errors inherent

in the integration of separatrices and inconsistencies among neighboring cells of the domain.

As a result, numerically computed structures may be adequate for visualization, but not

suitable for further analysis.

1.5 Contributions of This Dissertation
The role of scientific data analysis is to enable the understanding of natural or artifi-

cial phenoemena by deriving important insights from the corresponding experiments and

simulations. When a new theory or framework for analysis through feature extraction is

developed, it must be able to address two particularly important questions:

Q1.) Are the extracted features correct?

Q2.) Is the extraction procedure precise?

The first question deals with the correctness of features in the sense of whether or not

a feature must exist, or in what form it must exist, whereas the second question focuses on

the precision of the analysis. This dissertation addresses these two questions in the context

of vector fields. In particular, the contributions of this dissertation are divided into two
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main parts: Part II develops new local reference frames to address the notion of correctness

in feature extraction, and Part III develops new combinatorial representations that focus

on the accuracy and consistency issues in analysis.

1.5.1 Thesis Statement

Features of vector fields cannot be defined objectively, but depend upon the assumed

reference frame; therefore, analysis techniques must choose a suitable reference frame to

focus on the features of interest. Appropriate reference frames can also reduce unsteady

vector field analysis to the analysis of sequences of steady vector fields, which has impor-

tant computational advantages. However, current techniques to perform such analysis are

numerically nonrobust, and can produce results that are inconsistent with the underlying

theory. Consistency is of prime importance in computational analysis, and must always be

preserved, and new discrete theories and combinatorial representations can enable perform-

ing consistent analysis. This dissertation aims to develop new theories and frameworks to

enable consistent feature extraction from vector fields.

1.5.2 Development of Local Reference Frames

As discussed in Section 1.4.2, the definition and choice of the “correct” reference frame

for vector field analysis is subjective; therefore, the definition of the “correct” features is

also not objective. As a result, this dissertation proposes that analysis applications define

a preferred reference frame that is suitable to extract the features of interest.

The work presented in Part II of this dissertation defines a new reference frame useful

for the analysis of a large class of simulated flows by focusing on localized features in

the data. Thus, this part answers Question 1, asked above, by objectifying correctness

in the context of the considered types of flows. An important advantage of the proposed

reference frames is that they allow reducing unsteady flows to sequences of steady flows;

that is, unsteady flows can be analyzed by treating the flow at individual time-steps as

steady, and performing a feature extraction on each time-step. These extracted features

can then be collated in time using a temporal analysis. For example, critical points and

vortices can be computed independently for the flow at each time-step, and feature tracking

can be performed to compute the paths of these features. As compared to pathline-based

techniques, such analysis is less expensive, temporally local, allows better data management,

and can be performed in situ. As a result, this work addresses many important mathematical

and computational challenges discussed earlier.

In order to define this reference frame, Chapter 3 develops a new flow decomposition
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called the natural Helmholtz-Hodge decomposition, which eliminates an important limitation

of the many existing formulations of the famous Helmholtz-Hodge decomposition (HHD).

In particular, these conventional approaches impose boundary conditions to compute a

unique HHD—a strategy associated with serious artifacts. Through the natural HHD,

this dissertation eliminates these boundary artifacts by performing the decomposition in a

natural and data-driven manner. In addition to being useful for defining a local reference

frame, the natural HHD has many other advantages. It allows localized and multiscale

flow analysis, and enables open-boundary analysis for scenarios where a boundary does not

exist, or where the simulation does not impose any boundary conditions.

Chapter 4 uses the natural HHD to develop a new reference frame to highlight the

localized properties of a given flow. This chapter demonstrates that this so-called internal

reference frame is suitable for flows representing a large class of physical phenomena, as

it enables the extraction of physically meaningful features that other techniques fail to

detect. Finally, this chapter focuses on a very important application of the internal reference

frame—the analysis of unsteady flows as sequences of steady flows. Case studies from various

simulated flows demonstrate the applicability of the internal frame.

The research corresponding to Chapters 3 and 4 has been published as the following

journal articles.

[1] Bhatia, H., Norgard G., Pascucci V., Bremer P.-T. Comments on the
“Meshless Helmholtz-Hodge Decomposition”. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 19 (2013) 527–528.
http://dx.doi.org/10.1109/TVCG.2012.62.

[2] Bhatia, H., Norgard G., Pascucci V., and Bremer P.-T. The Helmholtz-
Hodge decomposition – A survey. IEEE Transactions on Visualization and Computer
Graphics (TVCG) 19 (2013) 1386–1404.
http://dx.doi.org/10.1109/TVCG.2012.316.

[3] Bhatia, H., Pascucci V., Kirby, R. M., and Bremer P.-T. Extracting features
from time-dependent vector fields using internal reference frames. Computer Graphics
Forum 33 (2014), 21–30. http://dx.doi.org/10.1111/cgf.12358.

[4] Bhatia, H., Pascucci V., and Bremer P.-T. The natural Helmholtz-Hodge
decomposition for open-boundary flow analysis. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 20 (2014) 1566–1578.
http://dx.doi.org/10.1109/TVCG.2014.2312012.

As a motivation to develop new techniques for analyzing unsteady flows, Chapter 5

describes some work in progress. In particular, a detailed case study is provided that com-

pares the pathlines computed using state-of-the-art techniques with particles propagated in
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situ in a combustion simulation. This quantitative and qualitative evaluation demonstrates

that, in practice, pathlines computed for large-scale complex simulated flows do not capture

the true particle behavior, which calls into question the widely applied analysis model using

pathlines.

1.5.3 Development of Combinatorial Representations

As discussed in Section 1.2.1, computational models for experiments, simulations, and

data analysis are typically based upon mathematical theories that assume smooth fields

defined over smooth domains. However, practical adaptations of these theories are numerical

in nature, and are fundamentally limited in how the data is represented and computations

are performed. This analysis model typically incurs large amounts of errors, which, more

importantly, are nontrivial to track.

To address the issues caused by the lack of numerical robustness in vector field analysis,

Part III of this dissertation develops a new discrete theory of representation and analysis of

vector fields. As compared to smooth theory, the primary advantage of the discrete world

is that its data and concepts can be adapted for computers exactly using combinatorial

representations. The primary goal of this work is to guarantee consistency in feature

extraction for vector fields, and at the same time, track the uncertainties in representation

and analysis. New representations and algorithms developed in Part III achieve this goal,

and answer Question 2 asked above to lend credibility to analysis.

Chapter 6 introduces Edge Maps, which define a new theory of representation for 2D

piecewise linear (PL) vector fields. They are an explicit representation of flow as they

encode the most fundamental property—streamlines—needed by analysis, and eliminate

the need for numerical integration of streamlines. Using Edge Maps, which can also encode

the discretization errors incurred during their construction, errors in streamline tracing

can be tracked to provide candid uncertainty visualizations. This chapter discusses the

construction and properties of Edge Maps in detail, and provides an exhaustive list of

equivalence classes of Edge Maps for PL vector fields.

Chapter 7 introduces a quantized version of Edge Maps, which eliminates the need for

floating-point arithmetic by using integer arithmetic to compute streamlines. Thus, these

quantized Edge Maps define a new discrete theory based upon the PL theory developed

by Edge Maps. Using the quantized Edge Maps, all possible streamlines in the flow can

be encoded into a combinatorial datastructure through an integer-based representation.

This combinatorial representation of vector fields allows guaranteeing consistency during
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streamline tracing. This chapter also introduces a new combinatorial algorithm to perform

consistent critical point detection in both 2D and 3D.

The research corresponding to Chapters 6 and 7 has been published as the following

journal articles, conference proceedings, and book chapters.

[5] Bhatia, H., Jadhav S., Bremer P.-T., Chen G., Levine J. A., Nonato L. G.,
and Pascucci V. Edge maps: Representing flow with bounded error. In Proceedings
of the 4th IEEE Pacific Visualization Symposium (2011) pp. 75–82, Hong Kong,
China. http://dx.doi.org/10.1109/PACIFICVIS.2011.5742375.

[6] Jadhav S., Bhatia, H., Bremer P.-T., Levine J. A., Nonato L. G., and
Pascucci V. Consistent approximation of local flow behavior for 2D vector fields.
In Topological Methods in Data Analysis and Visualization II – Theory, Algorithms,
and Applications, R. Peikert, H. Hauser, H. Carr, and R. Fuchs, Eds., Mathematics
and Visualization. Springer Berlin Heidelberg, 2012, pp. 141–159.
http://dx.doi.org/10.1007/978-3-642-23175-9_10.

[7] Bhatia, H., Jadhav S., Bremer P.-T., Chen G., Levine J. A., Nonato
L. G., and Pascucci V. Flow visualization with quantified spatial and temporal
errors using edge maps. IEEE Transactions on Visualization and Computer Graphics
(TVCG) 18 (2012) 1386–1396. http://dx.doi.org/10.1109/TVCG.2011.265.

[8] Levine J. A., Jadhav S., Bhatia, H., Pascucci V., and Bremer P.-T. A
quantized boundary representation of 2D flow. Computer Graphics Forum 31 (2012),
945–954. http://dx.doi.org/10.1111/j.1467-8659.2012.03087.x.

[9] Bhatia, H., Gyulassy A., Wang H., Bremer P.-T., and Pascucci V. Robust
detection of singularities in vector fields. In Topological Methods in Data Analysis
and Visualization III – Theory, Algorithms, and Applications, P.-T. Bremer, I. Hotz,
V. Pascucci, R. Peikert, Eds., Mathematics and Visualization. Springer Berlin Hei-
delberg, 2014, pp. 3–18.
http://dx.doi.org/10.1007/978-3-319-04099-8_1.
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CHAPTER 2

FUNDAMENTALS AND RELATED WORK

2.1 Potential Theory
In order to understand the concepts presented in Chapter 3, it is important to have a

clear understanding of the potential theory. This section presents some of its fundamental

elements; a more detailed discussion can be found in standard textbooks [7, 135].

2.1.1 Poisson and Laplace Equations

The Poisson equation is one of the most fundamental elliptic partial di↵erential equa-

tions, and is expressed as

r2' = f in ⌦, (2.1)

where f is called the source function and ' the potential function. The general solution to

Equation (2.1) is given by ' = F +H, where r2F = f , and H is a solution of the Laplace

equation,

r2H = 0 in ⌦, (2.2)

and is called a harmonic function. It is important to note that one can add any harmonic

function H to ' while still satisfying Equation (2.1). To obtain a particular solution to the

Poisson equation (2.1), one must choose a specific H, typically done by imposing boundary

conditions.

In physical terms (refer to Figure 2.1), the Poisson equation (2.1) solves for the potential

' generated by the (energy) sources inside the domain (defined by f), as well as those

outside the domain. However, since for the Laplace equation (2.2), the (energy) sources

are zero inside the domain, its solution (a harmonic function) represents the external

influence [7, 135], that is, the potential generated by the (energy) sources lying outside

⌦. The external influence can be inferred if its boundary values are known. Therefore, the

harmonic function representing the external influence is completely and uniquely defined by

boundary conditions. Since the internal influence is already uniquely defined by f , when
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Figure 2.1. The Poisson equation computes the potential generated by specified energy
sources, with respect to the given boundary conditions. The figure illustrates the Poisson
equation on a 1D domain ⌦ ⇢ R. Inside ⌦, the potential due to an internal source �

in

(red) is uniquely defined. However, the potential due to any external source, for example,
�
out

(green) is harmonic (constant slope) inside ⌦, and can be determined uniquely using
boundary values. Therefore, the solution to the Poisson equation (cyan)—the potential due
to interior and exterior sources—is uniquely defined using the boundary conditions.

appropriate boundary conditions are given, ' (the solution to Equation (2.1)) is uniquely

defined.

2.1.1.1 Boundary conditions. Two common types of boundary conditions to solve

the Poisson equation (2.1) are

• Dirichlet, which specifies the value of ' at the boundary, that is, ' = g on @⌦. In

this case, there exists a unique solution.

• Neumann, which specifies the value of the derivative of � with respect to the boundary,

that is, @'

@~n

= g on @⌦. In this case, there exists a solution unique up to an additive

constant if and only if the following compatibility condition is satisfied [36].Z
⌦

f dV =

Z
@⌦

g dA. (2.3)

The additive constant can be removed by requiring that '(x
0

) = 0, x
0

2 ⌦.

2.1.1.2 Green’s function. One way to solve the Poisson and Laplace equations is

to use an integral kernel called the Green’s function, G(x,x
0

). The Green’s function is

defined as the potential created at x
0

due to an impulse (energy) source represented by the

Dirac delta function located at x (as shown in Figure 2.1), that is, it is the solution to the

equation

r2G(x,x
0

) = �(x� x
0

).

In the case of a single source located at x in an infinite domain, it is also called the free-space

Green’s function, G1 = G1(x,x
0

), and is given as
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G1(x,x
0

) =
1

2
|x� x

0

| x,x
0

2 R,

G1(x,x
0

) =
1

2⇡
log(|x� x

0

|) x,x
0

2 R2,

G1(x,x
0

) =
�1

4⇡|x� x
0

| x,x
0

2 R3.

(2.4)

According to the sifting property of the Dirac delta function, any continuous source function

can be represented as a collection of infinitely many impulse sources, as

f(x
0

) =

Z
Rn

f(x) �(x� x
0

) dx.

Then, the Poisson equation r2' = f on Rn, with f(x) ! 0 for x ! 1 can be solved as

'(x
0

) =

Z
Rn

G1(x,x
0

) f(x) dx. (2.5)

The above integral solution [135] computes the potential ' at a point x
0

2 Rn due to the

sources defined by f at all x 2 Rn.

To compute ' for a bounded domain ⌦ using the integral solution, one typically uses

the finite-space Green’s function, G
⌦

, which is influenced by both the domain ⌦ and its

boundary @⌦. In this case, the Poisson equation (2.1) can be solved [135] as

'(x
0

) =

Z
⌦

G
⌦

f(x) dx+

I
@⌦

'(x)
@G

⌦

@~n
dx�

I
@⌦

G
⌦

@'(x)

@~n
dx.

In the case of Dirichlet boundary conditions, one typically finds a G
⌦

that vanishes at

the boundary, such that the third integral becomes zero. On the other hand, for Neumann

boundary conditions, one imposes @G⌦(x,x0)

@~n

= 1/
�H

@⌦

dx
�
, in which case the second integral

becomes a constant. In either case, the general form of G
⌦

is given as

G
⌦

(x,x
0

) = G1(x,x
0

) + �
⌦

(x,x
0

),

such that, G
⌦

(x,x
0

) = 0 for x 2 @⌦, and �
⌦

is harmonic on ⌦. Thus, computing the

Green’s function for an arbitrary domain is nontrivial, and typically, it is not available in

closed-form.

2.2 Degree Theory
The consistent critical point detection technique presented in Section 7.2 relies on certain

elements of degree theory, which will be used to prove consistency. The definitions presented

in this section have been made by Lloyd [123].

In the context of this discussion, let ⌦ be a bounded, open subset of Rn. The closure

and the boundary of ⌦ are denoted by ⌦̄ and @⌦, respectively. A point x 2 Rn is denoted
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as x = (x
0

, ..., x
n�1

), and has an L1 norm |x| = max
(0in�1)

{|x
i

|}. C(⌦̄) denotes the

class of continuous functions ' 2 C(⌦̄), such that '(x) : ⌦̄ ! Rn with the norm ||'|| =

sup
x2⌦ |'(x)|. C1(⌦̄) is a subset of C(⌦̄) such that ' 2 C1(⌦̄) has continuous first-order

partial derivatives. Let p = '(x) = ('
0

(x), · · · ,'
n�1

(x)); then, the Jacobian matrix J of

' is given as J'(x) = [r'
0

, · · · ,r'
n�1

]T . For ' 2 C1(⌦̄), p = '(x) is called a degenerate

value of ' if there exists x 2 ⌦̄ such that det(J'(x)) = 0; otherwise p is a regular value of

'.

For a bounded, open subset ⌦ ⇢ Rn, and a continuous function ' 2 C(⌦̄), the Brouwer

degree of ' in ⌦ with respect to the value p, where p /2 '(@⌦), is defined as follows:

Definition 2.1 (Brouwer Degree for C1(⌦̄) and regular value p). If ' 2 C1(@⌦) and p is

a regular value of ', then

deg(',⌦,p) =
X

x2'�1
(p)

sign (det(J'(x))) .

An intuition behind the concept of Brouwer degree is illustrated in Figure 2.2(a). It is

essentially the number of the net crossings of p by the image of @⌦ under '. The above

definition is limited to regular values p only. Not all values in a sampled function recon-

structed through interpolation are regular, so our definition must encompass degenerate

values as well.

Definition 2.2 (Brouwer Degree for C1(@⌦) and degenerate value p). If ' 2 C1(@⌦) and

p is a degenerate value of ', then

deg(',⌦,p) = deg(',⌦,p
1

),

where p
1

is any regular value such that |p� p
1

| < dist(p,'(@⌦)).

The existence of a nondegenerate value in every neighborhood of p is guaranteed by

Sard’s Theorem [123]. Similarly, we would like to extend this definition to functions that

are continuous, but not necessarily in C1(@⌦).

Definition 2.3 (Brouwer Degree for C(@⌦)). If ' 2 C(@⌦), then

deg(',⌦,p) = deg('
1

,⌦,p),

where '
1

is any function in C1(@⌦) such that |'(x) � '
1

(x)| < dist(p,'(@⌦), for any

x 2 @⌦.



23

'(x)
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p

⌦
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⌦
2

(a)

x

x
1

x
2

x
3

�x
1

�x
2

�x
3 ⌦

3

⌦
2

⌦
1

'(x)

(b)

Figure 2.2. The Brouwer degree counts the net number of times a function value p
is crossed by the image of the closure ⌦̄ of a domain under function '. The “positive”
(det(J'(x)) > 0) and “negative” (det(J'(x)) < 0) crossings are shown as solid and hollow
dots, respectively. (a) For the open and bounded sets ⌦

1

and ⌦
2

, the Brouwer degree
of '(x) with respect to the value p is �1 and 0, respectively. (b) When the sets ⌦

i

are
symmetric, Theorem 2.2 guarantees that if the values on the boundary have di↵erent signs,
then the Brouwer degree with respect to 0 is odd, as is the case for ⌦

2

and ⌦
3

.

Basically, one can find a function '
1

that is “close” to ' and has continuous derivatives,

and define the Brouwer degree with respect to this function.

Using the Brouwer degree, the net number of crossings of p by the image of ⌦̄ can be

counted. If this number is nonzero, then there exists at least one x such that '(x) = p,

which leads to the following theorems:

Theorem 2.1 (Kronecker’s Existence Theorem). If deg(',⌦,p) 6= 0, then the equation

'(x) = p has at least one solution in ⌦.

Theorem 2.2. Let ⌦ be a bounded, open, symmetric subset of Rn containing the origin.

If ' : ⌦̄! Rn is continuous, 0 /2 '(@⌦), and for all x 2 @⌦

'(x)

|'(x)| 6=
'(�x)
|'(�x)| ,

then deg(',⌦,0) is an odd number [123].

Intuitively, Theorem 2.2 ensures that ' crosses '(x) = 0 at least once if no antipodal

vectors of ' are parallel, as can be seen in Figure 2.2(b).

2.3 Vector Fields
For a given nD domain ⌦ ✓ Rn, a map that assigns each point in space a vector is

called a vector field, that is, ~V : ⌦ ! Rn. For a given point x = (x
1

, x
2

, . . . , x
n

) 2 ⌦, the
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vector field ~V (x) consists of n scalar functions determining the value of each component

~V (x) =
⇣
~V
1

, ~V
2

, . . . , ~V
n

⌘
. Figure 2.3 illustrates a 2D vector field.

For 2D or 3D vector fields, the components of the vector field are typically referred to

as ~V = (u, v) or ~V = (u, v, w), respectively. Given a di↵erentiable manifold M, a vector

field on M assigns a tangent vector to each point in x. That is, ~V : M! TM, where TM is

the tangent space of M. The vector field as defined above depends only upon space. Such a

vector field that does not change with time is called a steady vector field. In comparison, an

unsteady vector field ~V : R⇥⌦! Rn or ~V : R⇥M! TM varies with time, and is denoted

as ~V (t,x).

2.3.1 Di↵erential Operations on Vector Fields

One of the most fundamental di↵erential operators for vector fields is the nabla operator

and is expressed as

r =

✓
@

@x
1

, . . . ,
@

@x
n

◆
T

,

where (x
1

, . . . , x
n

) are the coordinates representing a point in Rn. Using the nabla operator,

various operations can be performed on vector fields.

2.3.1.1 Divergence. The divergence ( r·) measures the amount of expansion or

contraction of the flow at a given point, or the creation or destruction of material. The

presence of divergence reflects compressibility in the flow, and is expressed as the scalar

(dot) product of the nabla operator with the vector field.

Figure 2.3. A 2D steady vector field. Each point in the domain is assigned a vector, that
is, a magnitude and a direction, visualized as arrows.
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div ~V (x) = r·~V (x) =
@u

@x
+

@v

@y
+

@w

@z
.

For a given domain ⌦ with boundary @⌦, the total amount of flow created and destroyed

inside the domain must match the sum of the influx and outflux in the domain. This result

is commonly known as the Gauss theorem, or the divergence theorem [71].Z
⌦

r·~V dx =

I
@⌦

~n · ~V dx.

where ~n is the outward normal to the boundary.

2.3.1.2 Curl. The curl ( r⇥) measures the rotation of the flow about an instanta-

neous axis at a given point. The curl vector indicates the axis and magnitude of the rotation,

and is expressed as the vector (cross) product of the nabla operator with the vector field.

curl ~V (x) = r⇥~V (x) =

✓
@w

@y
� @v

@z
,
@x

@z
� @w

@x
,
@y

@x
� @x

@y

◆
.

Similar to the divergence theorem, the curl theorem relates the rotation of the vector field

in ⌦ to the vectors at the @⌦. In particular, the curl theorem says that the total rotation

of the flow inside the domain must match the integrated tangential component of the flow

at the boundary. Z
⌦

r⇥~V dx =

I
@⌦

~n⇥ ~V dx.

The terms rotation and vorticity are also used to express the curl. In the 2D case, the axis

of rotation is always normal to the plane, and, therefore, one can assume the direction, and

represent the curl simply by a scalar given below.

curl ~V (x) = r⇥~V (x) =
@y

@x
� @x

@y
.

2.3.1.3 Gradient. The gradient of a vector field ~V is the matrix of its first-order

partial derivatives, and is called the deformation tensor or the Jacobian, J~V , of the field.

J~V (x) = r~V =

264
@u

@x

@u

@y

@u

@z

@v

@x

@v

@y

@v

@z

@w

@x

@w

@y

@w

@z

375 .

2.3.2 Special Types of Vector Fields

Depending upon the di↵erential operators discussed above, some special vector fields

are defined below.



26

• An incompressible vector field is a vector field ~V such that its divergence is zero at

all points in the domain, that is, r·~V (x) = 0 for all x 2 ⌦. Such vector fields are

also called divergence-free or solenoidal vector fields, and are used to represent flow

of material that does not compress, for example, water.

• An irrotational vector field is a vector field ~V such that its curl is zero at all points

in the domain, that is, r⇥~V (x) = 0 for all x 2 ⌦. Such vector fields are also called

rotation-free vector fields, and are used to represent gradients of scalar fields.

• A harmonic vector field is a vector field that is both incompressible and irrotational,

that is, r·~V (x) = 0 and r⇥~V (x) = 0 for all x 2 ⌦. Harmonic vector fields will play

an important role in the later parts of this work, and will be discussed in more detail

in Chapter 3.

2.3.3 Characteristic Curves of Vector Fields

An important way of describing vector fields is through certain integral lines that high-

light di↵erent properties of the field. In the following, we will discuss only two most relevant

types of curves—streamlines and pathlines. Description of other curves—streaklines and

timelines—can be found in any standard text on vector fields.

2.3.3.1 Streamlines. These are the curves that are tangent to the vector field at

every point, and, thus, show the direction that a fluid element will take at any point in time.

Let x
S

(s) denote the parametric representation of a single streamline. Then it is defined as

dx
S

(s)

ds
⇥ ~V (x

S

(s)) = ~0. (2.6)

Since the streamlines are always parallel to the vector field, the slope of any streamline

matches that of the vector field. Given the components of the vector field, ~V = (u, v, w), a

streamline x
S

(s) = (x, y, z) satisfies

dx

u
=

dy

v
=

dz

w
. (2.7)

Streamlines are defined for instantaneous velocities, and, therefore, time (t) plays no role in

their definition, and is generally assumed. Furthermore, by definition, di↵erent streamlines

at the same instant in a flow do not intersect, because a fluid particle cannot have two

di↵erent velocities at the same point.

2.3.3.2 Pathlines. These are the trajectories that massless particles follow, when

advected under the flow over a certain period of time. Intuitively, a pathline can be seen as
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“tagging” a particle in the flow, and taking a long exposure photograph of its motion. Let

x
P

(t) denote the parametric representation of a pathline. Then, it is defined as

dx
P

(t)

dt
= ~V (t,x

P

(t)),

x
P

(t
0

) = x
P

0

.
(2.8)

Note that t
0

will be a fixed value, and given a particular t
0

, the corresponding pathline

x
P

(t) gives a parametric equation in t, that is, by varying t, we can compute the position

of the particle at any instant of time. Also note that the direction the path takes will be

determined by the streamlines of the fluid at each moment in time.

2.3.3.3 Streamlines versus pathlines. For unsteady vector fields, streamlines and

pathlines are distinct, since streamlines represent instantaneously tangent direction, and

pathlines represent time-integrated paths. However, in the case of steady vector fields,

streamlines and pathlines coincide, that is, x
S

(s) = x
P

(t) when the same parameter is used,

that is, s = t. For such cases, streamlines can also be defined as the paths of massless

particles traced under the steady field, and computed as numerical integration similar to

pathlines. Consequently, when the context is clear, the subscript will be eliminated.

2.3.4 Topological Characteristics of Vector Fields

This section introduces some important topological characteristics of vector fields, which

can be found in more detail in any standard text book on topology [92].

2.3.4.1 Winding number. Consider a continuous vector field ~V and a closed curve

�, such that there are no critical points of ~V on �. Let p be a point on � that is moved

counterclockwise along the curve. As the point is moved, the vector ~V (p) changes values,

and makes a whole number of rotations before coming back to the initial position. This

number of rotations is called the winding number of ~V with respect to �. The winding

number is positive if ~V makes a net counterclockwise rotation and negative if the net

rotation is clockwise. The winding number contains information about the behavior of ~V

in the region contained inside �.

2.3.4.2 Isolated critical points. Critical points are the zeros of a vector field, that

is, ~V (c) = 0 implies that c is a critical point. For a given critical point p, if there exists a

neighborhood that does not contain another critical point, then c is called an isolated critical

point. The winding number can be used to study isolated critical points by considering a

curve that bounds a small neighborhood around them. In particular, the index of an isolated

critical point c of ~V is the winding number of a small counterclockwise oriented curve �
c

centered around c such that �
c

contains no other critical points.
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2.3.4.3 Types of critical points. A critical point is called a center if there exist

closed streamlines that swirl around it, and no streamline passes through it. A node is

a critical point where nearby streamlines end, whereas a focus is the one around which

the streamlines swirl endlessly, but never reach the critical point. A saddle is a critical

point where exactly four streamlines meet—two outgoing and two incoming. Note that,

technically, no streamline ever reaches a critical point since the vector at a critical point is

zero, and so a tangent is not defined. Nevertheless, a streamline is informally considered to

end/begin at a critical point when it gets infinitesimally close to the critical point. For a

hyperbolic critical point (nodes and foci), or a center, the index is +1, whereas for a saddle,

the index is -1.

2.3.4.4 The Poincaré index. The index of a critical point is also commonly called

its Poincaré index. Using the concept of indices, it is possible to determine the behavior of

a vector field enclosed by a closed curve � by observing its behavior on �.

Theorem 2.3 (The Poincaré Index Theorem). Consider a continuous vector field ~V and a

closed curve �, such that there are no critical points of ~V on �. The winding number of ~V

with respect to � equals the sum of the indices of the critical points lying inside the domain

bounded by �.

The work published by Henri Poincaré in 1881 was generalized by Heinz Hopf in 1926.

A direct consequence of the work of Poincaré and Hopf is the fact that there cannot exist

a vector field on a sphere without any critical points. This is an important topological

invariant that connects the behavior of a vector field in terms of its critical points to the

topology of the underlying domain.

2.3.5 Eulerian and Lagrangian Representations

The behavior of a flow can be represented in two ways: Eulerian and Lagrangian. This

section briefly describes the two representations, and for more detail, the reader can refer

to the book by Panton [157] and the lecture notes by McDonough [138].

In the Eulerian representation, the flow is defined as a field; the properties of the

field—vector values, divergence, rotation, etc.—are defined at fixed coordinates in space

and time. For example, to understand the wind patterns around Earth’s surface, one can

build a grid of weather stations at fixed positions on Earth’s surface, and measure the wind

vectors at the points. The resulting data, ~V (t,x), is an Eulerian representation of the wind

vector field on Earth.
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On the other hand, the Lagrangian representation assigns the dynamic properties of

the flow to moving fluid particles; the equations are given for di↵erent particles, instead of

defining them for space and time. For example, the goal of understanding wind patterns

can also be attained using a registering balloon that is released at a certain position, and

is advected by the flow. The Lagrangian specification X(t, a) describes the position of a

given particle a at all times—its pathline. The data captured by the balloon is given in the

Lagrangian representation.

Both representations are equivalent, and one can be transformed into the other using

the following expression:

~V (t,X(a, t)) =
@X

@t
(t, a) . (2.9)

2.3.5.1 Material derivative. The Lagrangian and Eulerian specifications of the

kinematics and dynamics of the flow are related by the material derivative.

Df

Dt
=

@f

@t
+
⇣
~V ·r

⌘
f. (2.10)

The material derivative describes how a certain property of the flow, f(t,x), changes along

the path of a particle over time. The material derivative can be applied to scalar, vector,

or tensor quantities.

2.3.6 Reference Frames

The Eulerian representation of flow has to be evaluated in a certain reference frame,

which defines the assumed coordinate system to measure the field. Due to this dependence,

the Eulerian or point-based properties of the flow are not invariant to di↵erent reference

frames. The choice of the reference frame is often guided by the suitability of experimental

setup, or accessibility to certain frames. Typically, there is no distinguished reference frame,

and di↵erent reference frames can be transformed into each other.

2.3.6.1 Galilean invariance. Galilean transformations are an important subset of

the possible transformations between di↵erent reference frames. Let the flow properties of

~V (t,x) be defined with respect to a given reference frame F . If the observer starts moving

at a uniform velocity ~u(t,x) = ~u with respect to F , then a di↵erent reference frame F 0 is

obtained. The coordinate system of this new reference frame, x0, is related to that of F as

follows:

x0 = x+ ~u t,

where the time t is the same in both reference frames (as in Newtonian relativity). The

flow velocity observed in F 0 is given as
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~V (t,x0) = ~V (t,x)� ~u,

= ~V (t,x0 + ~u t)� ~u.

This uniform translation between F and F 0 is called a Galilean transformation. Such

transformations are particularly important since a uniform motion has zero acceleration,

and does not add any external forces to the system (force / acceleration).

A property of the flow—scalar, vector, or tensor—is Galilean invariant, if it does not

change under a Galilean transformation. For example, the velocity is changed under a

Galilean transformation as can be seen above, and is, therefore, not Galilean invariant. On

the other side, the Jacobian of a flow ignores uniform motion, and is, therefore, Galilean

invariant. The notion of reference frames and invariances will be revisited in Chapter 4.

2.4 Discrete Representations of Smooth Fields
Practical applications do not have access to smooth functions. Instead, they have to

work with discrete nonsmooth functions that approximate smooth functions. Specialized

representations must be developed to improve the quality of these approximations. This

section discusses important discrete representations for domains and vector fields along with

an important way of removing ambiguities that may arise in such representations.

2.4.1 Simplicial Complexes

Simplicial complexes are an important datastructure used to define discrete functions by

representing topological spaces as triangular and tetrahedral meshes. This section presents

some important definitions required to construct simplicial complexes [47].

Definition 2.4 (A�ne Combination). Given a set of k + 1 points {p
0

,p
1

, . . .p
k

}, with

p
i

2 Rn, a point x =
P

k

i=0

�
i

p
i

is an a�ne combination of {p
i

} if
P

k

i=0

�
i

= 1.

The points {v
i

} are a�nely independent if
P

�
i

p
i

= 0 and
P

�
i

= 0 implies �
i

= 0

for all i. Alternately, given two a�ne combinations x =
P

�
i

p
i

and y =
P

µ
i

p
i

, if

x = y , �
i

= µ
i

, then the points {p
i

} are a�nely independent. The k + 1 points are

a�nely independent if and only if the k vectors {p
i

� p
0

} for 1  i  k are linearly

independent. Since there can exist at most n linearly independent vectors in Rn, there can

be at most n+ 1 a�nely independent points.

Definition 2.5 (Convex Combination). An a�ne combination, x =
P

�
i

v
i

, is a convex

combination if �
i

� 0 for all i.
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The set of all a�ne combinations of {p
i

} is called its a�ne hull, and the set of all

its convex combinations is called its convex hull. Given a set of two a�nely independent

(distinct) points, its a�ne hull is the line passing through them, whereas its convex hull is

the line segment between them. For three a�nely independent (noncollinear) points, the

plane passing through them defines their a�ne hull, whereas the triangle formed by them

defines their convex hull.

Definition 2.6 (Simplex). A k-simplex, Sk, is the convex hull of k+1 a�nely independent

vertices, such that Sk = {v
i

},v
i

2 Rn, 0  i  k  n.

The simplices of the first few dimensions have special names—vertex for a 0-simplex,

edge for a 1-simplex, triangle for a 2-simplex, and tetrahedron for a 3-simplex—and are

illustrated in Figure 2.4.

Any subset of a�nely independent points is also a�nely independent, and, therefore,

also defines a simplex. A face of S is the convex hull of a nonempty subset of {v
i

}, and it is

proper if the subset is not the entire set. In particular, a simplex S l is called a l-face of Sk for

l  k if S l ✓ Sk, and a proper l-face of Sk for l < k if S l ⇢ Sk. If S l is a (proper) face of Sk,

then Sk is called a (proper) coface of S l. S̊ denotes the interior of a simplex, and is given by

removing all the proper faces from a simplex. The local neighborhood of a vertex v
j

can be

defined in terms of its star St(v
j

), which consists of all cofaces of v
j

. The star is not closed

under taking faces. A proper k � 1-face Sk�1

j

of Sk is called its facet if it is constructed by

removing vertex x
j

from Sk, that is, Sk�1

j

= {v
i

},v
i

⇢ Sk, 0  i  k  n, i 6= j.

Definition 2.7 (Simplicial Complex). A simplicial complex, denoted M, is a collection of

simplices such that S
i

2M implies that all the faces of S
i

are in M, and the intersection

of any two simplices is a face of both or empty.

Figure 2.4. A k-simplex for k = 0, 1, 2, and 3 is a vertex, an edge, a triangle, and a
tetrahedron, respectively.
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2.4.2 Sampled Vector Fields

In contrast to smooth vector fields defined on smooth domains, experiments and simula-

tions create sampled vector field defined on discretized domains, often simplicial complexes.

This section defines sampled vector fields, and makes some assumptions to avoid degenerate

cases that are hard to manage in geometric algorithms.

Definition 2.8 (Sampled Vector Field). A sampled vector field ~V : M! Rn is constructed

using m + 1 samples {~V
0

, . . . , ~V
m

}, ~V
i

2 Rn, defined on the vertices {v
0

, . . . ,v
m

}, v
i

2 Rn

of a simplicial complex M or a regular grid G.

Given samples of a vector field, the field on the entire domain must be completed using

interpolation. One of the most common ways is to interpolate the samples linearly within

each simplex, to construct a piecewise linear vector field.

Definition 2.9 (Piecewise Linear (PL) Vector Field). A piecewise linear (PL) vector field

~V on M is defined using linear interpolation of vector samples on the vertices {v
i

} of M

within each simplex.

Consider a triangle �
j

defined by its three vertices {p
j0 ,pj1 ,pj2}. Any point x in

�
j

lies in the convex hull of {p
j0 ,pj1 ,pj2}, and, therefore, can be represented as a linear

combination, x = �
0

p
j0 + �

1

p
j1 + �

2

p
j2 , where �

i

are such that 0  �
i

 1 and
P

2

i=0

�
i

=

1. The weights �
i

are called the barycentric coordinates of x with respect to the points

{p
j0 ,pj1 ,pj2}. Then, given the triangle�

j

defined by {p
j0 ,pj1 ,pj2}, and the corresponding

vector samples {~V
j0 , ~Vj1 , ~Vj2}, the field for any point x in �

j

can be computed using linear

(barycentric) interpolation, that is,

~V (x) = �
0

~V
j0 + �

1

~V
j1 + �

2

~V
j2 . (2.11)

To simplify the study of PL vector fields, an important simplifying assumption is made

on its samples.

Definition 2.10 (Generic Sampled Vector Field). A sampled vector field defined by Def-

inition 2.8 is called generic, if none of the vectors sampled at the vertices is zero, that is,

||~V
i

|| > 0, for all i 2 {0, . . . ,m}.

Assuming generic sampled vector fields simplifies their analysis substantially. However,

not every vector field sampled from observations or simulations is generic, since the sampled

vector magnitudes can be zero. In order to obtain a generic vector field, vector samples can

be perturbed symbolically using the Simulation of Simplicity.
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2.4.3 Simulation of Simplicity

The Simulation of Simplicity (SoS) [49] is a general-purpose programming philosophy

useful for handling degeneracies in data. Computational algorithms often work with data

that may contain a number of degenerate situations, the handling of which may require

addressing many special cases. The SoS philosophy is built upon the fact that degeneracies

are unstable, and can be removed by arbitrarily small perturbations. Thus, the SoS

provides a natural way of converting potentially degenerate input data into nondegenerate

information that can be used with simpler algorithms.

A very simple example of the SoS can be found in sorting an array of integers. A

degenerate situation arises when two equal numbers are encountered. The programmer must

handle this situation by imposing a strict ordering on numbers, for example, by assuming

that the array is indexed, and ordering for equal numbers is given by their indices. Thus, it

is assumed that there exists an arbitrarily small perturbation that can be applied to either

of the two equal numbers to make one number smaller than the other.

Typically, geometric algorithms are numerically not robust, and various kinds of de-

generacies can occur. For example, given three points in a 2D space, let the goal be to

determine their orientation. Depending upon the order of the points, the orientation can

be clockwise or counterclockwise, representing two generic cases. However, the three points

can also be collinear, in which case, the orientation cannot be defined. Addressing this

numerical degeneracy requires additional programming e↵orts, and dependening upon the

numerical details of the algorithm, di↵erent results may be obtained. Instead, the SoS

imposes a symbolic perturbation to one of the three points to disallow them from being

collinear, so that the geometric algorithm can assign a well-defined orientation.

The SoS simulates a conceptual perturbation of the input data to eliminate all degen-

eracies. The most attractive feature of the SoS is that the perturbation is symbolic and

is never actually computed in practice. It is assumed to be arbitrarily small enough to

simulate the generic conditions. In practice, the predicate to be implemented is represented

as a determinant, whose zero value is equivalent to the degenerate case. Using symbolic

perturbations, the SoS ensures that the value of the determinant is always computed to be

nonzero.

The SoS will be very useful in applying implementing the framework defined in this

dissertation. In particular, it is used for creating a generic vector field (see Definition 2.10)

for developing Edge Maps (see Chapter 6) and for a robust detection of critical points (see

Section 7.2).
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2.4.4 Combinatorial Representations

The traditional representation of vector fields using samples at vertices of grids or

simplicial meshes, and the completion of the field inside the cells using interpolation are

a↵ected by numerical errors, and, thus, lack robustness. Computation of flow (streamlines)

typically relies on numerical integration, which further adds to the amount of error incurred,

causing various problems, some of which were introduced in Chapter 1.

In contrast, the research presented in this dissertation focuses on a di↵erent type of data

representation that does not su↵er from these numerical errors. These discrete represen-

tations, which are combinatorial in nature, have been successfully applied to scalar fields.

In particular, the Morse theory [137, 140, 141], which was introduced for smooth domains

as early as 1963, has now been extended to discrete domains. Forman has developed a

discrete Morse theory [54, 55, 56, 57] that defines the features of scalar functions on cells

of a discrete domain. Since its introduction, Forman’s discrete Morse theory has been

applied in many applications in visualization and analysis for the purpose of obtaining

robustness [78, 120, 121]. For a detailed discussion on the application of discrete Morse

theory for the analysis and visualization of scalar functions, the reader may refer to the

Ph.D. dissertation of Gyulassy [77].

The discrete Morse theory describes a scalar function using a discrete gradient vector

field, which is represented as pairs of mesh elements, for example, vertex-edge or edge-

triangle pairs, as illustrated in Figure 2.5. Formally, a vector field is described as pairwise

disjoint sets of pairs of simplices of the discretized domain (for example, a triangulated

mesh): ~V = {{↵,�} : � 2 @↵}, where ↵ and � are simplices of M. The primary advantage

of using such a representation is that topological structures can be e�ciently and robustly

extracted through graph traversals. The recent work of Reininghaus and Hotz [173, 174] is

also inspired by this discrete combinatorial vector field, and applies it for the extraction of

Figure 2.5. Discrete representations of vector fields can be encoded as graphs, and,
therefore, can produce consistent analysis. Two discrete representations are shown: (left)
Piecewise constant vector field and (right) Forman’s discrete vector field [57].
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topological structures from vector fields.

Another discrete representation of vector fields is a piecewise constant (PC) vector field,

which is obtained by defining its samples at the center of the cells, for example, one vector

per triangle, as illustrated in Figure 2.5. In particular, a PC vector field ~V on M is defined

by a function f that assigns a vector to each triangle of M, such that the vector is parallel

to the plane of �, but not to any of its edges. A PC vector field is one of the simplest

and coarsest ways of representing vector fields. Such vector fields are discontinuous across

the edges of the triangles. Using PC vector fields, Szymczak and Zhang [197] propose an

algorithm to compute the Morse decomposition by representing the set of all trajectories

in the field as a finite transition graph. Szymczak [198] extends this technique to produce

a superset of transition graphs to reflect the error in the field.

A third approach that can be classified in the category of combinatorial representations

was proposed by Chen et al. [26, 27], who create triangle-level graphs by determining how the

image of a triangle is advected and deformed by the flow. These so-called entity connection

graphs (ECGs) and Morse connection graphs (MCGs) lead to a robust representation of

the vector field topology for vector fields on piecewise linear (PL) manifolds. The graph

is computed using the underlying PL vector field, but the accuracy of this technique

remains limited by the triangle resolution. However, the technique of Chen et al. enables

classification of Morse sets via Conley indices [25], which provides meaningful information,

albeit at a coarse granularity.

Although robust and provably consistent, discrete representations have an important

disadvantage. It must be noted that, in practice, these discrete representations are created

by converting the available numerical data into combinatorial form. The geometric resolu-

tion of a discrete vector field is also limited by the mesh resolution. Thus, the benefit of

combinatorial robustness comes at a high cost. Since discrete representations are coarse,

it is unclear how well the computed discrete forms approximate the smooth theory or the

theory of PL fields.

In this context, the work of Forman is particularly significant since it creates a new

theory—not just a representation—that defines the definition and properties of the resulting

features. Thus, the corresponding representations are accurate as well as consistent with

respect to the discrete theory, although they may be inaccurate with respect to the numerical

field and the smooth theory.

The philosophy of the work presented in Part III of this work is the same. We develop

a new theory of representation that defines the type of features we can extract. Using the
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corresponding representations, we provide consistency guarantees. Nevertheless, since the

data from simulations is available in the numerical form, the error of conversion is encoded in

the representations that we develop—an important advantage over the existing techniques.

These ideas will be discussed in more detail in Chapter 7.

2.5 Vector Field Analysis
This section discusses the three main classes of analysis techniques for vector fields.

2.5.1 Streamline-based Analysis

Streamlines are a fundamental construct that can represent the complete behavior of

steady vector fields. As a result, some of the most common techniques to visualize vector

fields, for example, glyph-based visualization, line integral convolution [20], and image-based

flow visualization [208], highlight the streamline behavior of the flow. Using streamline-

based approaches, it is possible to perform higher-order [122, 180, 181, 182, 205, 214, 215]

and combinatorial [26, 27, 173, 174, 197, 198] analysis, design [52, 172, 199, 225], compari-

son [44, 201], compression [200], and simplification [206] of vector fields, etc.

2.5.1.1 Vector field topology. The foremost example of streamline-based analysis

is the vector field topology. Topological approaches are attractive as they produce an

abstract yet complete description of the global flow behavior, as illustrated in Figure 2.6.

Such tehcniques provide a simpler visualization of the flow, and, therefore, form an ideal

starting point for analysis as well as visualization.

Topology-based approaches for vector fields describe the global flow structure through

the behavior of its streamlines. The limit sets of streamlines—critical points and closed

orbits—are of particular interest, as is the topological skeleton of the flow. The topo-

logical skeleton of 2D vector fields was introduced to the visualization community by

Helman and Hesselink [89], who compute it by segmenting the domain using the separa-

trices—streamlines traced from saddles of the field along the directions of its eigenvectors.

The critical points of the field form the nodes of the skeleton, which are connected by the

separatrices. These ideas were extended to surface flows [90] and 3D flows [91] by the same

authors. Globus et al. [69] proposed a similar technique for 3D vector fields by using a

combination of glyphs and streamlines to depict the global structure.

At the same time, streamsurface was introduced for visualizing 3D vector fields by

Hultquist [96] to represent the surface spanned by an infinite set of streamlines seeded

at an arbitrary curve. The streamsurfaces were shown to correspond to separation and

attachment lines. Since then the streamsurface computation has been extended to more
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Figure 2.6. Streamline-based visualizations of steady vector fields highlight the global be-
havior of streamlines. As compared to glyph-based (top-left), streamline-based (top-right),
and texture-based (bottom-left) visualizations of vector fields, the topology-based (bot-
tom-right) visualization provides an abstract summary of the field by displaying only the
important features. The topological skeleton of a 2D vector field is a graph with critical
points as nodes connected by saddle separatrices as edges.

e�cient and generalized techniques, for example, by Scheuermann et al. [179] and Garth et

al. [66]. Some of the other techniques for visualizing 3D vector field topology include those

proposed by Thiesel et al. [202] and Mahrous et al. [132].

The following sections discuss the three important components of topological skeleton:

streamlines, critical points, and vortices. For a detailed discussion on topological methods

in vector field visualization, the reader may refer to the surveys by Garth and Tricoche [65],

Laramee et al. [116], Post et al. [168], and Scheuermann and Tricoche [183].

2.5.1.2 Tracing streamlines. Streamlines are typically computed using numerical

integration of varying accuracy, such as the Euler integration or the Runge-Kutta (RK)

techniques [170]. These techniques take a small step in the current direction of the vector,

and recompute the new direction using an interpolation scheme to repeat the process. The

higher-order RKmethods are known to be more accurate than the Euler integration. Higher-

order means greater accuracy, but more processing time. Another factor that influences the

correctness and time behavior is the step-size. A shorter step-size in particle trajectory

calculation means the need for more steps and a longer process. Each integration step
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introduces some error, which is typically known as an upper bound with respect to the

step-size. During the integration, however, these small errors get compounded, and it

becomes nontrivial to determine the net error incurred during the streamline tracing.

One way to avoid numerical integration errors is to use an analytical solution to stream-

lines. The local exact method (LEM) of Kipfer et al. [108], which follows the lead of Nielson

and Jung [149], solves an ordinary di↵erential equation for piecewise linear vector fields

defined on simplicial meshes, making it possible to represent the position of the particle as a

function of time. Although the solution is more expensive than numerical integration, LEM

can compute the exact path of a particle in a triangle when its entry point to the triangle is

known. Consequently, it removes the need to perform step-wise numerical integration, and,

hence, is free from the cumulative integration error. However, the exit point is calculated

numerically as an intersection with the triangle edges, which is still prone to numeric errors.

Despite this, it is the most accurate technique available since it does not incur integration

error. As a result, the LEM will be used for streamline integration in Chapters 6 and 7.

2.5.1.3 Detection of critical points. Critical points are singularities (zeros) of

the field, and can be classified into various kinds depending upon their behavior. Figure 2.7

shows the classification of nondegenerate singularities based on the eigenvalues of the

Jacobian of the field, as explained by Helman and Hesselink [89].

(a) (b) (c)

Figure 2.7. First-order critical points in a vector field can be classified based upon the
eigenvalues of the Jacobian of the field computed at the critical point. (a) Sink and
attracting focus; (b) source and repelling focus; and (c) saddle and center.
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Most of the early attempts at identification of critical points were based on numerical

analysis. For example, isolated nondegenerate singularities were identified using numerically

integrated tangent curves (streamlines) [89]. Lavin et al. [118] extract singularities in a

linear vector field ~V = Ax+ ~o by numerically solving the system Ax = ~0 for each cell in a

triangulated domain. This technique was extended to 3D by Batra and Hesselink [10].

The detection of singularities has also been extended to higher-order singularities. Scheuer-

mann et al. [180, 181, 182] extract higher-order critical points by identifying regions whose

winding number is greater than 1 or less than -1, and using a polynomial approximation

to represent the field. Tricoche et al. [205] analyze higher-order singularities in 2D by

partitioning the neighborhood of the singularity into sectors of di↵erent flow behavior. The

topological analysis of higher-order singularities provides a foundation for the design and

simplification of vector fields. Tricoche et al. [206] simplify the topology of vector fields

by merging clustered singularities within a convex polygon into higher-order singularities.

These ideas have been extended to 3D by Weinkauf et al. [214, 215]. It is more challenging to

identify singularities in nonlinear vector fields. Li et al. [122] subdivide the simplicial mesh

and compute the vector field by side-vertex interpolation in polar coordinates. Singularities

are then ensured to be located at the vertices.

In general, detection of singularities can be reformulated as solving nonlinear systems

of equations. The Newton-Raphson method and Broyden’s method can be used to solve

such systems. However, techniques aimed at solving generic nonlinear systems are sensitive

to perturbation and not guaranteed to find all the solutions. For multivariate rational

splines, Elber and Kim [50] apply the bisection method to localize the potential regions

containing roots. However, computational complexity is a major concern with their method.

In contrast, the proposed work aims at computing critical points consistently in both 2D

and 3D in a significantly more e�cient manner.

2.5.2 Pathline-based Analysis

Pathlines capture the behavior of particles advected in the flow (vector field); they

provide a Lagrangian description of the flow. As a result, analysis based on pathlines

provides insights about the spatiotemporal behavior of the flow, and is the most fundamental

type of analysis. Pathlines are typically traced through numerical schemes, such as Runge-

Kutta (RK) integration, and are typically parallelized on particles. Theisel et al. [203]

use pathlines to analyze and visualize unsteady vector fields by defining pathline-oriented

topology.
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2.5.2.1 Finite-time Lyapunov exponent. The Lyapunov exponents are defined

to characterize the rate of separation of infinitesimally close trajectories as time approaches

infinity [147]. The idea behind the finite-time Lyapunov exponent (FTLE) is to apply this

concept for a finite amount of time. The FTLE measures the coherence of the flow in terms

of the trajectories of closely seeded particles considering the finite amount of time. The

concept of the FTLE as a means to describe and analyze coherent features in unsteady

flows was introduced by Haller [80]. Haller presents FTLE as a geometric approach, aimed

at characterizing coherent structures in terms of preservation of certain stability types of the

velocity gradient along the path of a particle. This initial research generated a significant

interest in FTLE and its applications to the structural analysis of transient flows. Garth et

al. focus on accelerated computation of FTLE fields and their visualization possibilities in

both 2D [64] and 3D [63]; Sadlo and Peikert compare Lagrangian approaches to vector field

topology [176], and propose a method for the adaptive computation of coherent structures

and examine several variants of FTLE [175]. Another variant of Lyapunov exponent called

the finite-size Lyapunov exponent (FSLE) exists; the FSLE measures the time taken by

particles to get separated by a finite amount. A comparative study of the FTLE and the

FSLE was provided by Peikert et al. [160].

2.5.2.2 Lagrangian coherent structures. The Lagrangian coherent structures

(LCSs) play an important role in the analysis of unsteady flows. The idea of coherent

structures was developed about 50 years ago in the context of semi- or fully turbulent

flows [98]. One of the first observations of such large-scale structures was made by Roshko

and Brown [18] regarding a turbulent plane mixing layer using shadowgraphs. Haller [81]

and Shadden et al. [187] showed that the LCS can be represented as the ridges of the FTLE

field. The LCS forms a skeleton of the unsteady flows in terms of so-called hyperbolic

material lines that dominate the overall flow structure. Hence, the LCS and the FTLE have

become integral components of the analysis and visualization of unsteady flows. However,

Haller [83] recently showed that detecting the LCS as ridges of the FTLE field is not

accurate, since this approach may create false positives and false negatives.

2.5.3 Indicator-based Analysis

Since the direct investigation of vector fields is very challenging, an often-used alternative

is to perform an indirect analysis through scalar indicators derived from the flow, which may

represent particle-based (Lagrangian) or point-based (Eulerian) properties of the flow. The

simplest example of this class of techniques is analyzing the velocity magnitudes, instead of

actual velocity vectors.
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These indicator-based approaches have a distinct advantage over other types of vector

field analysis, since in general, analysis of scalar fields is much more advanced than that

of vector fields, and, therefore, indicators can be analyzed using simpler and more robust

techniques. Furthermore, whereas both streamlines and pathlines depend upon the assumed

reference frame, some commonly used and carefully chosen indicators are Galilean invariant,

meaning they are invariant to uniform motion—a particularly useful property for analysis

(see Section 2.3.6.1).

The most prominent example of indicator-based analysis is that in the case of vortex

detection. Since there does not exist any universally accepted definition of vortices, they are

typically extracted using one of the many available indicators: Q-[97], �-[30], or �
2

-[100]

criteria. These indicators capture di↵erent properties of the flow, which are believed to

represent rotational behavior or vorticity. Once these indicators have been computed, vortex

regions are typically identified as regions bounded by their isosurfaces. Since these indicators

are defined using the velocity gradient tensor, they are Galilean invariant—yet another

advantage of detecting vortices using these indicators. The use of the finite-time Lyapunov

exponent (FTLE) [80] for the detection of material boundaries is another example of such

techniques, where the FTLE is a Galilean-indicator scalar indicator that captures particle

separation behavior in the flow, and the ridges of the FTLE are used as a proxy for material

boundaries.

Although such indicator-based techniques are very common, they have some serious

disadvantages. First of all, as the name suggests, they are only “indicators,” and may not

actually correspond to the feature of interest. For example, Q-criterion measures the excess

of the rate of rotation over the rate of strain in all directions; the �
2

-criterion looks for this

excess only on a specific plane [24, 97, 100], whereas the true behavior of vortices may not

correspond to either. In the case of the FTLE, it is believed that their ridges represent

material boundaries, thus justifying the use of the FTLE as an indicator. However, this

belief was disproved recently, and it was shown that particles may cross over the ridges of

the FTLE [83].

Furthermore, by definition, the indicators are designed to capture individual properties

of the flow. They must discard all other information, and cannot provide a complete analysis

of flows. For example, using indicators for vortex detection disregards the behavior of

the flow away from the “vortical regions” detected by these indicators, and the FTLE

loses all information about the direction of the flow. Finally, these techniques typically

require thresholds, for example, above or below which a region is considered to be vortical.
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Depending upon the choice of this highly data-dependent parameter, the analysis can

produce false positives and false negatives, as illustrated in Figure 2.8.

Nevertheless, despite the inherent limitations of indicator-based techniques, they are

often used, especially for the detection of vortices and material boundaries, because of the

lack of better alternatives.

2.6 Uncertainty Visualization
The quantification and visualization of uncertainty was identified by Johnson as one of

the top research problems in scientific visualization [101, 102]. The fundamental goal here

is to understand the errors incurred in the analysis and visualization of scientific data, and

show them to the user in order to provide an honest visualization of the data. For example,

instead of showing an isosurface representing the tumor cells in an MRI scan of the brain,

visualizing the envelope representing the error bars of the isosurface is more useful for

drawing scientific insights from the results. The Ph.D. dissertation of Potter [169] discusses

uncertainty visualization in great detail. She identifies four main types of uncertainty: (a)

experimental, (b) geometric, (c) simulation, and (d) visualization. She proposes a new

framework for visualizing ensembles of data as uncertainty visualization. Interested readers

may also visit her webpage (http://www.sci.utah.edu/~kpotter/Library/Catalogs/

uncertaintyVis/), where she maintains a library of scientific publications on this topic. A

recent state-of-the-art article [13] also summarizes the advances in uncertainty visualization.

Among the first to address the challenges of uncertainty visualization in vector fields

were Pang et al. [156], who identify three sources of uncertainty: (a) uncertainty in data, (b)

uncertainty due to derivation, and (c) uncertainty due to visualization. The earlier work

Figure 2.8. Vortex detection using indicators requires thresholds, which, in the absence
of prior knowledge, can create false positives and false negatives. Visualization of three
thresholds of the �

2

indicator is shown for the jet in cross-flow. It is unclear which one of
these, if any, represents the “correct” vortices.
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on uncertainty visualization in vector fields concentrated on developing extended glyphs

for vector samples to represent uncertainty [156, 221], by representing errors in angle or

magnitudes or both, using shapes and orientations of glyphs, or varying visual channels

such as hue, saturation, and transparency. Uncertainty can also be captured using the flow

radar glyphs [94], which have been proposed to capture the temporal dimension in unsteady

flows, or through the animation of glyphs [226].

Other e↵orts focused on comparing streamlines and pathlines that were computed using

di↵erent integration schemes, step-sizes, and data resolutions [124, 209]. Such techniques

typically use tubes, ribbons, or similar structures to visualize streamlines or pathlines, where

color, thickness, or transparency of the tube is used to represent uncertainty in the location

along the corresponding lines.

Recently, Otto et al. describe a method to obtain uncertain topological segmentations by

sampling in a random 2D vector field [153], and later extending it to 3D vector fields [154].

This method tries to simulate the uncertainty in data by defining it using probability

density functions. Their technique disregards the uncertainty due to the computation and

visualization itself. Compared to their approach, the work presented in this dissertation

assumes the given data as certain, and enables visualization of errors introduced during

computation and visualization only.

2.7 Vector Field Decompositions
In order to enable streamline-based analysis for unsteady flows, Part III of this disser-

tation decomposes a given flow into appropriate components. Therefore, it is important to

understand the following two important decompositions.

2.7.1 The Helmholtz-Hodge Decomposition (HHD)

The Helmholtz-Hodge decomposition [210] is one of the fundamental theorems in fluid

dynamics. This decomposition describes a vector field in terms of its incompressible and

irrotational components, thus simplifying any subsequent analysis as important properties,

such as incompressibility and vorticity, can be studied on the components directly. Following

its success and popularity, numerous interpretations and variants have been proposed that

are useful in a large number of applications, as illustrated by Figure 2.9. This section

provides a brief discussion of the HHD and its properties, with a particular focus on its

uniqueness and boundary conditions.

As described by von Helmholtz in his seminal paper [210, Section 1], the motion of a

volume element of a continuous fluid media in R3 consists of
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• expansion or contraction in three orthogonal directions,

• rotation about an instantaneous axis, and

• translation.

Expansion/contraction can be represented as the gradient of a scalar potential function since

it is irrotational. Similarly, rotation can be represented as the curl of a vector potential

function since it is incompressible. Translation, however, being both incompressible and

irrotational, can be represented as either the gradient of a scalar potential or the curl of a

vector potential. Equivalently, translation can also be represented as a separate harmonic

component. Depending upon the domain, and how the translation is represented, the HHD

can take di↵erent forms.

2.7.1.1 Two-component HHD in infinite space. Given a smooth vector field

~V : Rn ! Rn, for n = 2, 3, with suitable asymptotic behavior at infinity, that is, ~V ! ~0 as

x!1, the vector field can be decomposed into its curl-free (irrotational) and divergence-

free (incompressible) components by defining them as the gradient of a scalar potential and

the curl of a vector potential, respectively, that is,

~V = ~d+ ~r,

= rD +r⇥~R,
(2.12)

where by definition, ~d = rD is irrotational (r⇥~d = ~0), and ~r = r⇥~R is incompressible

(r·~r = 0). These incompressible and irrotational properties lead to the following equalities:

r·~d = r·~V ,

r⇥~r = r⇥~V .
(2.13)

Substituting ~d = rD and ~r = r⇥~R in (2.13), two Poisson equations are obtained.

�D = r·~V ,

~�~R = �r⇥~V .
(2.14)

where � is the (scalar) Laplacian, that is, � = r2, and ~� is the vector Laplacian, that is,

~�~R = r(r·~R) � r⇥ (r⇥ ~R). The Expressions (2.14) also utilize the fact that r·~r = 0

implies r·~R = 0 due to the gauge condition [68]. Under the vanishing condition at infinity,

the two potentials are computed using the integral solution (similar to Equation (2.5)) as

D(x
0

) =

Z
Rn

G1(x,x
0

)
⇣
r · ~V (x)

⌘
dx,

~R(x
0

) = �
Z
Rn

G1(x,x
0

)
⇣
r⇥ ~V (x)

⌘
dx,

(2.15)

where G1(x,x
0

) is the free-space Green’s function, discussed in Section 2.1. Due to the

vanishing condition at infinity, the integrals in (2.15) are guaranteed to converge. It must
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be noted that the potentials D and ~R are unique up to a constant; hence, the decomposition

is unique.

2.7.1.2 Two-component HHD on simply-connected finite domains. The HHD

is defined uniquely for vanishing vector fields on infinite domains Rn, since no harmonic

flow can exist on infinite domains, and it is possible to decompose the incompressible

and irrotational components. Equivalently, it can be said that for infinite domains, the

potentials D and ~R can be computed using Expressions (2.15). However, on finite domains

with boundary, a harmonic flow can exist. It is known from the potential theory that

for a simply-connected domain, a harmonic function is completely determined using the

boundary values. Therefore, in such cases, the potentials can be computed with additional

boundary integral terms.

Given a smooth vector field ~V : ⌦! Rn, where ⌦ ⇢ Rn for n = 2, 3, the corresponding

potentials D and ~R are defined as

D(x
0

) =

Z
⌦

G1(x,x
0

)
⇣
r · ~V (x)

⌘
dx�

I
@⌦

G1(x,x
0

)
⇣
~n · ~V (x)

⌘
dx,

~R(x
0

) = �
Z
⌦

G1(x,x
0

)
⇣
r⇥ ~V (x)

⌘
dx+

I
@⌦

G1(x,x
0

)
⇣
~n⇥ ~V (x)

⌘
dx,

(2.16)

where ~n is the outward normal to the boundary. Here, the components ~d and ~r are often

called the longitudinal and the transverse components [7, 196]. It is important to note that

this form of decomposition is defined only for simply-connected subsets of Rn. A detailed

derivation of Expressions (2.16) is provided in Appendix A.1.4.

2.7.1.3 Two-component HHD on finite domains. For simply-connected subsets

of Rn, Expressions (2.16) can be used to compute the potentials uniquely. However, in the

case of general (possibly nonsimply connected) finite domains, a di↵erent way of computing

the HHD is required. In such cases, either the irrotational or the incompressible component

is typically computed by solving either ~d = rD or ~r = r⇥~R, respectively, by imposing

some boundary condition, and the second component is computed as the remainder. Some

of the more common boundary conditions are discussed below.

• Chorin and Marsden [34] state that uniqueness can be obtained by requiring the

incompressible component to be tangential to the boundary. Thus, the HHD is defined

by the following:
~�~R = �r⇥~V on ⌦,

~n · (r⇥~R) = 0 on @⌦,
(2.17)

where ~n is the exterior normal to the boundary.



47

• Denaro [40] states that the boundary conditions can also be imposed on the irrota-

tional component. In particular, he states that the irrotational component can be

made normal to the boundary as follows:

�D = r·~V on ⌦,

~n⇥rD = ~0 on @⌦,
(2.18)

• If the physical system guiding the decomposition specifies the tangential component

of the flow, ~V
t

= ~n ⇥ ~V , a unique HHD can be computed by solving the following

Poisson system.
~�~R = �r⇥~V on ⌦,

~n⇥ (r⇥~R) = ~n⇥ ~V on @⌦.
(2.19)

• Instead, if the physical system guiding the decomposition specifies the normal com-

ponent of the flow, V
n

= ~n · ~V , the following system can be used to compute a unique

HHD.
�D = r·~V on ⌦,

~n ·rD = ~n · ~V on @⌦.
(2.20)

In addition to uniqueness, these boundary conditions also satisfy orthogonality with

respect to the L
2

-norm—a property important for fluid simulations. The proofs for the exis-

tence, uniqueness, and orthogonality for these decompositions are given in Appendix A.1. It

can be verified that, in the two-component form of the HHD, the boundary conditions (2.17)

and (2.20) produce the same decomposition due to the completeness property, that is,

~n · (r⇥~R) + ~n ·rD = ~n · ~V . Similarly, the boundary conditions (2.18) and (2.19) produce

the same decomposition. Next, the three-component form of the HHD is discussed, for which

the equivalence of these pairs of boundary conditions does not hold, unless the harmonic

component is zero.

2.7.1.4 Three-component HHD on finite domains. Another way of expressing

the HHD on finite domains is to represent the harmonic flow as a separate component,

leading to the three-component form of the HHD, as illustrated in Figure 2.10.

~V = ~d+ ~r + ~h, (2.21)

where ~d and ~r have the same meaning as in the two-component form, and ~h is a harmonic

flow, that is, r·~h = 0 and r⇥~h = ~0. This is, by far, the most common formulation of the

HHD, and is used extensively in flow analysis and visualization. This formulation requires

two boundary conditions imposed on each of the potentials, leading to the uniqueness of
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the decomposition. The most common boundary conditions are a combination of (2.18)

and (2.17). For brevity, this dissertation refers to these boundary conditions as the NP

(normal-parallel) boundary conditions. The HHD obtained using the NP boundary condi-

tions is denoted as HHD
NP

.

Definition 2.11 (The HHD with NP boundary conditions). The HHD with NP boundary

conditions, denoted as HHD
NP

, is a three-component form of the HHD, that is,

HHD
NP

= ~d
NP

+ ~r
NP

+ ~h
NP

,

computed using the NP boundary conditions, that is, its components satisfy the following:

• ~n⇥ ~d
NP

= ~0, that is, the irrotational component is normal to the boundary.

• ~n · ~r
NP

= 0, that is, the incompressible component is parallel to the boundary.

where ~n is the outward normal to the boundary.

2.7.1.5 Simplified expressions for the HHD in 2D. In R2 (or a 2-manifold

embedded in R3), curl is a scalar quantity in the upward normal direction. Hence, instead

of needing a vector potential ~R, the incompressible component can be represented using the

curl of a scalar potential R to simplify the decomposition as

~V = ~d+ ~r + ~h,

= rD + JrR+ ~h,
(2.22)

and the Poisson equations (2.14) can be reduced to the following:

�D = r·~V ,

�R = �r·J ~V ,
(2.23)

where R is a scalar potential, and the operator J rotates a 2D vector counterclockwise by

⇡/2. Equations (2.22) and (2.23) have been derived in Appendix A.1.5.

� � �

Figure 2.10. The HHD decomposes a vector field into three components: an irrotational,
an incompressible, and a harmonic component. The figure shows the three-component form
of the HHD.
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2.7.1.6 Boundary conditions of the HHD. The most important property of the

NP boundary conditions is that the resulting decomposition is L
2

-orthogonal. However,

the NP boundary conditions are not necessary for orthogonality. There may exist other

boundary conditions, such as suitable periodic boundaries conditions, that can be applied

to enforce orthogonality. For specific applications, the boundary conditions can be simplified

while maintaining orthogonality. For example, considering no-flow (V
n

= 0 on @⌦) or no-slip⇣
~V = 0 on @⌦

⌘
boundary conditions imposed on the fluid, the boundary condition (2.18)

translates into ~n ·rD = 0 = @D

@~n

, which still guarantees orthogonality in the decomposition.

Similarly, for a no-slip boundary, ~n ⇥ ~r = 0 maintains orthogonality. If orthogonality is

not required, the HHD can take various forms depending upon the boundary conditions.

More general and nonorthogonal HHD-like decompositions, ~V = rD + r⇥~R, and their

existence and uniqueness properties under di↵erent boundary conditions on D or ~R have

been studied [5, 8].

For simply-connected domains with boundary, a harmonic component is obtained as the

residual when boundary conditions are used to compute the other two components. This

harmonic component can be represented as the gradient of a scalar function, or the curl of a

vector function. However, for more general (nonsimply-connected) domains, this harmonic

component ~h in the HHD can be further split by applying boundary conditions:

~h = rH
s

+ ~h
1

⇣
~n · ~h

1

= 0 at @⌦
⌘
,

~h = r⇥ ~H
v

+ ~h
2

⇣
~n⇥ ~h

2

= 0 at @⌦
⌘
.

(2.24)

Such a decomposition is often referred to as the Hodge-Morrey-Friedrichs decomposition

(HMFD). Note that the HMFD is a general form of the HHD, and is always valid, since for

simply-connected domains, ~h
1

= ~h
2

= 0, the HMFD reduces to HHD. For more details on

general forms of HHD, the reader may refer to Schwarz [186].

2.7.1.7 Choice of boundary conditions in flow analysis and visualization. In

topological analysis and visualization of flows, orthogonality might be desirable for obtaining

a unique decomposition. Assuming no boundary conditions superimposed by the fluid

model, the treatment of the issue is typically less involved. Polthier and Preuß [165, 166] as

well as Tong et al. [204] enforce the NP boundary conditions for the extraction of all three

components of the HHD.

In general, applications in the analysis and visualization community follow the literature

from the fluids community, and typically use the NP boundary conditions. Nevertheless, if

these boundary conditions are incompatible with the underlying flow, they may create sub-

stantial artifacts. For example, consider a purely irrotational flow as shown in Figure 2.11.
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(a) (b)

Figure 2.11. The use of boundary conditions can cause artifacts in the HHD if the original

flow does not match the conditions. (a) The original vector field
⇣
~V (x, y) = (x, y)

⌘
. (b)

The irrotational component (~d) recovered after HHD. Artifacts are seen near the boundary
since the NP boundary conditions force the flow to be normal to the boundary. The
incompressible component ~r is zero for this example, and the harmonic component ~h also
shows similar artifacts due to residual error.

In this case, the flow is not normal everywhere on the boundary. If the HHD is computed for

this vector field, the incompressible component will be zero. However, in light of boundary

conditions ~n ⇥ ~d = 0, it can be easily observed that at the boundary, a disagreement

occurs between the original vector field and the boundary conditions. The manifestations

of such disagreements are stronger when the critical point lies closer to the boundary. Thus,

these artifacts are the by-product of the boundary conditions, and are admitted into the

solution in order to obtain a unique and orthogonal decomposition. These artifacts have

been acknowledged by many researchers [46, 130, 217], and are particularly important in

the context of this work, as will be discussed later in Chapter 3.

Guo et al. [74, 75] and others, extending the ideas of Polthier and Preuß (see Figure 2.9),

do not specify any boundary conditions. According to Guo et al., setting the potentials as

zero at only one vertex is su�cient to compute the decomposition uniquely, although they

do not make any claims about the orthogonality of the decomposition. For better accuracy

in results, they propose to further decompose the harmonic component recursively. The

need for a recursive solution remains unclear, since with consistent boundary conditions,

there should exist a unique solution up to numerical precision that can be computed directly

as in the methods of Polthier, Tong, and others. In the case of Guo et al., this error seems

to be due to the lack of proper boundary conditions, since the correct boundary conditions

must be specified to obtain a unique decomposition.
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Recently, Petronetto et al. [163] have computed the 2D HHD with a di↵erent set

of boundary conditions, which are opposite to the NP boundary conditions. According

to these authors, these boundary conditions are the usual boundary conditions for the

decomposition. For shorthand, these boundary conditions will be referred to as the PN

(parallel - normal) boundary conditions. According to the PN boundary conditions,

• ~n · ~d = 0, that is, the irrotational component is parallel to the boundary.

• ~n⇥ ~r = ~0, that is, the incompressible component is normal to the boundary.

Petronetto et al. draw inspiration from Colin et al. [35], who compute the null-divergence

flow from a given flow using the projection. Colin et al. use the Neumann boundary

conditions @D

@~n

= 0 for boundaries that are neither no-flow nor no-slip. As has been discussed,

@D

@~n

= 0 satisfies orthogonality only when a no-slip or no-flow boundary is in place, that is,

V
n

= 0. Appendix A.1.6 shows that the PN boundary conditions are, in general, invalid,

and cannot be used to compute the HHD of a general vector field.

2.7.1.8 Computation using least-squares finite-element method (LSFEM).

Many of the recent techniques to compute the discrete HHD employ a least square technique

to compute the potential functions corresponding to the incompressible and irrotational

components. These techniques work for a finite-element framework with piecewise constant

(PC) vector fields (defined on the triangles of the mesh), resulting in piecewise linear (PL)

potential functions (defined on the vertices of the mesh).

Polthier and Preuß [166] provide definitions for discrete divergence and discrete rotation

on a 2-manifold similar to weak derivatives in finite-element methods, and use them to pro-

pose a simple implementation of the discrete HHD. The 2D HHD given by Expressions (2.22)

is computed by solving the Poisson equations (2.23) using a variational approach to minimize

energy functions for the irrotational and incompressible components. Finally, the harmonic

component is computed as the residual, and the error caused by the approximation or the

boundary conditions is reflected in this component.

The discrete divergence and discrete rotation for a PC vector field are defined as PL

scalar functions. In the following, let St(v) denote the star of the vertex v.

• Discrete Divergence (r·~V ): For a vertex v, the discrete divergence can be defined as

the net flow normal to the boundary of St(v). It can be calculated as the integrated

dot product of the vector with the outward normal for every triangle in St(v). The
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outward normal can also be calculated by rotating the normalized edge vector ~c (of

the triangles in St(v)), which does not have v as one of its vertices.

r·~V (v) =
kX

i=1

D
~V
i

,r'
vi

E
= �1

2

kX
i=1

D
~V
i

,J~c
vi

E
.

where k is the number of triangles in St(v), r'
v

is the Lagrange basis function

corresponding to vertex v, and J is the counterclockwise rotation of a vector.

• Discrete Rotation (r⇥~V ): For a vertex v, the discrete rotation can be defined as the

net flow tangential to the boundary of St(v). It can be calculated as the integrated

dot product of the vector with the rotated outward normal for every triangle in St(v),

where the latter is the same as the normalized edge vector ~c in St(v).

r⇥~V (v) = �
kX

i=1

D
J ~V

i

,r'
pi

E
=

1

2

kX
i=1

D
~V
i

,~c
vi

E
.

Using the above definitions, the following two energy functionals are minimized:

F (D) =

Z ⇣
~V �rD

⌘
2

=

Z ⇣
|rD|2 � 2

D
rD, ~V

E⌘
+

Z
|~V |2,

G (R) =

Z ⇣
~V � JrR

⌘
2

=

Z ⇣
|JrR|2 � 2

D
JrR, ~V

E⌘
+

Z
|~V |2.

To achieve these minimizations, the derivatives of both the functionals should vanish at

every vertex. Explicit representations of the derivatives at p are given by

dF

dD
v

= �
kX

i=1

D⇣
rD

i

� ~V
i

⌘
,J~c

vi

E
= 0,

dG

dR
v

=
kX

i=1

D⇣
rR

i

+ J ~V
i

⌘
,J~c

vi

E
= 0.

(2.25)

Once the irrotational and incompressible components have been computed, the harmonic

component is found as the residual, that is, ~h = ~V � rD � JrR. The NP boundary

conditions are used to get the unique decomposition.

2.7.2 Localized Flow Decomposition

Given a flow field ~V : ⌦ ! Rn, Wiebel et al. [219, 220] represent it as the sum of a

potential and a localized flow. Representing the potential flow ~V
P

as the gradient of a scalar
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function u, that is, ~V
P

= ru, the following Laplace equation with a Neumann boundary

condition is solved:

r2u = 0 on ⌦

~n ·ru = ~n · ~V on @⌦

Solving this equation gives a potential flow that matches the original field on the boundary

of a subdomain, but is otherwise simple in the sense that it has vanishing divergence and

curl, that is, r·~V
P

= 0 and r⇥~V
P

= ~0. The potential flow represents the laminar flow

induced by the geometry of the domain, and its boundary values, that is, ~n · ~V
P

= ~n · ~V .

The residual component ~V
R

= ~V � ~V
P

is called the localized flow (or the region-specific

flow). This decomposition captures the entire divergence and curl of the original flow, and,

hence, provides deeper insights into the features in the original flow. Any analysis that

makes use of the these two quantities is not a↵ected by the decomposition of the flow. All

critical points (except all saddles) are represented in this component. This method works

for an arbitrary subregion, with a piecewise smooth boundary.

This technique, however, has some serious drawbacks. First of all, the computation of

the potential flow imposes boundary conditions, and as discussed in Section 2.1, imposing

boundary conditions is equivalent to assuming unknown information about the exterior of

the domain. Furthermore, the localized flow is always confined within the domain, that

is, its component normal to the boundary is zero. This is a strong assumption, especially

for compressible flows. For example, consider a nodal source in a closed domain, where

one must expect the flow created due to the source to go across the boundary, something

not possible in a localized flow. The technique also needs additional information (material

density) to resolve compressible flows. Finally, as discussed by Wiebel et al. [220], the

material density should be near constant for the technique to apply to unsteady flows.



PART II

LOCAL REFERENCE FRAMES



CHAPTER 3

DECOMPOSITION OF FLOW WITHOUT

BOUNDARY CONDITIONS

In order to define local reference frames and to transform a given vector field into such

frames, this work decomposes the given field into appropriate components. Chapter 2

discussed some decompositions for vector fields relevant for this task. In particular, an

important vector field decomposition, called the Helmholtz-Hodge decomposition (HHD),

was discussed. The HHD has been useful in a large number of application areas, where its

typical role is to separate compressible and rotational properties of the flow. However, as

such, the HHD cannot be used for the computation of local frames. The focus of the this

chapter is to understand the limitations of the HHD in the context of computing reference

frames. This chapter introduces a new formulation of the HHD that will be used later in

Chapter 4 to compute an important type of reference frame.

The inability of the current formulations of the HHD to be useful for computing local

frames is intimately connected with the use of boundary conditions in its computation. On

domains with boundary, the HHD is not unique; the conventional way to compute a unique

HHD is to impose boundary conditions. The use of boundary conditions in the HHD creates

severe artifacts, which have already been acknowledged by many researchers [46, 130, 217].

Yet, there does not exist a good understanding of the nature of these artifacts. This chapter

takes an agnostic view on the use of boundary conditions, and explores the fundamental

limitations associated with them.

To address the issues of the boundary conditions, this chapter discusses a new formu-

lation of the HHD that does not impose boundary conditions to obtain a unique decom-

position. Using concepts from potential theory, a given flow is considered to be the sum

of flows created due to internal and external influences with respect to a given bounded

domain. In this context, the traditional way of imposing boundary conditions is equivalent

to presuming to know the external influences, thus leading to a unique identification of

flow due to internal influences. In contrast, the approach presented in this chapter reverses



56

the process by computing the flow due to the internal influences using the given data,

uniquely and without any assumptions. The residual is then considered to be the flow due

to external influences. As a result, the proposed decomposition is unique without prescribing

boundary conditions. Consequently, no artifacts are introduced in the decomposition due to

boundary conditions, and it naturally determines the component flows along the boundary

in a data-driven manner. Therefore, the proposed decomposition is referred to as the natural

Helmholtz-Hodge decomposition.

Chapter 4 will show that computing the HHD without using any boundary conditions

allows the computation of meaningful local reference frames. In addition to computing

local frames, the work presented in this chapter will also be useful in various applications

where boundary artifacts must be avoided. In particular, many flows are generated through

simulations, and the boundary conditions used during the simulation may not be known

during the analysis, or may be too complex to be incorporated. Furthermore, a large

number of simulations instead use an open boundary, where the flow at all or part of the

boundary is observed as the output of the simulation, for example, in large-scale combustion

simulations [60, 73, 88, 222], free surface fluid animations [188], or oceanography [119]. In

such cases, a standard set of boundary conditions for the HHD may be incompatible with

the data, and may lead to unphysical results.

3.1 Harmonic Flow and the Boundary of the Domain
The HHD decomposes a given flow into three components: an irrotational flow, an

incompressible flow, and a harmonic flow. The fundamental reason for nonuniqueness in

the HHD is that harmonic flows are both irrotational and incompressible. Therefore, one

can add an arbitrary harmonic flow to any one of the three HHD components, and its

negative to another, to obtain a di↵erent valid decomposition. As a result, any two valid

HHDs di↵er only in how the harmonic flow is represented. To address nonuniqueness, it

is important to first understand the nature of harmonic flows, how they are related to

boundary conditions, and why imposing boundary conditions may not be a good choice.

Traditionally, uniqueness is obtained by imposing boundary conditions on the compu-

tation of the irrotational and incompressible components. For example, the most common

boundary conditions require the irrotational and incompressible components to be normal

and parallel to the boundary, respectively. However, from the theory of potential functions,

discussed in Section 2.1, it is known that the solution to a Poisson equation computed

using boundary conditions may contain a nonzero harmonic function. In the context of the
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HHD, imposing boundary conditions adds certain harmonic flows to the incompressible and

irrotational components to match the imposed boundary flow, and their negative to the

harmonic component, which is then computed as the residual.

However, these boundary conditions are somewhat arbitrary for general flows; they may

not be compatible with a given flow. For example, consider the rotational flow shown in

Figure 3.1. Through the HHD of this field, it would be expected to recover the same flow

as the incompressible component, with the other two components being zero. However,

as the figure illustrates, the obtained incompressible component contains serious artifacts.

Especially, the topology of the output field has changed with the addition of a new critical

point. These artifacts are caused due to imposing a parallel flow on the boundary—a

configuration incompatible with the original flow.

In general, boundary conditions create a strong coupling between the component flows

and the shape and orientation of the boundary. As illustrated later in the results section

(Section 3.3), when the same analytical flow is sampled on di↵erently shaped domains,

one obtains markedly di↵erent decompositions. Using these decompositions for analysis

may produce significantly di↵erent results for the same flow depending on the shape of the

Figure 3.1. Artifacts of the boundary conditions used for computing a unique HHD—an
example given by Wiebel [217]. Top: A rotational vector field (left) and the potential
function used to create it (right). Bottom: The incompressible component and its potential
function recovered through the HHD. Note that the rotation is inverted and an additional
critical point is introduced in the output field.
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domain. Given that the shape of the domain is usually determined by the region of interest

and/or practical considerations such as mesh type or compute power, this dependency calls

such analysis into question.

Intuitively, these examples suggest the need to identify the harmonic flow independent of

the shape and orientation of the boundary. However, by definition, a harmonic function (and

a harmonic flow) is determined entirely by the function values prescribed at the boundary of

the domain. Equivalently, a harmonic flow is always defined with respect to the information

available to (the viewpoint of) the observer. For example, as seen in Figure 3.2, considering

only ⌦, all of the translational flow in ⌦ is harmonic, and an observer would presume its

HHD should contain only a harmonic component, with the other two components being

zero. However, considering the domain ⌦0 instead, the observer notices that some of that

translational flow in ⌦ is created and destroyed by the local divergence (in red and green)

in ⌦0 \⌦, and, therefore, is not harmonic with respect to the larger domain ⌦0. As a result,

the irrotational component of the HHD on ⌦0 should be nonzero in ⌦.

It is well known that harmonic functions are associated with boundary conditions, which

equivalently means that they depend upon the phenomena occurring outside the given

domain. However, since external information is usually unknown, identifying harmonic

flows by imposing boundary conditions on ⌦ is equivalent to presuming to know the flow on

⌦0, or rather, its influence on ⌦. In contrast, it is argued here that any nonharmonic flow

can be completely explained by the information available inside the domain. Therefore,

⌦0

⌦

Figure 3.2. Dependence of the definition of a harmonic flow on the boundary of the domain.
Seen in the context of the divergence inside ⌦0 (solid boundary), one associates some of the
flow in ⌦ with the positive (red) and negative (green) divergence, and, therefore, all of it is
not harmonic. However, considering ⌦ (dashed boundary) such that the divergence inside
the subdomain is zero, the same flow is qualified to be harmonic.
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a harmonic flow can be indirectly identified as the flow that cannot be explained by the

available data inside the given domain. Such an interpretation is completely data-driven,

and makes no assumptions about unknown external information.

This indirect interpretation of harmonic flow has an important advantage. Currently,

there exists no technique that can use the divergence and curl of a given flow to determine

whether it “contains” a nonzero harmonic flow or not. However, considering the presented

interpretation, it becomes possible to implicitly identify any harmonic flow with respect

to a given domain. Using this interpretation of harmonic flows, the natural HHD obtains

uniqueness without assuming any boundary conditions a priori, and the results presented

later in this chapter demonstrate that it is more suited for the purpose of data analysis,

since it does not assume potentially inaccurate information.

3.2 The Natural Helmholtz-Hodge Decomposition
As mentioned above, the natural HHD decomposes a flow into internal and external

influences. To understand the meaning of internal/external influences for a given domain,

we refer to the theory of potential functions, discussed in Section 2.1. Every point (inside

and outside the domain) with a nonzero energy source creates a potential at every other

point. In the context of the HHD, the divergence and rotation fields of a given vector field

act as collections of energy sources for divergent and rotational potentials, respectively.

These potentials are used to compute the irrotational and incompressible components of

the HHD, and thus, every point (inside and outside the domain) with a nonzero divergence

and rotation influences these two components, respectively. Furthermore, as discussed in

the previous section, harmonic functions are equivalent to external influences, meaning that

a harmonic potential always represents external influences, and external influences always

create a harmonic potential. These intuitions of internal and external influences are used

to formally define the natural HHD.

Definition 3.1 (The natural HHD). The natural Helmholtz-Hodge decomposition,

HHD⇤ : ~V = ~d⇤ + ~r⇤ + ~h⇤,

is obtained by separating the flows due to internal and external influences, such that the

natural divergent (~d⇤) and natural rotational (~r⇤) components represent the flows influenced

by the divergence and rotation of ~V inside the domain. Consequently, the natural harmonic

component (~h⇤) is the flow influenced only by the exterior (boundary) of the domain.
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3.2.1 Construction and Uniqueness

Given a smooth n-dimensional vector field ~V : ⌦ ! Rn for n = 2, 3, where ⌦ is a

bounded subset of Rn, the goal is to interpret and compute the natural components of ~V .

Using ~V , define another smooth vector field on infinite space, ~V 0 : Rn ! Rn, such that

• ~V 0(x) = ~V (x) for all x 2 ⌦, and

• |~V 0(x)|! 0 as |x|!1.

By definition, ~V 0 captures the divergence and rotation of ~V in ⌦, that is, r·~V 0 = r·~V and

r⇥~V 0 = r⇥~V in ⌦, and also provides a smooth flow on Rn that vanishes at infinity.

In order to compute the natural HHD of ~V , the first step is to study the HHD of

~V 0. This indirect approach of using ~V 0 has two main advantages: (1) the HHD of ~V 0 is

unique by definition, since it is defined on an infinite domain, and, hence, does not contain

a harmonic component, and (2) it allows the use of the free-space Green’s function, G1,

which is trivially defined in closed form (see Expressions (2.4)). The HHD of ~V 0 is

~V 0 = rD0 +r⇥~R0,

where the potentials D0 and ~R0 are the solution to the following two Poisson equations:

�0D = r·~V 0 in Rn,

~�~R0 = �r⇥~V 0 in Rn.

Using G1, D0 and ~R0 can be computed in closed-form as

D0(x
0

) =

Z
Rn

G1(x,x
0

) r·~V 0(x) dx x,x
0

2 Rn,

~R
0
(x

0

) = �
Z
Rn

G1(x,x
0

) r⇥~V 0(x) dx x,x
0

2 Rn.
(3.1)

The integral solution presented above computes the potentials at a point x
0

2 Rn due to the

sources defined at all x 2 Rn. Given a bounded domain ⌦ ⇢ Rn, the potential computation

can be split into two parts—inside ⌦ and outside ⌦. Furthermore, since r·~V 0(x) = r·~V (x)

and r⇥~V 0(x) = r⇥~V (x) for x 2 ⌦, the Expressions (3.1) can be rewritten as

D0(x
0

) =

Z
⌦

G1(x,x
0

) r·~V (x) dx+

Z
Rn\⌦

G1(x,x
0

) r·~V 0(x) dx x,x
0

2 Rn,

~R
0
(x

0

) = �
Z
⌦

G1(x,x
0

) r⇥~V (x) dx�
Z
Rn\⌦

G1(x,x
0

) r⇥~V 0(x) dx x,x
0

2 Rn,

(3.2)

where the integrals
R
⌦

and
R
Rn\⌦ represent the influence of the interior and the exterior

with respect to ⌦, respectively; these integrals are defined for the given field ~V and defined

field ~V 0, respectively.
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Furthermore, D0 and ~R0 are defined over Rn, whereas the final goal is to compute the

natural HHD of ~V in ⌦. Therefore, the Expressions (3.2) can be restricted to x
0

2 ⌦.

Finally, since, by definition, the natural potentials represent only the internal influences,

the following expressions provide formal definitions to the natural potentials D⇤ and ~R⇤:

D⇤(x
0

) =

Z
⌦

G1(x,x
0

) r·~V (x) dx x,x
0

2 ⌦,

~R⇤(x
0

) = �
Z
⌦

G1(x,x
0

) r⇥~V (x) dx x,x
0

2 ⌦.
(3.3)

It is important to note that ignoring the second integral in each of the Expressions (3.2)

does not change the divergence and rotation captured by the nonharmonic potentials. This

is true since the integral
R
⌦

(. . .) defines a nonharmonic potential inside ⌦, whereas the

integral
R
Rn\⌦(. . .) defines a harmonic potential in ⌦. As a result, the natural components

~d⇤ = rD⇤ and ~r⇤ = r⇥~R⇤ match the divergence and rotation of ~V , and the natural

harmonic component, computed as the remainder ~h⇤ = ~V � ~d⇤ � ~r⇤, is both divergence-

and rotation-free. Finally, it should be noted that the natural potentials D⇤ and ~R⇤ are

uniquely determined by Expressions (3.3), and therefore, so are ~d⇤, ~r⇤, and ~h⇤. Hence, the

natural HHD is unique.

Theorem 3.1. Given a vector field ~V on a bounded domain ⌦, its natural Helmholtz-Hodge

decomposition as defined by Definition 3.1 is unique.

The significance of the natural HHD is that the uniqueness can be obtained without

assuming any boundary conditions on D⇤ and ~R⇤.

3.2.2 Interpretation of the Natural Harmonic Flow

By definition, the two vector fields ~V and ~V 0 are equal inside the domain ⌦.

~V
0
(x

0

) = ~V (x
0

) x
0

2 ⌦,

rD0(x
0

) +r⇥~R0(x
0

) = rD⇤(x
0

) +r⇥~R⇤(x
0

) + ~h⇤ x
0

2 ⌦,

Therefore, the natural harmonic flow ~h⇤ inside ⌦ can be expressed as

~h⇤ = rD0(x
0

) +r⇥~R0(x
0

)�rD⇤(x
0

)�r⇥~R⇤(x
0

)

= r
�
D0(x

0

)�D⇤(x
0

)
�
+r⇥

⇣
~R0(x

0

)� ~R⇤(x
0

)
⌘ (3.4)

Substituting Expressions (3.1) and (3.2) in Expression (3.4),

~h⇤(x
0

) = r
Z
Rn\⌦

G1(x,x
0

) r·~V 0(x) dx�r⇥
Z
Rn\⌦

G1(x,x
0

) r⇥~V 0(x) dx x 2 Rn.

This expression means that the natural harmonic component of ~V can be constructed using

the divergence and curl of a hypothetical flow ~V 0 on Rn, and many such flows leading
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to the same ~h⇤ can exist. This degree of freedom validates the understanding about a

harmonic flow that its unique definition requires knowledge about the exterior. However,

using the proposed internal-external split, defining a particular ~V 0 is not required, but

instead, the influence of the unknown can be determined indirectly in a data-driven manner.

As expected, for computation of ~d⇤ and ~r⇤, no information about the exterior (or the

boundary) is needed, and therefore, the indirect approach to consider an infinite vector

field is only a thought experiment.

3.2.3 Quantification of the Harmonic Flow

Although harmonic flows are well understood, currently there exist no techniques to

determine whether a given flow on a given domain “contains” a harmonic piece or not.

Since harmonic is defined as the flow that is both divergence- and rotation-free, at best, it

is possible to evaluate only whether a given flow is rotation-free, divergence-free, or both

(harmonic).

However, an earlier ignored but important property of harmonic flows is that they are

equivalent to the influences that are external to the given domain. Utilizing this property,

the internal-external split proposed in this work computes the harmonic flow indirectly,

which makes it possible to, for the first time, answer an important question: “Given a

vector field ~V defined on ⌦, how much harmonic flow does it contain?”.

For a given flow ~V on ⌦, its nonharmonic component, denoted as ~v⇤, can be computed

using its divergence and rotation as follows:

~v⇤ =

✓
r
Z
⌦

G1(x,x
0

) r·~V dx

◆
+

✓
r⇥

Z
⌦

G1(x,x
0

) r⇥~V dx

◆
,

and quantified using a vector norm ⌫ that maps the space of vector fields to positive real

numbers. By definition, ⌫ must satisfy three properties:

• ⌫(~a) � 0;

• ⌫(~a) = 0 if and only if ~a = ~0;

• ⌫(~a+~b)  ⌫(~a) + ⌫(~b).

Because the nonharmonic component ~v⇤ is guaranteed to not contain any external

influences (harmonic), it is possible to quantify the amount of harmonic flow present in

~V indirectly. In particular, since ~V = ~v⇤ +~h⇤, it follows that ⌫(~V )  ⌫(~v⇤) + ⌫(~h⇤). Hence,

the lower bound on the norm of harmonic flow present in ~V with respect to ⌦ is

⌫(~h⇤) � ⌫(~V )� ⌫(~v⇤)

where both the terms in the RHS of this inequality can be uniquely determined.
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In summary, the harmonic flow (external influences) present in a given flow can be

quantified using a user-defined norm, such as the L
2

norm. The metric will be zero if

and only if there are no external influences, and ~V can be uniquely decomposed into two

natural nonharmonic components. On the other hand, a nonzero metric indicates that ~V

is not directly useful to study internal features, and the natural HHD must be used to

first dissociate the harmonic component. This quantification can also serve as a benchmark

for di↵erent HHDs to assess the quality of the resulting components and their usability in

applications requiring an open boundary.

3.2.4 Advantages and Limitations

Computing the natural components by distinguishing between the internal and external

influences has several advantages. First, computation of the natural HHD depends only

upon the flow inside the domain, and not on the relative alignment of the flow with its

boundary. Notice that this approach also works for nonsimply-connected subsets of Rn

(refer to Figure 3.5). Second, using the conceptual domain extension to Rn, it becomes

possible to utilize the free-space Green’s function G1, which is simple and is known in

the closed-form. Therefore, the computation on bounded domains can bypass the step

of computing the finite-space Green’s function G
⌦

, which is much more involved, since it

may not be known in closed-form for the given domain. Third, one could think of using a

similar idea of extending the domain for existing techniques in order to reduce boundary

artifacts. However, being global in nature, such techniques would depend upon the flow in

the extended domain. On the other hand, the proposed approach is oblivious to how the

field is completed in the extended domain, and does not depend upon the size and shape of

the extended domain.

Finally, unlike the other techniques that use boundary conditions to obtain uniqueness,

the computation of the natural HHD does not assume a decomposition of the boundary

flow. Therefore, the fidelity of the flow is not compromised, and the components obtain the

most “natural” values on the boundary.

The only limitation of the natural HHD is that it is not guaranteed to be L
2

-orthogonal.

However, orthogonality between the incompressible and irrotational components is impor-

tant only for certain applications in fluid simulation, as it helps decouple the errors in

the two components. For applications in visualization and analysis, orthogonality is not

required. Instead, this work seeks more desirable properties such as flow topology, which

can be attributed to the interior and exterior of the domain. Therefore, the natural HHD

is suited to most applications in such areas.
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3.2.5 Local Computation and Local Approximation

Besides the conceptual advantages of the natural HHD described above, it has some

important practical benefits. The natural HHD is computed in a pointwise manner, and

does not assume any boundary conditions. Consequently, considering a smaller area of

interest ⌦
1

⇢ ⌦, it is possible to obtain a local decomposition in ⌦
1

by restricting the

computation to ⌦
1

. This restriction computes the components in a smaller ⌦
1

influenced

by the divergence and rotation in the larger ⌦. In contrast, using the state-of-the-art

techniques [75, 163, 166, 204], which are global solutions, it is not possible to compute a

local decomposition using global information.

Furthermore, it is also possible to obtain a local approximation to the global natural HHD

by ignoring the flow outside ⌦
1

. This restriction computes the component flows inside ⌦
1

due to the influence of ⌦
1

instead of ⌦. The error of this approximation is then given by

the ignored term:
R
⌦\⌦1

G1 (. . .). However, in practice, this error is often negligible for two

reasons. First, for turbulent flows, the external influences, for example, positive/negative

divergences and clockwise/counterclockwise rotations, often cancel each other. Second, the

Green’s function is a distance-based weighting function whose value goes to zero as the

distance increases. Therefore, for suitably chosen finite ⌦
1

⇢ ⌦, the computation can be

ignored for points in ⌦ \ ⌦
1

.

Both the local computation as well as the local approximation play crucial roles in terms

of reducing computational costs, especially when ⌦
1

is much smaller than ⌦, as illustrated

in Section 3.3.

3.2.6 Implementation Details

The expressions for natural potentials in 2D are

D⇤(x
0

) =
1

2⇡

Z
⌦

log(|x� x
0

|) r·~V (x) dx,

R⇤(x
0

) = � 1

2⇡

Z
⌦

log(|x� x
0

|) r·J ~V (x) dx,

where J is the ⇡/2 rotation operator, and the incompressible component can be represented

using a scalar potential R⇤. The corresponding expressions in 3D are

D⇤(x
0

) = � 1

4⇡

Z
⌦

r·~V (x)

|x� x
0

| dx,

~R⇤(x
0

) =
1

4⇡

Z
⌦

r⇥~V (x)

|x� x
0

| dx.

The computation of the natural HHD using these expressions requires (1) computation

of the divergence, curl, and gradient; and (2) integration over the given domain. For both
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these steps, any appropriate discretization can be used. For clarity of the presentation,

the discussion is limited to bilinear vector fields on regular grids, and PC vector fields on

triangulated domains. However, all concepts trivially extend to 3D and other interpolants.

In the following description, for a triangular domain M, the PC vector field is defined on

the faces of M, and all scalar quantities are defined on the vertices of M. Furthermore, for

a regular grid G of size [X⇥Y ] and grid spacings dx and dy, all scalar and vector quantities

are defined on the vertices.

3.2.6.1 Computation of divergence, curl, and gradient. To define the di↵er-

ential operators on G, the partial derivatives in each dimension are computed using central

finite di↵erences for the interior nodes, and forward/backward finite di↵erences for boundary

nodes. Using these partial derivatives, discrete approximations to the divergence, curl, and

gradient operators are obtained.

For PC vector fields on M, the finite element framework proposed by Polthier and

Preuß [166] is used. The divergence (and curl) at a vertex is computed as the sum of

dot products of the vector field with the normal (and tangent) along the boundary of the

one-ring neighborhood of the vertex. The gradient of a scalar field defined at vertices of

M is a vector field defined at its faces. For each face, it is the sum of the gradient of its

barycentric coordinates weighted by the function value at the corresponding vertices.

3.2.6.2 Integration over the domain. Let C, E, and I be the set of vertices at the

four corners, the boundary (not including the corners), and the interior of G, respectively.

Then, the integral of a function f over G is approximated using the 1D trapezoidal method

over the x dimension, and subsequently over the y dimension, that is, by using the following

expression: Z
G
f(x, y) ⇡ dx dy

4

 X
v2C

f
v

+ 2
X
v2E

f
v

+ 4
X
v2I

f
v

!
.

where f
v

is the value of f at the vertex v.

On the other hand, for every vertex v 2 M, let Area(v) denote the area of the

corresponding cell in the Voronoi dual mesh (obtained by connecting the centroids of the

triangles in M). Then, the integral of a function over the domain is computed asZ
M

f(x, y) ⇡
X
v2M

f
v

Area(v).

Using the modules defined above, the integral solution to the Poisson equation is com-

puted as weighted sum over all the vertices, making it an O(n2) algorithm, where n is the

number of vertices in M or G. However, the technique is trivially parallelizable since once
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the divergence and rotation are available, computation at every vertex can be performed

independently and in parallel.

3.3 Evaluation and Results
This section provides results of the natural HHD applied to some synthetic and simulated

datasets. The aim is to first evaluate the accuracy and stability of the technique by

comparing it with known component fields, and then to demonstrate its versatility and

robustness by applying it to di↵erent physical flows. For comparisons, the LS-FEM approach

of Polthier and Preuß [166] is chosen as the representative of HHD
NP

—the HHD with NP

boundary conditions—that is,

~V = ~d
NP

+ ~r
NP

+ ~h
NP

,

with boundary conditions: ~n ⇥ ~d
NP

= 0 and ~n · ~r
NP

= 0. Note that the majority of the

di↵erences between HHD
NP

and HHD⇤ are due to the choice of boundary conditions, and

not how the solution is computed. The visualizations in this section are created using

line integral convolution (LIC) [20], color-mapped to represent vector magnitudes, where

purple-white represents low-high values.

3.3.1 Comparisons with Analytical Fields

To evaluate the natural HHD, a synthetic vector field ~V is created by adding a di-

vergent, ~d
true

, a rotational, ~r
true

, and a translational (harmonic), ~h
true

, flow, that is,

~V = ~d
true

+ ~r
true

+ ~h
true

as illustrated in Figure 3.3(b). Similar to the example given by

Wiebel (see Figure 3.1), this field is contrived to represent a scenario requiring an open-

boundary analysis, and, therefore, the standard boundary conditions are incompatible.

The “ideal” HHD of ~V should recover the three input ingredients accurately. However,

as expected, the components of HHD
NP

(refer to Figure 3.3(a)) show artifacts near the

boundary. In particular, the flow magnitudes are near zero for both ~d
NP

and ~r
NP

near

the corners of the domain, and the critical points in the rotational and divergent flows

are shifted inwards. Furthermore, the corresponding harmonic flow ~h
NP

does not reflect

the added translation ~h
true

. In comparison, the components of the natural HHD (refer to

Figure 3.3(c)) are virtually indistinguishable from the analytic components.

Since ~d and ~r are computed as gradient and curl of their corresponding potentials, their

respective numerical rotation and divergence are always zero. Therefore, the divergence and

rotation present in ~h are good indicators of the numerical quality of the decomposition. As

shown by the first two sets of columns in Figure 3.4, the results of HHD⇤ closely match the
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� �

(a) The HHD using NP boundary conditions ( HHDNP): ~V = ~dNP + ~rNP + ~hNP.

� � �

(b) Analytically created fields on domain (�1, 1) ⇥ (�1, 1). ~dtrue has a source at (0.5, 0.5) and a sink at

(�0.5,�0.5); ~rtrue has two counter-rotating orbits at (�0.5, 0.5) and (0.5,�0.5); and ~htrue = {0.5, 0.1}. All
critical points were created such that their strengths decay exponentially with distance. The test field is
obtained by adding these fields: ~V = ~dtrue + ~rtrue + ~htrue.

� �

(c) The proposed natural HHD ( HHD⇤) without boundary conditions: ~V = ~d⇤ + ~r⇤ + ~h⇤.

Figure 3.3. Comparison of (c) the natural HHD and (a) the HHD with NP boundary
conditions with (b) analytic flows. The results of natural HHD are much closer to the
ground truth.

expected results, whereas the results of HHD
NP

show large deviations. To further compare

the two decompositions, the amount of external influences in the corresponding components

has been quantified. The third set of columns shows the L
2

norm for |~h⇤|, |~h
true

|, and |~h
NP

|,

and indicates that the natural HHD extracts almost all of the harmonic flow into ~h⇤. The

last two sets of columns show the amounts of nonharmonic and harmonic flows present

in the obtained divergence-free fields, denoted as ~rv and ~rh. These fields are obtained

through the natural HHD of the rotational fields obtained by the di↵erent techniques. The

three columns for ~rv almost match, meaning that the net amount of rotational flow (with

respect to L
2

norm) is conserved in all the rotational components. However, there exists

a large amount of harmonic flow in ~r
NP

. In contrast, the harmonic flow contained in ~r⇤
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Figure 3.4. Quantitative comparison of the natural HHD and the HHD with NP boundary
conditions with analytic flows. The figure shows that the natural components obtained
through the natural HHD capture the analytic fields better.

is unnoticeable. The results on the obtained rotation-free fields (not shown in the figure)

following a similar trend. These quantitative comparisons corroborate the visual impression

that HHD⇤ recovers the known solution significantly better than HHD
NP

, whose results

are not useful for applications requiring an open boundary.

Figure 3.5 shows the results of an experiment where an analytical flow (~V = ~d
true

+~h
true

)

was sampled on a regular grid, a rotated regular grid, and an unstructured annulus mesh.

~V = ~d
true

+ ~h
true

~d⇤ ~d
true

~d
NP

~h⇤ ~h
NP

Figure 3.5. Comparison of the natural HHD and the HHD with NP boundary conditions
with analytic flows sampled on di↵erent domains. The natural HHD (~d⇤ and ~h⇤) contains
significantly fewer artifacts than the HHD with boundary conditions (~d

NP

and ~h
NP

) as
compared to the true components (~d

true

and ~h
true

). ~h
true

is a translational flow (1,�1), not
shown in the figure.
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Comparing the flows, one can observe that our results match the analytical flow much more

closely. In particular, the fields ~d⇤ and ~h⇤ reflect the best estimates of ~d
true

and ~h
true

, given

the data inside the domain. On the other hand, ~d
NP

and ~h
NP

computed using NP boundary

conditions impose boundary flow, and, therefore, show major deviations, especially near

boundaries.

3.3.1.1 Stability. The next two experiments were designed to compare the stability

of both techniques to sampling conditions and directions of the harmonic flow. First, a

rotating field was sampled on a fixed structured domain. It was noticed that the pro-

posed approach is virtually invariant to the sampling whereas HHD
NP

continuously forces

alignment with the boundary, causing significant artifacts. In the second experiment, the

direction of the added harmonic flow was varied continuously. As expected from Figure 3.3,

the natural HHD remains una↵ected, but HHD
NP

is able to recover ~h
true

only when it aligns

with the boundary and produces significant global artifacts otherwise. An accompanying

video that shows animations for both these experiments can be found at the following link:

http://www.sci.utah.edu/~hbhatia/dissertation/TVCG-naturalHHD-video.mp4.

3.3.2 Results on Simulated Flows

Next, the natural HHD is used to decompose a number of di↵erent simulated flows

reflecting a variety of physical phenomena. In particular, the results presented in this

section show how physical flows do not conform with traditional boundary conditions, and,

thus, existing techniques are not applicable.

3.3.2.1 Flow behind the cylinder and cuboid. The data shown in Figure 3.6 is

a single time-slice of the time-varying simulated flow behind a cylinder. In this setup, the

flow is injected from the left boundary, and its behavior is observed behind the cylinder,

which is located at the left boundary of the domain (see Data B.1.3). As seen in the

figure, the natural HHD extracts the harmonic components completely, and ~r⇤ reveals the

vortices. ~d⇤ is zero since the original flow is incompressible. Note how ~r⇤ is not aligned

with boundary—a result not feasible with traditional techniques. Especially, note that the

vortices in this data move left to right as time progresses. Therefore, depending upon the

current value of time, the alignment of the flow inside the rightmost vortex changes with

the right boundary of the domain, thus creating serious time-dependent artifacts. The

computation of the natural HHD for this [400⇥ 50] data took about 1.06 seconds.

Figure 3.7 shows the results of the natural HHD on a similar 3D flow. The data represents

the flow behind a cuboid, where the flow is injected from one direction, and its behavior

is observed behind the obstacle. Notice that ~r⇤ reveals the vortical structures, and is not
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Figure 3.6. The natural HHD of the flow behind a cylinder (top). ~r⇤ reveals the von
Kármán vortex street, and is not tangential with the boundary (middle). ~h⇤ represents the
background flow (bottom).

compatible with the standard boundary condition, whereas ~h⇤ captures the background

flow. The decomposition of this [101 ⇥ 101 ⇥ 101] flow took about 120 seconds with 144

processes in parallel.

3.3.2.2 Lifted ethylene jet flame. The second example is a direct numerical

simulation of a turbulent lifted ethylene jet flame [222] (see Data B.3.1). Unlike the

previous dataset, this is a compressible and highly turbulent flow. The fuel is injected

on the bottom of the domain, creating a strong harmonic flow towards the top. Figure 3.8

shows one snapshot of a 2D slice from the center of the 3D flow. Both ~r⇤ (Figure 3.8(b))

and ~d⇤ (Figure 3.8(c)) are highly complex, not aligned with the boundary, and show some

surprising structures. In particular, ~r⇤ shows two global counter-rotating vortices rather

than a streak of smaller vortices one may have expected. Finally, ~h⇤ (Figure 3.8(d)) reveals

an elliptical shape reflecting the nonconstant velocity profile imposed by the simulation.

The decomposition of this [800⇥ 2025] data took about 290 seconds with 144 processes in

parallel.

3.3.2.3 Jet in cross-flow. The next dataset represents a simulation of a jet in cross-

flow, which is a fundamental flow phenomenon in many engineering applications [60, 73], for
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(a)

(b) (c)

Figure 3.7. The natural HHD of the flow behind a cuboid (a). The figure shows streamlines
in the interesting regions. (b) ~r⇤ reveals the vortical structures, and (c) ~h⇤ shows the
translation present in the flow (right).

example, film cooling of turbines, fuel injections, and dilution jets in gas-turbine combustors.

The experimental setup contains injection of flow through a jet at the bottom in the presence

of a strong background transverse flow, the cross-flow (see Data B.3.2).

To simplify the illustration, a 2D slice is taken through the center of the 3D flow,

such that the cross-flow is directed from left to right, and the jet appears at the bottom.

Figure 3.9 compares the rotational fields obtained through HHD
NP

and the natural HHD.

The topological skeletons of these flows are computed by decomposing the domain into
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(a) (b) (c) (d)

Figure 3.8. The natural HHD of the flow at the center of a lifted ethylene jet flame.
(a) Flow at the center of a lifted ethylene jet flame [222]; (b) ~r⇤ showing two global
counter-rotating vortices encapsulating smaller structures; (c) ~d⇤ showing a large number of
sources and sinks related to volume changes; and (d) ~h⇤ computed as the residual showing
an elliptical flow structure around the flame center.

nonoverlapping regions using the critical points and the saddle separatrices of the flow.

Since the topological skeletons of the two rotational fields are significantly di↵erent, the im-

portant question is which of these flows corresponds to the expected combustion phenomena.

Through scientific insights of domain experts, it is known that the small vortices near the

top-left and bottom-left corners of ~r
NP

are unphysical, since the underlying physical model

expects vortices to be generated behind the jet only. Furthermore, note how ~r⇤ successfully

captures the behavior of jet (green color), which is expected to rise up and go left to right

(compare with the illustration shown in Appendix B). On the other hand, ~r
NP

shows the

jet (brown color) to follow a circular path that does not leave the domain from the right

side, but comes back to the jet’s point of entry. This behavior is also deemed unphysical

by domain scientists. Thus, imposing parallel flow on the boundary produces false features

(vortices) in the analysis.

These results demonstrate that the flow obtained through the natural HHD captures the

physical model successfully, and it becomes possible to make enquiries about the accuracy

or uncertainty of the computation. However, the flow obtained by using the boundary
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Figure 3.9. Comparison of the natural HHD and the HHD with NP boundary conditions
on a 2D slice of the jet in cross-flow. The rotational fields ~r

NP

and ~r⇤ are shown in the
top and the bottom, respectively. Unphysical rotational structures are observed at the
bottom-left and top-left corners in ~r

NP

caused due to imposing parallel flow.

conditions does not respect the underlying physical model, and cannot be used to derive

insights. Furthermore, the concerns of accuracy and/or uncertainty do not even make any

sense in this case since the flow represents a di↵erent physical phenomena.

3.3.2.4 Oceanic currents. The final example is the surface flow taken from a 3D

simulation of global ocean currents [133] (see Data B.3.3), as shown in Figures 3.10, with the

focus on a ⌦
1

= [200⇥200] region in the South Pacific ocean. To demonstrate the practical

utility of the local computation and the local approximation of the natural HHD, the

decomposition for ⌦
1

is computed using the data from concentric grids ⌦ = G
N

. Figure 3.11
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(a) (b)

(c) (d)

Figure 3.10. Local approximation of the natural incompressible component of the global
oceanic flow, computed for the innermost tile, G

200

, shown in (a) by separately computing
over three concentric tiles: (b) G

200

, (c) G
400

, and (d) G
600

.

shows a quantitative comparison of the results when N is increased from 200 to 600. It

should be noted that whereas the time needed for the computation grows quadratically,

the L
2

and L1 norms, and hence the decomposition, already seem to have converged.

As a result, in order to analyze the flow in ⌦
1

, the natural HHD provides a local and

faster technique, instead of using the existing global solutions, which would require the

computation for the entire domain with over 5.3 million vertices. Figure 3.10 shows the

rotational flows obtained for ⌦ = G
200

, ⌦ = G
400

, and ⌦ = G
600

.
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Figure 3.11. Quantitative evaluation of local approximation of the natural incompressible
component of the global oceanic flow. Local computation for ⌦

1

= G
200

using the data
from ⌦ = G

N

with increasing N requires a quadratically increasing time (scaled to the right
axis). On the other hand, the L1 and the normalized L

2

norms (log-scaled to the left axis)
of |~r| and r⇥~r seem converged.

3.4 Summary
This chapter discusses the natural HHD, which is a new formulation to compute a

unique decomposition of a vector field based on internal and external influences, allowing

for an open-boundary analysis. The natural HHD uses the integral solution of the Pois-

son equation, decouples the decomposition from boundary conditions to avoid the typical

boundary artifacts, and therefore produces significantly better results than state-of-the-art

techniques. Furthermore, the decomposition can be computed locally, as well as in an

approximate manner for faster, more targeted analysis of specific regions of interest. The

proposed ideas allow, for the first time, quantification of the amount of harmonic flow in a

given field. The computation of natural HHD opens new directions in support of various

analysis techniques requiring independent study of internal and external influences.

Nevertheless, the full decomposition is computationally expensive and new approaches

are necessary to make it applicable to large-scale 3D data. Furthermore, although the

proposed approach works for a variety of spatial discretizations, it is limited to subsets of

Rn, and a similar approach for surfaces would be useful. Going forward, it is hoped that

an easy to implement and reliable technique to compute the natural HHD will create new

research interest in using it for various analysis tasks.
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The natural HHD is an important step towards two of the main contributions of this

work—computing local reference frames and reducing unsteady flows to sequences of steady

flows. Next, Chapter 4 will discuss how the concepts presented in the current chapter can

be used for achieving the final goal.



CHAPTER 4

COMPUTATION AND APPLICATIONS OF

FLOW UNDER LOCAL REFERENCE

FRAMES

The goal of this chapter is to discuss in detail the significance of local reference frames

in the context of flows, especially unsteady flows. In particular, using the natural HHD

presented in Chapter 3, this chapter discusses how to define a local reference frame, and

how it can be used to reduce unsteady flows to sequences of steady flows.

Intuitively, in an unsteady flow, both the particles and the features are moving; typically,

the speed of particles is too fast for the features, such that the latter fail to influence the

former. In other words, before a feature can have a substantial influence on the nearby

particles, those particles move on. As a result, when a single snapshot of an unsteady flow

is seen, one often cannot identify features of interest. It is well known in the literature that

such streamline-based analysis—which is instantaneous in nature—for example, using vector

field topology [89], does not lead to meaningful features [129, 161, 162, 164]. Instead, the

literature under consideration points out that such streamline-based analysis is applicable

to unsteady flows only in a “meaningful” reference frame, where they are steady or near-

steady in order for the corresponding features to be temporally coherent and physically

meaningful. Intuitively, this di↵erent reference frame is equivalent to “slowing down” the

particles enough that the influence of features can be detected using streamlines.

Nevertheless, it is not yet clear what this “meaningful” reference frame is; in fact, this

dissertation argues that it is dependent upon the type of analysis to be performed or the

type of features to be extracted. In this context, uniformly moving reference frames are of

particular importance. Since such frames do not have any acceleration, they do not alter

the physical laws of Newtonian physics. For flows, a uniformly moving frame does not alter

certain properties of the flow, such as those derived from its deformation tensor, which, as a

gradient, ignores constant motion. As a result, almost all scalar indicators designed to detect

vortices, such as the Q-[97], �-[30], and �
2

-[100] criteria, are derived from the deformation
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tensor, and therefore are Galilean invariant, that is, they are invariant to uniform motion.

Other properties of the deformation tensor have also been used to classify regions with

specific flow behavior [28, 30]. Kasten et al. [105] and Sahner et al. [177] also extract

vortex cores using acceleration magnitude, and �
2

vortex indicator, respectively—both of

which are Galilean-invariant quantities. Assuming linearly moving critical points, Perry

and Chong [161] also stressed the importance of Galilean invariance, stating that using a

uniformly moving frame is su�cient in most cases for feature detection.

However, Galilean invariance does not su�ce for all cases, since a nonuniformly moving

object may be involved. Haller [82] proposed an “objective” definition of a vortex, which

is invariant to more general motions of frames, namely, time-dependent translations and

time-dependent rotations. Acknowledging the need for accelerating frames, Fuchs et al. [61]

proposed to use an “unsteadiness” metric based on the material derivative of the Jacobian,

whose minima were then used to extract coherent features.

This chapter presents new ideas that allow extraction of physically meaningful and

temporally coherent features from unsteady flows, one time-step at a time, by computing

new reference frames. It should be noted that both the indicator-based and the pathline-

based approaches implicitly aim to process the data in a more useful reference frame, yet

neither technique tries to construct such a frame. Instead, this work revisits the earlier

arguments [129, 161, 162] and explicitly computes a more suitable reference frame. In

particular, this chapter introduces the notion of internal reference frames, whose motion is

represented by a harmonic flow; thus they are more general than uniformly moving frames.

The internal frames can be computed in an e�cient and massively parallel manner. Using

several case studies, it is shown that the internal frames are indeed meaningful, and are

able to extract local coherent features in large turbulent flows.

4.1 The Internal Reference Frame
An important consequence of the natural HHD (presented in Chapter 3) is that, by

definition, the natural harmonic flow, ~h⇤, captures all external influences on the flow. This

section discusses how this property makes ~h⇤ an excellent choice to describe a meaningful

reference frame. Essentially, using the natural HHD, the motion of each particle in the flow

can be expressed as a combination of two components, which are caused by (1) internal

and (2) external influences. Thus, creating new particles, whose motion is described by ~h⇤,

is equivalent to defining new observers that compensate for all external influences. This

new “reference frame” allows studying the internal properties of the flow directly, and is
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therefore called the internal reference frame.

Definition 4.1 (Internal Reference Frame). A vector field is said to be analyzed in the

internal reference frame if it is invariant to external influences (harmonic vector fields).

The term “reference frame” is used in a physical sense to characterize the state of

motion of an observer, as done by Lugt [129], also referred to as an observational frame

in the Newtonian relativity [112], where physical quantities are measured with respect

to the state of motion of an observer. The term should not be confused with a very

similar mathematical notion of a frame of reference that denotes a coordinate system. To

understand the significance of internal frames, the reader can consider a passenger walking

inside a moving train. A person standing outside the train represents a static reference

frame, and cannot determine the speed of the walking passenger without knowing the

train’s speed. However, another passenger sitting inside the train can accurately describe

the walking passenger’s movements, since the sitting passenger represents a moving frame

that already compensates for the train’s motion. In the context of vector fields, the walking

passenger represents the internal properties of the field; the outside observer represents the

frame in which the field has been generated (through simulation or observation); and the

second passenger is the internal frame. For a uniformly moving train, the reference frame

is trivial, as each passenger experiences the same influence from the train. However, for

more general motions, for example, a train on a curved track, each passenger will experience

di↵erent influences depending upon its position within the train, and the radius and the

center of the curve. As a result, each passenger (flow particle) must define a separate

internal frame only for itself.

4.1.1 Transformation of the Flow into the Internal Frame

In order to transform a given flow into the internal frame, the definitions provided by the

natural HHD are used. The natural irrotational (~d⇤ = rD⇤) and the natural incompressible

(~r⇤ = r⇥~R⇤) components of the flow ~V are defined using the natural potentials D⇤ and

~R⇤.

D⇤(x
0

) =

Z
⌦

G1(x,x
0

)
⇣
r · ~V (x)

⌘
dx,

~R⇤(x
0

) = �
Z
⌦

G1(x,x
0

)
⇣
r⇥ ~V (x)

⌘
dx.

(4.1)

The computation of these components requires only the divergence and rotation of ~V inside

the domain. Since no boundary conditions are required to compute D⇤ and ~R⇤, these

potentials contain no harmonic flow (no external influences). Using the expression of the
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longitudinal and transverse components of the flow (see Expressions (2.16)), the natural

potentials (Expressions (4.1)) can be expressed as

D(x
0

) = D⇤(x
0

)�
I
@⌦

G1(x,x
0

)
⇣
~n · ~V (x)

⌘
dx,

~R(x
0

) = ~R⇤(x
0

) +

I
@⌦

G1(x,x
0

)
⇣
~n⇥ ~V (x)

⌘
dx.

Equating the natural HHD with the longitudinal and transverse decomposition, that is,

rD⇤ +r⇥~R⇤ + ~h⇤ = rD +r⇥~R, one gets

~h⇤ = r(D �D⇤) + r⇥(~R� ~R⇤),

=) ~h⇤ = rH
d

⇤ +r⇥ ~H⇤
r

, (4.2)

where

H
d

⇤(x
0

) = �
I
@⌦

G1(x,x
0

)
⇣
~n · ~V (x)

⌘
dx,

~H
r

⇤
(x

0

) =

I
@⌦

G1(x,x
0

)
⇣
~n⇥ ~V (x)

⌘
dx.

(4.3)

Thus, the natural harmonic flow, which represents all external influences, can be computed

using the two boundary integrals defined in Expressions (4.3).

To represent the internal frame, new particles must be created that move along the

natural harmonic flow, ~h⇤. By the velocity addition formula of Newtonian relativity, such

particles observe the original flow as

~V
int

(x, t) = ~V (x, t)� ~h⇤(x, t), (4.4)

where ~V
int

is the flow in the internal frame. In other words, the flow ~V can be transformed

into the internal frame by removing the natural harmonic component. For unsteady flows

~V (x, t), this transformation can be applied to each time-step, leading to smooth ~V
int

(x, t)

that can be used for extraction of meaningful features, as demonstrated later.

4.1.2 Internal Frame and Topology of the Domain

It is important to note that Equation (4.2) is valid only for simply-connected subsets

of Rn. For nonsimply-connected domains, there may exist other forms of harmonic flow

induced by the topology of the domain, as explained by the Hodge-Morrey-Friedrichs

decomposition [186]. As a result, it is not guaranteed that all harmonic flow can be

represented by Equation (4.2). However, this is only a conceptual limitation and does

not restrict the practical utility of the proposed technique for three reasons: (1) Most

simulations impose no-slip boundary conditions at fluid-solid interfaces, that is, ~V = ~0. In
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such cases, a smooth ~V
0

can be defined on a simply connected ⌦
0

(� ⌦) by padding ~V with

zeros in the holes of ⌦. It can be shown that this padding does not influence the internal

frame. Therefore, the internal frame can be computed easily for ~V
0

on ⌦
0

but used to

analyze ~V on ⌦. (2) Furthermore, many practical flows, such as the flow behind a cylinder

(discussed in Section 4.2), do not contain any additional forms of harmonic, and therefore

Equation (4.2) is applicable. (3) Finally, even when cases (1) and (2) are not applicable,

the flow in the internal frame can be computed indirectly using the natural HHD, that is,

~V
int

= ~d⇤ + ~r⇤.

4.1.3 Localized Internal Frame

Since the internal frame is defined on a pointwise basis depending only on the boundary

data, it can be computed with respect to a boundary with an arbitrary shape for a given

simply-connected subset of Rn. This flexibility allows computing a localized internal frame

for a more focused analysis in a smaller region of interest and to highlight local features.

Furthermore, this technique also allows for a local computation, meaning that one can define

the frame for a large domain, but compute it only in a smaller subset. The local computation

further helps reducing the computational costs by focusing only on the regions of interest.

Recall that ~V
int

depends only upon the divergence and rotation of ~V inside the domain

considered. Therefore, from the smoothness of ~V , it follows that ~V
int

will vary smoothly

with respect to smooth changes in the domain considered.

4.1.4 Implementation Details

Computation of the flow in the internal frame is similar to that of the natural HHD,

discussed in Section 3.2.6, and requires two modules: (1) computation of divergence, curl,

and gradient; and (2) computation of boundary integrals of normal and tangential compo-

nents of the flow. With the availability of these modules, the computation of the flow in

the internal frame using Expressions (4.3) is straightforward and trivially parallelizable for

a variety of spatial discretizations and/or interpolants. For brevity, only bilinear/trilinear

flows defined on regular grids, and piecewise constant (PC) flows defined on triangulated

meshes are discussed here.

For a regular grid G with vector samples defined on vertices, the normal and tangential

components of the boundary flow can be defined trivially with respect to the exterior normal,

once an orientation is assumed with respect to Cartesian coordinates. Since each “side”

of G is also a regular grid, integration along the boundary can be approximated using the

trapezoidal method applied successively in each dimension. Finally, finite di↵erences can
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be used to define the required di↵erential operators.

For a triangulated domain M with a PC vector field defined on its faces, the normal

and tangential components are computed with respect to the edges on the boundary, and

boundary integrals are approximated by summing these components. The divergence (and

curl) of the vector field is defined at the vertices of M, and is computed as the sum of

dot products of the vector field with the normal (and tangent) along the boundary of the

one-ring neighborhood of the vertex [166]. The gradient of a scalar field defined at vertices

of M is a vector field defined at its faces. For each face, it is the sum of the gradients of its

barycentric coordinates weighted by the corresponding function values.

4.2 Evaluation and Results
This section presents the results of the experiments performed to evaluate the internal

reference frame. First, the flow behind a cylinder is used to compare di↵erent frames. Since

the resulting features of this flow are known, this data is used to demonstrate that the

internal frame extracts features whose behavior is consistent with theory, and is indeed a

distinguished frame. Next, the internal frame is used to explore complex flows resulting

from combustion simulations.

To show that the internal frame allows representing unsteady flows as sequences of

steady flows, this section shows that the features extracted from the individual time-steps

of the unsteady flows using streamline-based techniques are meaningful. We use the vector

field topology [89] as a representative of streamline-based techniques. Therefore, the critical

points and the saddle separatrices of the flow are computed in a consistent manner (using the

framework discussed in Part III). These features define the topological skeleton of the flow,

which is used to decompose the domain into nonoverlapping regions. Most of the following

figures show this topological decomposition by highlighting these regions in di↵erent colors

overlaid on the image-based flow visualization (IBFV) [208]. In the remaining figures,

the IBFV is overlaid with the colormap shown here to represent vector magnitudes, with

blue-to-red representing low-to-high values. Blue spheres denote saddles in the flow, and red

and green spheres denote clockwise and counterclockwise rotating vortices. The performance

was noted for double-precision data and a serial algorithm running on a MacBook Pro with

2.8 GHz Intel Core 2 Duo processor and 8 GB RAM.

4.2.1 Simulated Flows
4.2.1.1 Flow behind a cylinder. The 2D flow behind a cylinder is expected to ex-

hibit the well-known von Kármán vortex street, as illustrated in Figure B.3 (see Data B.1.3).
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Using the flow simulated for the Reynolds number, Re = 165 and inlet horizontal

velocity, u = 1.1, it is observed in Figure 4.1 that the topological decomposition of the

flow in the simulation’s reference frame is trivial, since the entire flow originates from the

left boundary and exits from the right. However, the same analysis performed in the internal

frame reveals the expected vortex street, as illustrated by cyclic arrows in the figure. This is

a well-studied flow, typically used for illustrating vortex detection techniques, most of which

rely on scalar indicators associated with thresholds [105]. The internal frame allows the

computation of such regions by analyzing the flow directly from a single time-step, without

losing information about it. For example, the internal frame also reveals the region of

backward flow (highlighted by arrows) between the counter-rotating vortices, which induces

drag on the cylinder, whereas the original frame obscures this behavior. Furthermore,

neither the techniques based on scalar indicators nor the FTLE-based approaches are able to

represent backward flow due to information loss during the corresponding transformations.

Given the results obtained in the internal frame, it becomes possible to answer many

important questions about the underlying flow phenomena: What is the spatial distribution

of the vortices in the vortex street? What are the distances between any two vortices—both

horizontally and vertically? What are the areas/volumes enclosed by these vortices? What

are the strengths of these vortices? What is the shedding frequency of the vortices? How

fast are these vortices moving? etc. Note that the existing techniques typically focus on

Figure 4.1. Comparison of the topological decomposition of the flow behind a cylinder in
the simulation’s (top) and the internal frame (bottom). The result in the simulation’s frame
is trivial, whereas the same analysis in the internal frame reveals vortices with backward
flow between them. The flow in the internal frame for this [1450⇥ 400] data took ⇡ 43 sec.
to compute.
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one of these question, whereas the internal frame allows performing a holistic analysis of

the phenomena.

To demonstrate that the internal frame is indeed a distinguished frame for analysis, the

natural harmonic flow, which represents the motion of the internal frame, was computed,

and its magnitude was increased and decreased. As illustrated in Figure 4.2, the analysis in

faster or slower frames produces incorrect features, that is, the features that are inconsistent

with theory. In particular, in the absence of any discretization asymmetries, the vortex

street is expected to be vertically symmetric (with horizontal o↵sets) about the center of

the cylinder at all times because both the cylinder and the inlet velocity are vertically

symmetrical. However, for slower and faster frames, the instantaneous flows are observed

to be moving, more or less, downward and upward, respectively. It should also be noticed

that the amount of background flow exhibited in the slower frame is significantly reduced,

whereas the faster frame exhibits inverse flow at the top of the domain.

Next, the same analysis is performed for the flows for increasing Reynolds numbers,

Re = 100, 125, 140, and 165, corresponding to a fixed kinematic viscosity and u = 0.92,

0.98, 1.01, and 1.1. To verify the temporal coherence of the results, vortices are computed

for the simulation time-range [10, 22.5] consisting of 26 snapshots, one at a time. Figure 4.3

shows the trace of some of the vortices extracted from these snapshots using one spatial

domain to encode time. As expected, the locations of the critical points track the inherent

Figure 4.2. Topological analysis of the flow behind a cylinder in faster (bottom) and slower
frames (top). Slowing down or speeding up the internal frame yields inconsistent results.
The results for 10% changes to the internal frame clearly demonstrate that the flow is no
longer vertically symmetrical.
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time

time

time

time

Figure 4.3. Vortex traces in the flow behind the cylinder. From top to bottom, with
increasing Re, the speed of vortices increases as expected. To reduce clutter, only those
vortex traces are shown that exist for the entire time-range.

motion of the vortices, allowing an accurate measurement of the speed of their motion.

These results confirm that the vortices move slightly slower than (⇡ 91% of) the inlet

velocity. In Figure 4.3, the speeds of vortices are ⇡ 0.85, ⇡ 0.89, ⇡ 0.92, and ⇡ 1. It

should be noted that flows in the internal frame exhibit temporal stability, and so no actual

tracking of the vortices was necessary to produce these results; instead the figures simply

show the position of the vortex core at the given time-steps. It should also be noted that

an approximation to shedding frequency computed in the internal frame also increases with

increasing Reynolds number—a trend consistent with theory.

Finally, the topological analysis in the internal frame is evaluated against the particle-

based and indicator-based techniques, both in the simulation’s frame. Figure 4.4 shows
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Figure 4.4. Comparison of the topological analysis in the internal frame with the
indicator-based and pathline-based analysis in the simulation’s frame. The analysis in the
internal frame can capture spatiotemporal dynamics of pathlines (in the center) by analyzing
the flow one time-step at a time. Left and right show topological analysis that successfully
captures the start and end of these pathlines, useful for, for example, in identifying vortices.
In contrast, the contours of Q-criterion, shown in black (Q = 0) and red (Q = 0.1), create
false-positives and false-negatives.

a few pathlines computed in the simulation’s frame, along with IBFV of the flow in the

internal frame. On the left and the right, we zoom in to show the position of these particles

at t = 10 and t = 22.5, overlaid on the topological decomposition computed in the internal

frame, and the contours of Q-criterion [97] computed in the simulation’s frame. The result

asserts that the vortex identification using Q can create false-positives and false-negatives,

for example, the olive and the green colored particles, respectively. From the figure, it can

be noticed that the olive pathline does not “swirl” around the vortex core, whereas the

green pathline does. In contrast, the topologically-identified vortex in the internal frame

captures the true swirling behavior of the particles, from a single time-step and at much

lower computational expense.
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4.2.1.2 Lifted ethylene jet flame. Next, the direct numerical simulation of a

turbulent lifted ethylene jet flame [222] is studied, which represents a compressible and

highly turbulent flow (see Data B.3.1). In this case, fuel is injected from the bottom of

the domain, creating a strong background flow towards the top. The natural harmonic

flow, which represents the motion of the internal frame, reveals an elliptical shape (see

Figure 4.5(b)) consistent with the nonuniform velocity profile (faster flow in the middle)

imposed by the simulation. As a result, this flow is an example where nonuniformly moving

frames cannot be compensated for using Galilean-invariant techniques. In contrast, the

more general internal reference frame can successfully extract the hidden features in this

flow.

As shown in Figure 4.5(c), analyzing a single snapshot of the flow in internal reference

frame reveals two global counter-rotating vortices rather than a streak of smaller vortices

(a) (b) (c)

Figure 4.5. Comparison of the topological decomposition of the lifted ethylene jet flame in
the simulation’s (left) and the internal (right) reference frames. The natural harmonic flow
(middle) describes the motion of the internal frame. Only 8 critical points are identified
in the original frame, whereas 62 critical points describe the complex dynamics of this
simulated flow in the internal frame. The internal frame for this [800 ⇥ 2025] data took
⇡ 186 sec. to compute.
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one may have expected. Instead, the smaller vortices are nested in these global rotating

structures. The figure also highlights the flow that runs through the domain from bottom

to top, along with all the smaller structures that exist on either side of this through-flow.

As is clear from the figure, none of these intrinsic features are visible in the simulation’s

reference frame (see Figure 4.5(a)).

Figure 4.6 shows traces of vortices for time [0.00174, 0.00175], confirming that the

vortices are temporally coherent. Many vortices are small and cancel out with saddles

in the simulation, but some that are stable and persist for the entire time-range are shown.

4.2.1.3 Jet in cross-flow. The next dataset is generated from a simulation of a jet

in cross-flow [73] (see Data B.3.2). The goal of the experiment is to study di↵erent types

of vortical structures created by the interaction of the burning jet with the cross-flow. For

clarity in presentation, the results obtained in the internal frames are first shown for selected

xz and yx slices. Since the cross flow is transversal to yz planes, the simulation’s frame

is already very similar to the internal frame. First, a xz plane is analyzed for y = 550,

which cuts through the center of the jet. Figure 4.7 shows the topological decomposition of

the flow in the original and the internal frames. Notice the vortical structures revealed in

the internal frame. To emphasize the di↵erences, the zoomed-in region surrounding the jet

highlighting the presence of shear-layer vortices around the jet. Other vortices that cannot

be observed in the simulation’s frame are also revealed.

Next, the topological decomposition of the flow is studied in the internal frame for slices

representing yx planes. As shown in Figure 4.8, interesting features are observed for slices

z = 50 and z = 350, both of which cut through the jet transversally. The first slice is

near the orifice, and shows the formation of two counter-rotating vortices in a nascent stage

(highlighted as rotation). This visualization helps in observing how these vortices grow with

Figure 4.6. Vortex traces show the presence of stable rotational structures in the lifted
ethylene jet flame.
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(a) (b) (c)

Figure 4.7. Topological decomposition of a xz slide of the jet in a cross-flow in the
simulation’s frame (b bottom, a) shows little structure as the interesting intrinsic phenomena
are overshadowed by the background flow. The same topological analysis of the flow in the
internal frame (b top, c) reveals the expected shear-layer vortices on the front of the flame
as well as a wealth of other features.

Figure 4.8. Topological decomposition of yx slices of the jet in cross-flow in the internal
frame shows the interior of the jet near its orifice, and the evolution of jet with height.
Observed wake vortices are marked with arrows.

increasing z. Other smaller vortices are observed above these structures, which appear to

be the wake vortices (highlighted using arrows). As expected at a greater height (z = 350),

one observes that these vortices stretch in the x-direction (vertical in the figure) as the

plane cuts through a greater part of the vortices, while the wake vortices now appear below

them.

4.2.1.4 Localized 3D computation. Finally, we present results on the 3D flow in

the internal frame. We analyze a [400 ⇥ 200 ⇥ 250] subset of the data, which was chosen

by scientists as it covers the most interesting region of the flow around the jet’s orifice.

Figure 4.9(a) shows the natural harmonic flow computed for this region. Figures 4.9(b)

and 4.9(c) show two views of the flow in the internal frame, highlighting di↵erent structures.
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(a)

(b)

(c)

Figure 4.9. Localized analysis on a 3D subset of the jet in cross-flow. (a) The natural
harmonic flow. (b) and (c) Flow in the internal frame highlighting features near the jet
orifice (b) and the formation of counter-rotating vortex pairs (c).

The first view focuses on the jet and shows the vortices created around it, and the second

shows the formation of the counter-rotating vortex pair, a structure notoriously di�cult to

extract. The challenge is that the vortical motion is significantly weaker than that of the

smaller structures in the interior, which, therefore, dominate the former when traditional

techniques are used. In fact, several of our scientific collaborators have remarked that this

is the first time they have seen this structure visualized directly.

4.3 Summary
This chapter presents new ideas for computing local reference frames that allow ex-

traction of localized and otherwise obscured features from vector fields. Using the natural

HHD, a given flow is decomposed into appropriate components, where the resulting natural
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harmonic component captures the external influences with respect to a given domain, and

the remaining nonharmonic component represents the internal behavior. Equivalently, the

nonharmonic component represents the flow in the internal reference frame, whose motion

is represented by the harmonic component.

An important consequence of the internal reference frame is that it “slows” down the

flow, which allows extraction of important features from individual time-steps. As a result,

these ideas enable streamline-based analysis for unsteady flows, allowing a deeper impact

on real problems of interest. The results of streamline-based analysis presented in this

chapter demonstrate that the analysis in the internal frame captures the spatiotemporal

dynamics of material particles. The ideas presented in this chapter simplify the analysis of

unsteady flows by decoupling the spatial and temporal dimensions, so that a simpler spatial

analysis can be performed on individual time-steps followed by a simpler temporal analysis.

A possible future impact of this work is that by using meaningful reference frames, it may

be possible to revive the abandoned idea of analyzing unsteady flows one time-step at a

time.

Although there are examples where the existence of a distinguished frame is not yet

known, for example, the double gyre [187] and the petri dish [218], the proposed frame

addresses a large class of flows that represent physical phenomena in the presence of a

background flow or around a moving object. In particular, the motion of the internal

frames is represented by a (possibly time-varying) harmonic flow, thus capturing more

general background flows than uniformly moving ones. It is hoped that the proposed work

will foster new research towards computing more general frames, for example, rotational,

that can help analyze other types of flows as well.

The proposed ideas make a large number of existing techniques for steady flow analysis

directly applicable to unsteady flows. Consequently, the proposed work can open new

horizons in in situ analysis of large-scale complex flows, where simulations are temporarily

halted to analyze the current state and only the results are dumped. Especially with

anticipated advances in compute power and lingering I/O bottlenecks, such analysis can

enhance our ability to analyze data of ever-growing scale and complexity at much higher

temporal resolutions.



CHAPTER 5

EVALUATION OF PATHLINES OF

LARGE-SCALE SIMULATED

FLOWS

One of the most common ways of analyzing unsteady flows is through pathline-based

techniques. As the name suggests, such techniques compute the paths of massless particles

over time as they are advected by the flow, and use these paths to extract and represent flow

behavior. Common examples include the computation of pathline-based topology [203], and

the detection of material boundaries using the finite-time Lyapunov exponent (FTLE) [80]

field. Pathline-based approaches capture the behavior of particles over space and time, and,

therefore, the resulting features are also spatiotemporally coherent.

Nevertheless, such techniques are computationally expensive, since they require com-

putation of a very large number of pathlines; for example, a typical computation of the

FTLE computes pathlines for every grid point in the domain. Furthermore, these pathlines

are computed using numerical integration such as Runge-Kutta (RK) schemes, and require

interpolation as well as integration of vectors in both space and time. As a result, they lack

numerical robustness, and are a↵ected by errors and uncertainties that are often nontrivial

to track. A lot of e↵ort has been invested into making the pathline computation faster and

numerically more robust, especially since the introduction of the FTLE to the visualization

community in the year 2000 [80].

Yet, there exist more challenges—both theoretical and computational—in using path-

lines and the FTLE for unsteady flow analysis. Recently, Haller [83] showed that the

usual way of computing material boundaries as the ridges of the FTLE field is not reliable,

as particles can cross these ridges. Furthermore, the FTLE must trace pathlines for a

finite amount of time, requiring simultaneous access to data across time-steps. Flow data

is typically available in Eulerian form, where vector values are assigned to known grid

points. This Eulerian data is stored as snapshots for each available time-step. Therefore,

the FTLE and the other pathline-based approaches require loading data from individual
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time-steps into the memory at high frequency, making the computation ine�cient. The lack

of scalability and e�ciency of such techniques make them unattractive for large-scale data.

Especially considering the future of data analysis, where e�cient and scalable techniques

will be required to work at exascale, the approaches based on pathlines are not promising

due to their lack of scalability, despite the parallelization they o↵er.

Nevertheless, these limitations are often disregarded, and pathline-based approaches

are still used to analyze unsteady flows, because the underlying theoretical premise is

that they capture particle behavior, and as a result, produce temporally coherent and

physically meaningful features. The next section presents a case study to demonstrate that,

unfortunately, the pathlines computed from the sampled flow can be drastically di↵erent

from the actual particle behavior, especially for large-scale simulated data.

5.1 A Case Study in Large-scale Turbulent Combustion
Using a large-scale turbulent combustion simulation as a case study, this section evalu-

ates a set of pathlines computed using the state-of-the-art pathline tracers in postprocessing,

against a corresponding set of highly accurate pathlines computed directly alongside the

simulation. Considering the simulation under examination to be emblematic of a large

class of simulations, it is important to note that the available temporal resolution of the

data is strictly limited by the number of time-steps stored by the simulation, which are

typically severely restricted by the file I/O rates and the amount of disk space available,

which raises concerns that the simulations might be saving too little data to accurately

compute pathlines. Unfortunately, for most practical applications, evaluating these errors

is di�cult as scientists almost universally will stress their available resources to the limit,

and thus storing substantially more data is infeasible. In the absence of better solutions,

pathline-based techniques are simply applied to the best data available with the implicit

assumption that the temporal resolution is su�cient to reliably analyze the underlying

scientific phenomena. The evaluation presented here demonstrates that, unfortunately, this

is not true. In particular, it will be shown, both qualitatively and quantitatively, that there

can exist di↵erences substantial enough that any constructs built upon such computed

pathlines, such as the FTLE, do not necessarily capture the flow behavior, making the

conventional pathline-based analysis and visualization prone to large errors, rendering their

results unreliable at best and possibly misleading at worst.
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5.1.1 Experimental Setup

This case study uses a large-scale turbulent combustion simulation of the lifted ethylene

jet flame [222, 223] performed using S3D [29]. S3D is designed to perform massively

parallel direct numerical simulation for turbulent combustion, which uses a Runge-Kutta

integrator to solve the full compressible Navier-Stokes equation, and balance equations for

conserving mass, momentum, energy, and chemically reactive species. The resulting flow

(see Data B.3.1) is used to investigate turbulent lifted jet flames with the goal of improving

the understanding of direct injection stratified spark ignition engines for commercial boilers,

as well as fundamental combustion phenomena. A visualization of a 2D slice of the flow

field through the center of the frame can be found in Appendix B.

The flow under consideration is defined on a [2025 ⇥ 1600 ⇥ 400] rectilinear grid, with

a variable spacing in the y dimension. The data was generated on Jaguar (now Titan) at

the Oak Ridge leadership computing facility, using 30, 000 cores with [27 ⇥ 40 ⇥ 40] grid

points per processor. The simulation captures a large number of variables representing the

flow velocity, temperature, pressure, species, etc., and the total file-size for storing these

variables, just for a single time-step, is about 280 GB.

Due to large I/O overheads, the storage and management of such huge amounts of data

becomes infeasible. As a result, such simulations typically save data snapshots only every

500th–1000th time-step. In this particular case, data has been saved at an unusually high

frequency to study ignition phenomena ahead of the flame base. According to the domain

experts who generated this data, it is unlikely that any similar combustion simulation would

save data more frequently, making the results discussed below even more poignant. Even

though most quantities of interest do not change significantly over a timescale of 10 to

100 time-steps [224], the standard temporal resolution has been shown to be too low for

reliable tracking of important features, such as regions of locally high scalar dissipation [136].

Furthermore, as is the case with most numerical simulations, S3D employs high levels of

accuracy, for example, an eighth-order approximation to compute the spatial derivatives on

a finite-di↵erence grid. However, due to the cutbacks in temporal resolution, this high level

of accuracy is not translated into the postprocessing analysis and visualization stage.

5.1.1.1 In situ particle tracing. This simulation of the lifted flame, for the first

time, also included a collection of Lagrangian particles for a part of the run. In particular,

a total of 1, 248, 550 particles were tagged, and advected directly alongside the simulation

at a significantly higher frequency. These particles are stored for 299 time-steps uniformly

distributed in the time range [1.7, 1.7598] ⇥ 10�3 with a temporal step-size of 2 ⇥ 10�7.
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Therefore, these particles are available at an unusually high temporal resolution as compared

to the full snapshots, and e↵ectively represent a set of highly accurate pathlines.

All the other simulation variables were saved only for 30 time-steps in the considered

time-range with a temporal step-size of 2 ⇥ 10�6, a factor of 10 slower. Note that, even

at a tenth of the resolution of the in situ particles, storing the data associated with the

simulated variables for this short time-range requires more than 8 TB, thus highlighting the

challenges in increasing the temporal resolution of the saved data. Normally, the ratio of

full snapshots saved to simulation time-steps is one or two orders of magnitude worse.

5.1.1.2 Postprocessed pathline computation. We implemented a custom inte-

grator for pathlines computation. Using the fourth-order Runge-Kutta (RK4) integrator,

our pathline computation allows configuring the step-size in terms of the number of inte-

gration steps to be performed between two consecutive time-steps of the flow. Working

on rectilinear grids, the integrator uses trilinear interpolation in the 3D space and linear

interpolation in time. To overcome memory usage issues, we converted the flow data into

IDX format [158, 159]. The IDX file format reorganizes the data based on multiresolution

space-filling curves and provides a simple API for flexible and e�cient loading of blocks of

data without need of alignment with the chunks of the original computation. Our custom

pathline computation takes advantage of the IDX format by loading only those blocks of

data that are required by the currently progressing pathlines.

We utilize shared memory multithreading to parallelize our pathline tracer. Each thread

from a pool of 16 threads, in a loop, picks a pathline to perform integration for a single

time-step. The entire flow volume is logically divided into blocks of size 643, and only the

blocks that are required by currently progressing pathlines are loaded, and shared among

the threads. The blocks are cached in memory and are freed in a least-recently-used manner,

when the memory usage crosses a threshold (4 GB). Integration for a single time-step at a

time provides temporal locality in computation, and by restricting the amount of time-steps

to be loaded, it reduces the required disk I/O.

We also implemented parallel pathline tracing using the vtkPParticlePathFilter class

of the visualization toolkit (VTK) [185], with the RK4 integrator. The VTK is an open-

source, cross-platform software that provides libraries for a variety of visualization tasks.

The filter performs two integration steps between two consecutive time-steps of the data.

However, we found the VTK implementation of pathline tracing to be rather ine�cient,

because, for the purpose of parallelization, it completely relies on message passing instead

of utilizing shared memory or a hybrid of both, preventing any sharing of data. Furthermore,
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the VTK implementation parallelizes the computation over blocks of volume data, and loads

the entire volume for each time-step, even if the pathlines are confined to a smaller region.

Nevertheless, we used the VTK implementation to validate our custom pathline integrator,

which we used for all the experiments presented next.

5.1.2 Comparing Pathlines

Given two discrete pathlines p[t] and q[t] of the same particle computed through di↵erent

sources, the distance between them can be measured in terms of their average point-wise

distance, that is,

"(p,q) =

P
n�1

i=0

(p[t
i

]� q[t
i

])

n
,

where, n is the length of the pathlines, and " is the error vector. Since the locations of the in

situ particles are given in the grid coordinates, the computed pathlines must be converted

from physical space to grid space. Thus, each unit of distance represents a distance of one

grid cell. This evaluation focuses on a smaller region around the flame, which was chosen

by the domain scientists to be the most interesting and most turbulent part of the flow.

This region contains 54, 935 particles, for which the comparison between the postprocess

pathlines and the in situ paths of these particles can be performed.

Since the flow data is available for 30 time-steps only, as compared to the 299 time-steps

for which the location of in situ particles is known, we use the locations of the in situ

particles for every tenth time-step to ensure that the point-wise locations are used for the

same time values, leading to n = 30. However, in certain cases, either of the pathlines

may exit the domain while the other still lies inside, thus giving fewer than 30 points to

compare. To handle such cases, we take n to be the length of the shorter pathline, meaning

that the comparison is terminated as soon as any of the pathlines exits the domain. Finally,

the in situ particles wrap around in the z dimension, whereas in our pathline computation,

we terminate the tracing when the pathline goes out of bounds to disallow wrapping of

pathlines. Such cases are also handled by taking n to be the length of the shorter of the

two pathlines.

In order to study the comparison, histograms of the components of the distance vector

" in Cartesian coordinates {"
x

, "
y

, "
z

} have been used. By highlighting the distances in the

three dimensions separately, these histograms illustrate the influence of the flow on pathlines

in the corresponding dimensions. Histograms of " in spherical coordinates {"
⇢

, "
✓

, "
�

} are

also useful in studying the comparison. Here ⇢ is the radial distance, ✓ represents the

azimuthal angle, that is, ✓ = tan�1(y/x) 2 [�180�, 180�], and � represents the polar angle,



97

that is, � = cos�1(z/⇢) 2 [0�, 180�]. The histograms in the spherical coordinates illustrate

the spread of error in the xy plane, as well as with respect to the inclination above and

below this plane.

5.1.2.1 Validating o✏ine-computed pathlines. The first result presented here

validates our custom particle integrator by comparing it with the standard VTK imple-

mentation. Both implementations use RK4 integrator with two integration steps between

consecutive time-steps. As shown by the histogram in Figure 5.1, the two implementations

produce very similar pathlines, where most of the di↵erences exist due to numerical details

of the implementations and the known instabilities in turbulent flows.

5.1.2.2 O✏ine-computed pathlines versus in situ particles. A visual compar-

ison between the pathlines computed using our custom implementation with the in situ

particles is shown in Figure 5.2, and already shows substantial di↵erences in the two sets

of pathlines. The error vector " is computed by subtracting the location of in situ particles

from the corresponding locations in computed pathlines. Figure 5.3 shows the histograms

of this comparison, where 1000 integration steps have been used between two consecutive

time-steps of the flow. The results illustrate that even for a very small integration step�
⇡ 10�9

�
, the available temporal resolution of the data is not su�cient to capture the

true behavior of the particles. In particular, the variance of the error distribution of the

distances shows that most pathlines di↵er from the corresponding in situ particles by about

16 grid cells, and a substantial number of pathlines deviate by up to 50 grid cells. The

error distributions in the x, y, and z dimensions (see Figure 5.3 top) show that the error is

highest in the x dimension, and lowest in the z dimension. This observation matches the

understanding of the flow since the flow is fastest in the x dimension and any small errors

Figure 5.1. Mean distances between pathlines computed through our custom integrator
and the VTK integration are negligible, validating the former.



98

Figure 5.2. A visual comparison of in situ (left) and o✏ine computed (right) pathlines
illustrates that the latter do not capture the true particle behavior. The color map on the
pathlines represents the time-range [1.7, 1.7598]⇥ 10�3.

Figure 5.3. Histograms of the mean distances between in situ particles and computed
pathlines using all 30 available time-steps covering the time-range [1.7, 1.7598]⇥ 10�3. The
histograms of error distribution in Cartesian (top) and spherical (bottom) coordinates show
that the x dimension incurs the highest error rate, and highlights the high variance in the
error distribution of the azimuthal angle.



99

are propagated at fast speeds, whereas the slow magnitudes in the z dimension restrict the

corresponding propagation of errors.

The histograms in spherical coordinates shed more light on the nature of error. Fig-

ure 5.3 shows that the variance of the azimuthal angle is very high, and that most of the

computed pathlines were “ahead of” (faster than) the in situ particles, that is, |✓| < 90�.

The speculation is that the distance between the speeds exists because postprocessing

pathlines encounter less turbulence in general—an artifact of the simulation’s inability to

translate higher-order approximations to the postprocessing phase. On the other hand, some

pathlines lagged “behind” (slower than) the in situ particles, that is, |✓| > 90�, highlighting

the randomness in the error vector within the xy plane.

The randomness in the error is also corroborated by Figure 5.4, which shows the spatial

distribution of the errors in spherical coordinates by color-mapping them to the seed points

of the pathlines. This lack of a characteristic nature in the error has serious impacts on

any subsequent analysis, for example, in using the FTLE field to compute the Lagrangian

coherent structures (LCS) of the flow. The FTLE field measures the separation between

neighboring pathlines after a finite amount of time. However, due to the dynamic nature

of the flow, the randomness in the error during pathline computation can propagate the

Figure 5.4. Spatial distribution of the mean distances between in situ particles and
computed pathlines. The seed points of pathlines are colored based on the mean radial
distance (top), mean azimuthal angle (middle), and mean polar angle (bottom). The figure
shows that the spatial distributions of these errors are unorderly, potentially leading to
arbitrary errors in any subsequent analysis.
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particles to completely di↵erent locations, resulting in an unbounded error in the FTLE

field. For example, distances between two infinitesimally close pathlines lying on either side

of a material boundary can increase considerably even due to a small error in computation.

A similar example in the context of streamlines in steady flows is given in Chapter 6.

Compounded by the randomness in the nature of the error, the ultimate analysis becomes

unpredictable and unreliable.

5.1.2.3 Comparing di↵erent lengths of pathlines. For the same settings of the

integrator, Figures 5.5 and 5.6 show the comparisons between the pathlines for the first 10

time-steps, covering the time-range [1.7, 1.7198]⇥ 10�3, and the first 20 time-steps covering

the time-range [1.7, 1.7398]⇥ 10�3 (as compared to the total of 30 time-steps covering the

time-range [1.7, 1.7598]⇥10�3). These results convey how the error increases as the pathlines

are allowed to propagate for longer times. Note that whereas the errors in the x, y, and z

dimensions, and also in the radial distance increase, in terms of azimuthal and polar angles,

they remain similar to the original case (see Figure 5.3) reiterating the randomness in its

distribution, as discussed above.

5.1.2.4 Comparing di↵erent temporal resolutions. The final comparison is

that of the pathline computation using every second available time-step to understand

Figure 5.5. Histograms of the mean distances between in situ particles and computed
pathlines for the first 10 time-steps covering the time-range [1.7, 1.7198] ⇥ 10�3. The
histograms of error distribution in Cartesian (top) and spherical (bottom) coordinates
illustrate that the error is lower in general (as compared to results in Figures 5.6 and 5.3)
due to the smaller time-range. Note that the error distribution in the azimuthal angle has
a high variance.
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Figure 5.6. Histograms of the mean distances between in situ particles and computed
pathlines for the first 20 time-steps covering the time-range [1.7, 1.7398] ⇥ 10�3. The
histograms of error distribution in Cartesian (top) and spherical (bottom) coordinates show
that the errors increase when pathlines are propagated for a longer time-range. Compare
these results with the results when only the first 10 (Figure 5.5), and all 30 time-steps
(Figure 5.3) are used.

the impact of temporal resolution on pathline computation. Thus, data from a total of 15

time-steps, covering the same time range [1.7, 1.7598] ⇥ 10�3, was used, and the resulting

pathlines were compared with the in situ particles (every 20th particle location).

Figure 5.7 shows the result for this comparison for pathlines computed at half the

available resolution. As compared to Figure 5.3, which shows the results computed using

the highest available temporal resolution, the plots in Figure 5.7 are not significantly worse.

In particular, the peak of the error distribution of the radial distance increases from 16 to

20 grid cells. These comparisons suggest that doubling the temporal frequency improves

the accuracy only by a small amount. Judging by the overall distribution of error in

Figure 5.3, it appears that reducing the error to acceptable levels for reliable analysis will

require substantial scaling up of temporal resolutions. The implication is that the analysis

performed at the highest available temporal resolutions is already not producing meaningful

results due to large amounts of errors.

5.2 Summary
Almost all modern large-scale simulations are capable of simulating physical phenomena

in a highly-accurate manner. Unfortunately, this accuracy is typically lost since the resulting
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Figure 5.7. Histograms of the mean distances between in situ particles and computed
pathlines using every second available time-step, that is, using only 15 time-steps covering
the time-range [1.7, 1.7598]⇥ 10�3. The histograms of error distribution in Cartesian (top)
and spherical (bottom row) coordinates show that the growth of error is not substantial,
suggesting that a much higher temporal resolution is required for reliable analysis.

data can be stored only at much lower temporal resolutions. To analyze and visualize this

data, o✏ine techniques make an implicit assumption that the available temporal resolution

is su�cient to obtain reliable and physically meaningful results. Using a case study from a

large-scale combustion simulation, this chapter questions this assumption, and shows that

the o✏ine computed pathlines deviate substantially from the actual particle behavior in the

flow. These results suggest a lack of reliability in the common pathline-based approaches.

Although this evaluation focused on a single case study, a large variety of turbulent flows

can be expected to su↵er from the same problems due to the complexity of the underlying

phenomena as well as the I/O bottlenecks. In the opinion of the domain experts, few, if

any, combustion simulations would store data even at the given frequency. Since large-

scale simulations in all areas operate under the same “as little as possible, as much as

necessary” paradigm when it comes to checkpointing, these results raise significant, far-

reaching concerns regarding the reliability of pathline-based techniques.

This first-of-its-kind study raises new questions regarding the applicability of postpro-

cessing techniques based on pathlines, stressing the need for tighter coupling of simulations

and analytics using new and alternative perspectives in large-scale unsteady flow analysis.

In particular, since the data available within the simulation is rich of highly accurate
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information, in situ techniques appear to be very promising. However, such techniques

would have access to single time-steps only.

Nevertheless, despite the availability of much simpler, robust, and well-understood

steady flow analysis techniques, in practice, they are underutilized, because they cannot

be, in general, applied to time-varying data, which is used to represent almost all flows of

practical interest. To this end, Chapter 4 of this dissertation develops new reference frames,

and discusses in detail the significance of these reference frames in unsteady flow analysis.

In particular, these reference frames make the steady flow analysis techniques applicable to

individual time-steps of unsteady flows.



PART III

COMBINATORIAL REPRESENTATIONS



CHAPTER 6

REPRESENTATION AND ANALYSIS OF

FLOW WITH BOUNDED ERROR

Typically, vector fields are stored as sets of sample vectors at discrete locations. Both a

discretization of the domain of the field, often in the form of a structured or unstructured

mesh, as well as a set of sampled vectors at the vertices of the mesh, are defined. The

vector field on the interior of the mesh is approximated by interpolating vector values

from these samples at the mesh’s vertices. The simplest interpolation scheme constructs

a linear field along the edges joining two vertices, leading to, for example, a bilinear

and trilinear interpolation in the case of structured rectangular meshes in 2D and 3D,

respectively. One of the most common forms of 2D meshes is triangulated in nature,

where such a linear interpolation using the three vertices of the triangle is also called

barycentric interpolation, and constructs a piecewise linear (PL) representation of the

flow. Subsequently, computing flow properties that require integrating these vector values

presents a significant computational challenge.

For example, consider the computation of streamlines, which, in the case of steady flows,

represent the paths of massless particles that travel using the instantaneous velocity defined

by the flow. They are the most fundamental construct of flow analysis—to the extent

that they are sometimes directly referred to as flow. Streamlines are used to construct

the topological skeleton of the flow [89], visualization of the flow [20, 208], etc. The

computation of streamlines is typically performed using numerical integration, such as the

Euler integration or the Runge-Kutta (RK)-based techniques [170]. However, using such

numerical techniques to compute streamlines poses significant challenges. In particular,

these techniques take a small step in the current direction of the vector and recompute the

new direction using an interpolation scheme to repeat the process. For example, using the

Euler integration (illustrated in Figure 6.1), the position of the particle at (n+ 1)
th

step is

calculated as

x
n+1

= x
n

+ } ~V (x
n

), (6.1)
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Figure 6.1. Numerical integration error in streamline tracing. Small errors are incurred
at each integration step, which can accumulate and cause the numerical streamline (red) to
deviate substantially from the true streamline (green).

where } denotes the step-size and ~V (x
n

) represents the vector at the n
th

position. Each

integration step introduces some error, which is typically known as an upper bound with re-

spect to the step-size. During the integration, however, these small errors get compounded,

and it becomes nontrivial to determine the net error incurred during the streamline tracing.

Despite these problems, many of the standard analysis techniques used for vector fields rely

on variants of RK methods. However, robust computation of flow becomes a formidable

task, since the errors in numerical integration schemes can compound quickly, resulting in

inaccurate visualization and analysis of the field.

This chapter introduces Edge Maps, which provide an explicit representation of flow

by mapping entry and exit points of flow paths on the edges of the triangle. Thus, they

encode the property most often needed by common analysis tools to compute visualizations

and topological decompositions. As a result, many of the same primitives can be computed

robustly and directly on the Edge Maps themselves. Moreover, the Edge Map data structure

encodes numerical error, presenting a complete view of the data illuminating the major

features that demonstrate where numerically unstable regions exist. Consequently, instead

of providing a black-box representation of the data that ignores the impact of discretization,

Edge Maps provide analysts a visualization of the data that accounts for these artifacts,

and indicate how errors may have a↵ected the apparent flow behavior. The encoding of

error also enables refinement of the maps to bound the amount of error incurred by this

representation.

The focus of this chapter is to develop an understanding of the properties of Edge Maps,

whereas Chapter 7 will revisit the notion of consistency, and provide more details on how

to obtain consistency guarantees in streamline tracing using Edge Maps.

6.1 Properties of Piecewise Linear (PL) Flow
Let ~V : M ! TM be a tangential sampled vector field defined on a 2-manifold M em-

bedded in R3 (see Definition 2.8). Typically, the space TM is represented as a triangulation
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M = {V, E , T }, where V, E , and T are sets of vertices, edges, and triangles, respectively, in

the triangulation. Then, ~V is represented as the set of vector values sampled at the vertices

V of M, that is, ~V (v
i

) for all v
i

2 V. The vector values at the interior of each triangle �

with vertices {v
i

,v
j

,v
k

} in the triangulation are interpolated linearly using ~V (v
i

), ~V (v
j

),

and ~V (v
k

)1. Figure 6.2 depicts the field defined in this way for a single triangle. Such a

definition computes a piecewise linear (PL) vector field, which is linear within each triangle,

and continuous across the edges of the triangulation.

The remainder of this work assumes that the given vector field ~V is generic (see Defi-

nition 2.10), meaning that the vectors at all the vertices of the triangle are nonzero. This

work further makes the following two assumptions.

Assumption 6.1. The vectors at any two vertices sharing an edge are not antiparallel.

Assumption 6.2. The vectors at two vertices on an edge are not both parallel to that

edge.

Any configuration that violates these assumptions is unstable, and can be avoided by a

slight perturbation. In particular, the Simulation of Simplicity (SoS) [49] (see Section 2.4.3)

can be used to satisfy these assumptions using symbolic perturbations. These perturbations

ensure a point-to-point mapping between the boundary of the triangle, thus making Edge

Maps bijective. As will become clear in the following sections, these assumptions signifi-

cantly reduce the complexity of many of the properties of Edge Maps, because the locations

of critical points become well defined.

�

�

�

Figure 6.2. Traditional way of representing vector fields store vectors at the three vertices
of the triangle, which complete the flow at the interior using interpolation.

1Note that the three vectors must reside in the plane of the corresponding triangle. In the case of
nonplanar domains, the projection of a given vector ~V (vi) is di↵erent for each triangle sharing the vertex
vi. To avoid this inconsistent representation, mean value coordinates in 3D [53] can be used to project the
star of vi, St(vi), onto a 2D plane. The vector ~V (vi) can then be projected onto every triangle in St(vi),
and an average vector can be computed in 2D. The inverse projection (to 3D) of the average vector can then
be computed for every triangle in St(vi) giving a consistent representation of ~V (vi).
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Under the aforementioned assumptions, the properties of linearly varying vector fields

within each triangle can be studied. Since this chapter focuses on steady vector fields, it

will loosly use the term flow for the streamlines of the field, which describe the parametric

paths of massless particles in steady vector fields. Flow is an important property that will

be useful in understanding the representation presented in this chapter. Two important

properties that directly follow from the aforementioned assumptions are given below.

Property 6.1. Within �, ~V defines at most one critical point.

Proof. Critical points are defined as points x where ~V (x) = ~0. Consider the component

scalar fields u and v, where ~V (x) = (u(x), v(x)). Since ~V and, hence, both u and v are

linearly varying, the graphs of u and v are planes lifted from the triangle. At a critical point,

the planes of both u and v intersect the constant plane of height zero. From planar geometry,

it is known that two planes either intersect in another plane or a line, and consequently

these three planes intersect in a plane, a line, or a point.

The intersection of these three planes can be a plane, in which case, there exist infinitely

many zeros, meaning that the entire vector field is zero (not generic). If these planes intersect

in a line, the only way that line passes through � is when either the field is not generic

(because two vertices are zero) or assumption (1) is violated for at least two edges. In

all other cases, either a single critical point is defined (within the interior of �) or the

field defines critical values outside of �. Therefore, a linear vector field satisfying the said

assumptions defines at most one critical point within �.

Property 6.2. On the line ` obtained by extending, from both sides, any edge e of a

triangle �, there exists at the most one point where the vector field is tangential to `.

Proof. Without loss of generality, rotate ` to be the x axis. Consider the component scalar

fields u and v, where ~V (x) = (u(x), v(x)). Following the linearity of the vector field ~V , v is

also linear. By assumptions (3) for a generic field, v = 0 can happen only once, meaning that

~V is tangential to ` at only one point. Furthermore, on either side of this zero crossing, v has

a di↵erent sign, and hence the flow changes directions from flowing upwards to downwards,

or vice versa.

6.2 Edge Maps: New Representation of PL Flows
With an understanding of some important properties of PL vector fields, the basic

elements of a new representation for vector fields, called Edge Maps, are discussed next.
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6.2.1 Fundamental Elements of Edge Maps

For a triangle �, let @� and �̊ denote the boundary and interior of �, respectively. We

first examine the behavior of the flow at any point on @�. The behavior of a particle at

the boundary of a triangle can be classified into four types (see Figure 6.3) depending upon

the location of that particle under the flow for positive and negative time t. Given a point

p 2 @� such that x(0) = p, and for ✏ > 0, we define the following:

Definition 6.1 (Inflow Point). If for all t 2]0, ✏], x(t) 2 �̊ and x(�t) /2 �, then p is an

inflow point.

Definition 6.2 (Outflow Point). If for all t 2]0, ✏], x(t) /2 � and x(�t) 2 �̊, then p is an

outflow point.

Definition 6.3 (External Transition Point (ETP)). If for all t 2]0, ✏], x(±t) /2 �, then p

is an external transition point (ETP).

Definition 6.4 (Internal Transition Point (ITP)). If for all t 2]0, ✏], x(±t) 2 �̊, then p is

an internal transition point (ITP).

Intuitively, the inflow and outflow points are the points on the boundary of a triangle

where the flow enters and exits the triangle, whereas the transition points are the ones where

the flow is instantaneously tangential to the boundary, but remains either outside (for an

ETP) or inside (for an ITP) the triangle. The concept of transition points is similar to that

of boundary switch points [39, 125, 213]. The above four definitions account for all possible

behaviors of flow as it touches the boundary of the triangle, since the two assumptions

presented in the previous section disallow the possibility of particles traveling along the

edge. To model the flow through the interior of the triangle, we start with pairing these

boundary points if they exist along the same streamline.

Definition 6.5 (Origin-Destination Pair (OD pair)). Let a, b 2 R and a  b such that

(a) (b) (c) (d)

Figure 6.3. Classification of points on the boundary of a triangle based on the flow.
(a) Inflow point; (b) Outflow point; (c) External transition point (ETP); and (d) Internal
transition point (ITP).
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x([a, b]) ⇢ �, where p = x(a) and q = x(b). Then, (p,q) is called an origin-destination

(OD) pair, if the time interval [a, b] is maximal where p,q 2 @� and x(]a, b[) ⇢ �̊. The

point p is called an origin point, and q a destination point.

Here, maximal interval means that the time range [a, b] produces the largest possible

streamline contained within �̊, bounded by two points p and q on @�. Inflow, outflow,

and transition points all play di↵erent roles with respect to OD pairs. The simplest case is

for inflow and outflow points. Since the streamline of an inflow point p flows to the �̊, p

will be paired with the point q (either an outflow point or ITP) where this streamline first

touches the boundary after p.

An ITP flows to �̊ in both positive and negative time, thus creating at most two such

maximal intervals for which a streamline is completely contained in �̊. Hence, an ITP may

participate in two OD pairs. In one pair, it is an origin point, whereas in the other, it is

a destination point. If the streamline is an orbit touching @� only at the ITP, the ITP is

paired with itself, resulting in a single OD pair. In this case, the streamline of the orbit

has many time intervals [a, b] where x(]a, b[) ⇢ �̊, all of which are of equal length. On the

contrary, an ETP always forms an OD pair with itself, since the streamline does not flow

to �̊. Hence, its maximal time range will be when a = b.

Thus, all origin points are either inflow points or transition points, and all destination

points are either outflow points or transition points. Note that if x is chosen such that x(t)

is an orbit contained entirely in �̊, then such a streamline will never converge to @�. Hence

no points on such a streamline will form an OD pair. Moreover, there are some points that

do not converge to @�, because of the presence of a critical point in �. Such points can

be classified as unmapped inflow points (associated with a sink), unmapped outflow points

(associated with a source), or sepx points (intersections of the saddle separatrices with @�),

and they are not included in the definition of OD pairs.

Using these basic elements, Edge Maps for regular triangles—those that do not contain

a critical point at their interior—are defined next. After that, Section 6.2.4 will extend

these definitions to generalize Edge Maps triangles that may contain critical points.

6.2.2 Edge Maps

Since the existence of an OD pair for every point on @� is deterministic, a mapping can

be defined to describe the transversal behavior of flow through points on @�. Let P ⇢ @�

be the set of all origin points, and Q ⇢ @� be the set of all destination points.
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Definition 6.6 (Edge Map). An Edge Map of triangle � is defined as a map ⇠ : P ! Q,

such that ⇠(p) = q, if and only if (p,q) is an OD pair. Then, q will be called the image of

p under ⇠.

Whereas some flow constructs such as topological segmentation are invariant to the

vector magnitudes, others such as streamlines are not. To represent the flow accurately, it

is important that the speed of the flow is encoded into Edge Maps as well.

Definition 6.7 (Time-Edge Map). A Time-Edge Map of a triangle � is defined as a map

⇠
t

: P! R, such that ⇠
t

(p) describes the time it takes the flow to reach from p to its image,

q = ⇠(p).

An illustration of Edge Map and Time-Edge Map is given in Figure 6.4. Considering

triangles without critical points, it can be noted that the flow within them is a bijection

between P and Q, and thus its inverse is also well defined. As a result, whereas an Edge

Map, ⇠, maps an origin point to its destination point under forward flow, its inverse ⇠�1

maps a destination point to its origin point under backward flow.

6.2.3 Approximations of Edge Maps

For a practical implementation, a feasible representation for storing and using Edge

Maps (and Time-Edge Maps) is needed. This is achieved by grouping the point-based,

exact mapping ⇠, into connected intervals that preserve its ordering, creating links.

�

�

�

(a)
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Figure 6.4. Edge Map for the triangle from Figure 6.2. (a) Edge Map subdivides the
boundary into a set of links, which map inflow to outflow for a triangle. (b) Edge Map
visualized as a plot, mapping the origin points (horizontal axis) to destination points
(vertical axis). Each point on the plot represents a streamline between an OD pair. Since
Edge Map is defined only for origin points on the boundary, the plot is disconnected at the
points where the boundary switches from inflow to outflow, or vice versa. (c) Time-Edge
Map visualized as a plot, mapping the origin points (horizontal axis) to the time taken by
them to reach their respective destinations (vertical axis).
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Definition 6.8 (Link). Let O be a connected subset of P, and D be a connected subset

of Q, where D = ⇠(O). Let @O be the end points (boundary) of O. We call ⇣ : O ! D a

link if ⇣ is continuous, order-preserving, and ⇣(x) = ⇠(x) for each x 2 @O. The sets O and

D are called origin interval and destination interval, respectively.

A link ⇣ allows for a level of approximation of ⇠ on some subsets of the domain of ⇠. Let O̊

be the interior ofO. For each point p 2 O̊, we allow the mapped points ⇣(p) to shift from its

original ⇠(p), except at the boundaries of O. Although ⇣ is an approximation, it is required

to preserve the ordering of streamlines. The property of order preservation handles this

notion by disallowing links that have streamlines that cross. To enforce order-preservation,

first note that since O is a connected subset of @�, it can be parameterized as a single

interval. Similarly, since ⇣ is continuous, only those links are built where ⇠(O) is a single

interval, again parameterizable. As long as the ordering within this parameterization is

preserved, a link is considered valid. Thus, the property of order-preservation leads to the

following theorem.

Theorem 6.1 (Consistent Streamlines). Order-preserving links always produce consistent

(pairwise disjoint) streamlines.

Chapter 7 will discuss a practical implementation for consistent streamline tracing by

exploiting this property of order preservation. The current chapter continues to discuss

the definition of links. Since each ⇣ may be defined only on a subset of P, to completely

approximate ⇠, only a set of links is needed, leading to the following definition.

Definition 6.9 (Approximate Edge Map). An approximate Edge Map ⇠⇤ of ⇠ is a collection

of n links ⇣
i

: O
i

! D
i

, such that the collections {O
i

} and {D
i

} form partitioning of P

and Q, respectively.

The boundary of a triangle can be subdivided into links in many ways to form such a

partitioning, thus leading to many possible approximations of ⇠. Since the boundaries of

each link are “snapped” to require ⇣(x) = ⇠(x), using more links enforces more accuracy.

Links can be created by merging the origin and destination sets of adjacent OD pairs such

that the origin and destination intervals remain connected sets and the orientation of the

link is preserved. It turns out that this merging process can be expanded only so much,

until specific points where the continuity of the flow breaks. At this maximal amount of

merging, a minimal set of links in the approximate Edge Map is obtained.
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Definition 6.10 (Base Edge Map). A base Edge Map ⇠⇤ of � is an approximate Edge Map

with minimum number of links. Links of a base Edge Map are called base links.

The merging of OD pairs into a single link cannot be done across transition points,

sepx points, and images ITPs, because the orientation of a link cannot be preserved across

transition points while sepx points and ITP images break the continuity of the map. Thus,

the intervals in a base Edge Map are bounded by the transition points, sepx points, and the

image points of ITPs. A base Edge Map can be readily constructed by identifying these

points and splitting the boundary of a triangle at these points into intervals. The intervals

can be paired up into links using connectivity information. Figure 6.4(a) shows the base

Edge Map (and the corresponding Time-Edge Map) for a regular triangle highlighting links

in di↵erent colors.

6.2.4 Inclusion of Critical Points in Edge Maps

So far, this discussion has focused on regular triangles, in which case, a complete

partition of of the boundary of the triangle into links is possible. The definition of an

Edge Map ⇠ serves the theoretical purpose of classifying the points on @� into OD pairs.

However, as discussed above, certain points on @� can be classified as unmapped inflow,

unmapped outflow, or sepx points; they do not participate in any OD pair. It follows from

the definition of the link that these points cannot be included in either origin or destination

intervals; hence, they do not get included in any link. Connected subsets of such points are

called unmapped intervals. The existence of such unmapped points and unmapped intervals

is due to the existence of critical points at the interior of the triangle. To facilitate practical

applications such as streamline integration, Edge Maps must account for critical points as

well.

6.2.4.1 Forward and backward Edge Maps. A forward Edge Map ⇠+ : P ! �

is defined such that, given a point p where a streamline enters the triangle, the map gives

the unique point where it exits the triangle. If a critical point c exists inside the triangle,

the flow may never exit, and ⇠+ returns the location of c. Thus, the range of ⇠+ can include

the interior of the triangle. On the points on the boundary where flow does not enter the

triangle, but instead, exits it, a backward Edge Map ⇠� : Q ! � is defined. For a point q

on the boundary of the triangle, ⇠�(q) describes the unique point where flow entered the

triangle on its path to q, or the critical point from which it originated.

It is important to remind the reader that whereas ⇠ is always a bijection, whose inverse

⇠�1 represents the Edge Map of the inverted flow, ⇠+ and ⇠� are bijective if and only if
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there is no critical point in the triangle. For such triangles, ⇠� = (⇠+)�1, since for points

p,q 2 @�, ⇠+(p) = q if and only if ⇠�(q) = p. As for triangles with critical point, this

inverse relationship does not hold because ⇠+ and ⇠� are no more one-to-one maps. In

either case, ⇠+ and ⇠� completely describe the behavior of the flow through the triangle.

6.2.4.2 Forward and backward Time-Edge Maps. If the triangle contains a

critical point c, the origin points that flow into the critical point take an infinite amount of

time to reach the critical point. Edge Maps replace the infinite time with an approximation

at the endpoints p of the links, t = kp � ck/|~v
p

|, where ~v
p

is the vector at p. During the

analysis or visualization of a streamline, this approximation assumes a constant speed of the

particle between p and c, and is important to ensure a computationally feasible termination

of the streamlines going to critical points. The error due to this approximation is limited to

the last step of propagation. The forward Time-Edge Map is then extended to ⇠
t

: P! R,
such that for an origin point, it defines the time taken to reach the destination point, that

is, ⇠
t

(p) = t.

6.3 Equivalence Classes of Edge Maps
As discussed in the previous section, an Edge Map ⇠ can be approximated in a number

of ways using di↵erent sets of links. Using the concept of a base Edge Maps, these di↵erent

Edge Maps can be reduced to the same base Edge Map. Thus, a base Edge Map can be

thought of as a representative of an infinite number of Edge Maps, each representing the

same flow behavior. This motivates a study of all possible base Edge Maps, which leads

to a notion of equivalence classes for the Edge Maps that represent all possible types of

linearly varying vector fields.

Whereas the notion of reducing any Edge Map to its base Edge Map is well defined, it

still needs to be defined how two base Edge Maps can be considered equivalent in order to

declare them as belonging to the same class. Before discussing equivalence, the following

enumerates the important features of a map required to compare two maps:

• Pairing of intervals (O
i

,D
i

) as links.

• Orientation of links (O
i

! D
i

).

• Cyclic order of all intervals (including unmapped) on @�.

To study equivalence, a mixed graph can be constructed for any Edge Map ⇠ approxi-

mated by ⇠⇤ and the set of links {⇣
1

, ⇣
2

, . . . , ⇣
n

}. The goal is to capture the features listed

above into a mixed graph, G(V,EU,ED), as defined below.
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• Nodes: V = {I
k

} where I
k

is either an origin interval O
i

, a destination interval D
i

,

an unmapped interval U
j

, or a sink or source c in �̊.

• Undirected Edges : EU = {{I
1

, I
2

}} where I
1

and I
2

are adjacent on @�.

• Directed Edges : ED = {(I
1

, I
2

)} where either ⇣
i

: I
1

! I
2

(corresponding to a link);

I
1

= U
j

and I
2

= c (I
1

is an unmapped inflow interval); or I
1

= c and I
2

= U
j

(I
1

is

an unmapped outflow interval).

An example of such a graph is shown in Figure 6.5. Although unmapped intervals do not

participate in the Edge Map, they have a structural bearing on the map, and consequently

on the mixed graph. They separate links that would otherwise appear contiguous and could

be merged. In the case of a saddle, the sepx points are also unmapped. However, they need

not have an explicit place in the graph as their existence—and consequently the existence

of a saddle in �̊—can be inferred from its neighboring intervals.

Definition 6.11 (Equivalent Edge Maps). Two Edge Maps are considered equivalent, if

the mixed graphs of their base Edge Maps are isomorphic.

Under this definition of equivalence, a group-theoretic approach for counting all possible

equivalence classes of base Edge Maps is presented next. We use the Groups, Algorithms,

and Programming (GAP) system [184] for the determination of equivalence. There are

three important steps: (1) generation of initial sample space, (2) restricting this space to

those possible in linearly varying flow, and (3) identifying equivalences.

6.3.1 Enumeration of All Possible Edge Maps

The analysis for all possible equivalence classes starts with all possibilities for links

and unmapped intervals, by disallowing an interval from spanning beyond an edge. This

simplifying assumption helps enumerate the initial sample space. Later, this assumption

will be removed by removing the splits caused by vertices, thus allowing links to span across

Figure 6.5. Construction of mixed graph from an Edge Map. Points of the magenta
interval do not form OD pairs since they flow directly to a critical point.
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them. From the definition of base links, and given the property that all links of a base Edge

Map are bounded by transition points, sepx points, and ITP images, any base Edge Map

has a bounded number of links and unmapped intervals.

Let a, b, c symbolically represent the edges of � and d be either the sink or source in

�̊, if it exists. For an interval I, its location, loc(I), can be any of the four values in

L = {a, b, c, d}. The following lemma shows that in G, no two directed edges having their

origin nodes in the same location can have their destination nodes in the same location.

Lemma 6.1 (Edge-Level Links). Let G(V,EU,ED) be a mixed graph of an Edge Map where

no node I
i

spans more than one edge of @�, and let loc(I
i

) be the location of I
i

. Consider

two directed edges (I
1

, I
2

), (I
3

, I
4

) 2 ED. If loc(I
1

) = loc(I
3

) and loc(I
2

) = loc(I
4

), then

(I
1

, I
2

), (I
3

, I
4

) can be merged.

Proof. Let a, b, c be the edges of� and d the critical point in �̊. There exist four possibilities

of locations for the four intervals, as illustrated in Figure 6.6.

1. loc(I
1

) = loc(I
3

) = loc(I
2

) = loc(I
4

) = d.

=) all intervals represent a critical point. This is an impossible case since the one

critical point can be either a source or a sink, but not both.

2. loc(I
1

) = loc(I
3

) = d; and loc(I
2

) = loc(I
4

) 2 {a, b, c}.

=) I
1

and I
3

represent a critical point.

3. loc(I
1

) = loc(I
3

) 2 {a, b, c}; and loc(I
2

) = loc(I
4

) = d.

=) I
2

and I
4

represent a critical point.

4. loc(I
1

) = loc(I
3

) = loc(I
2

) = loc(I
4

) 6= d.

=) I
1

, I
2

, I
3

and I
4

lie on the same edge.

5. loc(I
1

) = loc(I
3

) = e
1

2 {a, b, c}; and loc(I
2

) = loc(I
4

) = e
2

2 {a, b, c}� {e
1

}.

=) I
1

and I
3

lie on one edge, and I
2

and I
4

lie on a di↵erent edge.

Since case 3 is the same as case 2 in the inverted flow, only cases 3, 4, and 5 will be

considered.

From the discussion in Section 6.2.3, it is known that adjacent OD pairs can be merged

except across sepx points, TPs, and ITP images. Therefore, there must exist one of these

types of points between I
1

and I
3

, and between I
2

and I
4

; otherwise they can be merged.

If both I
1

and I
3

lie on @� (that is, not both of them represent a critical point), then

they cannot be contiguous, that is, {I
1

, I
3

} /2 EU; otherwise they can be merged. Similarly,

{I
2

, I
4

} /2 EU, if both I
2

and I
4

lie on @�. Suppose there exists a subset I
5

2 @� that
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Figure 6.6. Flow patterns illustrated to prove Lemma 6.1. The four possibilities of
locations of the four intervals described in the proof.

lies between I
1

and I
3

, and a subset I
6

2 @� that lies between I
2

and I
4

. Then I
5

is an

inflow interval; otherwise two TPs will exist on either side. This creates more than one TP

on the same edge—a scenario disallowed by Property 6.2. Similarly, I
6

must be an outflow

interval.

Since streamlines in I
5

and I
6

are bounded by (I
1

, I
2

) and (I
3

, I
4

), irrespective of their

locations, there cannot be a TP on I
5

or I
6

, and, therefore, ITP images can be ruled out

as well. Finally, sepx points are impossible since all four sepx points will have to lie on I
5

and I
6

, which would imply a TP on them. Thus, under the given constraints, (I
1

, I
2

) and

(I
3

, I
4

) can be merged.

From Lemma 6.1, it follows that there is a maximum of 13 directed edges in the graph

of any Edge Map with edge-level links, as each pair in {L⇥ L} = {{a, b, c, d}⇥ {a, b, c, d}}

can appear only once, and the pair (d, d) cannot appear because d is either a source or a

sink, but not both. Moreover, no pair (d, ·) can coexist with a pair (·, d), again because d

is either a source or a sink. Thus, each configuration for any set of directed edges ED can

be represented as certain elements of the power set of {L ⇥ L}. Consequently, the number

of possible configurations for directed edges is 213.

Under rotations of �, certain directed edges are equivalent. For example, {(a, b), (b, c)}

is equivalent to {(b, c), (c, a)}. Similarly, {(b, b), (c, c)} is equivalent to {(c, c), (a, a)} and

{(a, a), (b, b)}. Such equivalences under rotation are eliminated through the action of a

permutation group that imparts rotations (a! b! c! a) and (a! c! b! a).

These permutations allow enumeration of the possibilities for the set ED; however, they

still lack any cyclic ordering of nodes to form the undirected edges EU in G. Next, all mixed

graphs are generated under the constraint that there is a maximum of one TP on the interior

of an edge (a consequence of Property 6.1) by grouping all intervals sharing the same edge

label. This is done by first generating permutations of all origin/unmapped inflow nodes
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and destination/unmapped outflow nodes separately on every edge. All possible orderings of

nodes on that edge are then the Cartesian product of these two sets, ultimately constructing

the set of all possible mixed graphs (the initial sample space), which numbers more than

100 million.

6.3.2 Restriction to Linearly Varying Flow

The initial enumeration of all graphs is quite large, but contains many invalid graphs.

Using the following lemmas based on the linear nature of ~V , this initial set can be filtered.

Lemma 6.2 (ITP-vertex). An ITP cannot exist on a vertex of �.

Proof. Let vertex p
j

of � be an ITP. From the definition of ITP, the curve x(±t) 2 �̊ for all

t 2]0, ✏], such that x(0) = p
j

. The streamline x(±t) is a C1 continuous curve, whereas the

two edges of � meeting at p
j

define a corner. By C1 continuity, x(±t) has a well-defined

tangent everywhere, including at p
j

, but since the interior angle of � at p
j

is less than ⇡,

this is not possible for x(±t) being contained in �̊. Thus, the streamline x(±t) must exit

� to maintain its continuity (as shown in Figure 6.7(a)), contradicting the definition of an

ITP, implying an ITP is not possible on a vertex.

Next, Lemma 6.3 states an important fact that can be used to qualify a critical point

based on the existence of an ETP on the interior of an edge of the triangle.

Lemma 6.3 (ETP-Saddle). Let q 2 @�� {p
i

,p
j

,p
k

} be an ETP. If there exists a critical

point c 2 �̊, then c is a saddle.

Proof. Let an ETP x
e

exist on an edge a, of �. Thus, x(±t) /2 � for t 2]0, ✏], where

x(0) = x
e

. Let c 2 �̊ be the critical point. From Property 6.1, it is known that there can

be only one critical point in �̊. Therefore, if c is a sink, all streamlines eventually flow to

it; if c is a source, all streamlines emerge from it; and if c is an orbit, all streamlines are

(a) (b) (c)

Figure 6.7. Flow patterns illustrated to prove Lemmas 6.2 and 6.3. (a) In Lemma 6.2,
a streamline passing through a vertex p

j

of triangle � must exit and re-enter �. (b) The
first case in Lemma 6.3: multiple switches in flow across the edge. (c) The second case in
Lemma 6.3: more than one critical point.
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closed loops. Thus, if c is a sink or a source, x(t) will have to flow to, or emerge from it,

which cannot happen without crossing the edge a. There are two ways in which x(t) can

cross a. First, it may make multiple switches of direction (Figure 6.7(b)) over a, violating

Property 6.2. Second, one of the images (backward or forward) gets trapped in the enclosure

of x(t) and flows to a critical point inside (Figure 6.7(c)), violating the fact that there is

exactly one defined critical point. If c is an orbit, the closed loop has to enclose c or it

would define another orbit. Thus, again x(t) is forced to cross a, violating Property 6.2.

Thus, c has to be a saddle.

Based on these lemmas, the following rules are enforced on all mixed graphs:

1. Directed edges of G cannot intersect (since streamlines can never intersect).

2. ITP cannot exist on vertices (by Lemma 6.2).

3. ETPs cannot exist on edges when there is source or sink (by Lemma 6.3 and Prop-

erty 6.1).

Using the combinatorial structure of the graph, some undirected edges of a mixed graph

can be labeled as either ITPs or ETPs.

Definition 6.12 (Combinatorial Transition Points). For an undirected edge {I
1

, I
2

} in

G, if I
1

and I
2

switch between inflow to outflow, then {I
1

, I
2

} is a combinatorial TP.

Moreover, if I
1

and I
2

do not have a directed edge between them in ED, then the TP

is a combinatorial ITP. Similarly, if I
1

and I
2

have a directed edge between them, then the

TP is a combinatorial ETP.

Images of an ITP are directly implied by its directed edges. It should be noted that

in very few cases, combinatorial ETPs actually correspond to an interior flow that wraps

to itself, creating an orbit in the triangle. These cases are not distinguished by the Edge

Maps, but can appear only if there is no source or sink within �̊.

Although the analysis described above does not label all the undirected edges, it is

su�cient to enforce the aforementioned rules to restrict the sample space of mixed graphs

to under 1000. After labeling combinatorial ITPs and ETPs, the second and third rules can

be enforced directly. The first rule is enforced using a stack method of detecting intersections

between links. In a valid map, any link that has its intervals on @� divides the triangle into

two halves such that no other link has intervals in both the halves, thus forming a last in,

first out sequence on @� equivalent to pairing parentheses in a mathematical expression.
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6.3.3 Identification of Equivalence Classes

For the final equivalence computation in GAP, contiguous directed edges are merged

so that all mixed graphs are reduced to base Edge Maps. Next, the dihedral group for all

graph symmetries as well as the permutation group for all labelings of nodes are used. The

dihedral group is useful for comparing the mixed graphs under all rigid transformations.

The permutation group also includes inversion of the flow direction of directed edges to

compare similarities in base Edge Maps under global inversion of flow. Using GAP, all

graphs that fall in the same orbit under its actions are enumerated. Each set represents an

equivalence class for the graphs. This process produces 43 map classes.

Since the mixed graph definition does not explicitly encode saddles or orbits, the follow-

ing lemmas are then used to manually invalidate more cases, many of which are challenging

to encode within GAP, but are simple to remove by inspection. In particular, the following

lemmas study the behavior of ITPs.

Lemma 6.4 (ITP-Saddle). If there is a saddle in �̊, then an ITP cannot exist on @�.

Proof. Let an ITP x
i

exist on an edge a of�. Thus, x(±t) 2 �̊ for t 2]0, ✏], where x(0) = x
i

.

Let c 2 �̊ be the critical point. To prove the lemma by contradiction, assume that c is a

saddle. It follows that all streamlines including x(t) are parallel to the separatrices of the

saddle as t! ±1. However, x(t) must cross an edge of � multiple times to stay parallel to

the separatrices in those limits of t, contradicting Property 6.2. This is true since at least

one separatrix intersects every edge of � forcing multiple intersections of x(t) with the edge

to which x
i

belongs. Hence, c cannot be a saddle. The cases for saddle sectors are shown

in Figures 6.8(a) and 6.8(b).

Additionally, in the presence of an ITP, Lemma 6.5 guarantees that a critical must be

enclosed by the streamline extending from the ITP.

Lemma 6.5 (ITP-CP Enclosure). Let x 2 @� be an ITP with images x
b

,x
f

2 @�, and c

be a critical point in �̊. Then, c must lie within the area bounded by the streamline x(t)

and @� where t 2 [a, b] such that x(a) = x
b

and x(b) = x
f

.

Proof. Let an ITP x
i

exist on an edge a of � and c be a critical point in �̊. To prove

the lemma by contradiction, assume that c exists outside the enclosure of x(t) in �̊, where

x(0) = x
i

. It will be shown that this leads to a contradiction. Since x
i

is an ITP, c

cannot be a saddle (by Lemma 6.4). Let a, b, c be the three edges of �. Now, all possible

combinations of edges on which x
i

, x
f

, and x
b

can lie are enumerated.
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1. edge(x
i

) = edge(x
b

) = edge(x
f

).

The only way to realize this case is an orbit such that x
i

= x
f

= x
b

. Such an orbit

immediately encloses the critical point.

2. edge(x
i

) = edge(x
b

) or edge(x
i

) = edge(x
f

).

These two cases are symmetrical under inversion of flow. If either x
f

or x
b

lie on the

same edge as x
i

, by Property 6.2, the other image gets enclosed into x(t), and has to

flow to a critical point.

3. edge(x
i

) 6= edge(x
b

) = edge(x
f

).

In this case, both x
b

and x
f

lie on the same edge, indicating a switch from inflow to

outflow, implying that there exists at least one TP between them including the two

points. If one of x
f

and x
b

is a TP, it has to be an ITP since part of its streamline

is already in �̊. Due to Property 6.2, the other image of this ITP has to flow into

a critical point in the enclosure of x(t). If a point in the interior is a TP, this TP

cannot be an ETP since it has already been established that c is not a saddle and an

ETP would violate Lemma 6.3. Now one of the images of this ITP can flow back to

the same edge, but the other has to flow to c. Thus, c is in the enclosure of x(t), the

streamline of the ITP.

4. edge(x
i

) 6= edge(x
b

) 6= edge(x
f

).

In this case, it is always possible to construct a new triangle by connecting x
f

and x
b

as an edge and arbitrarily choosing a third point such that c still lies in the interior

of the new triangle as shown in Figure 6.8(c). An argument identical to case 3 can

now be applied.

Thus, in all four cases, c must lie in the enclosure of the streamline of the ITP.

As a result of these lemmas, the following rules are enforced on the remaining cases to

(a) (b)

C

(c)

Figure 6.8. Flow patterns illustrated to prove Lemmas 6.4 and 6.5. (a) and (b) Lemma 6.4:
Cases of saddle sectors intersecting @� invalidating the existence of an ITP on @�. (c)
Construction of a new triangle as in Lemma 6.5 to place both the forward and backward
images of an ITP on the same edge.



122

get the final equivalence classes:

• The graphs should not violate Lemma 6.4.

• The graphs should not violate Lemma 6.5.

• There can be a maximum of one critical point. If there is a sink or a source in the

map, there cannot be a sepx point (Property 6.1, since a sepx point means there must

additionally be a saddle).

• There have to be exactly four sepx points or none at all (by defn. of a linear saddle).

To enforce the above rules, combinatorial sepx points must be identified in the graphs.

Since all contiguous directed edges have been merged, the graphs represent the base Edge

Maps. Thus, any unlabeled undirected edges have to correspond to sepx points, since

all ETP, ITP, and ITP images have already been labeled. Knowing the labeling of each

undirected edge allows invalidating 20 of the 43 cases produced by GAP. 23 classes persist

after the invalidations, visualized in Figure 6.9. Corresponding PL vector fields are also

shown to realize each of these cases, confirming the following result.

Theorem 6.2. Under Definition 6.11 for equivalence, there are 23 equivalence classes of

Edge Maps for triangles in a linearly varying vector field.

6.4 Computation of Edge Maps
An Edge Map (forward and backward) can be encoded concisely as a collection of links

of a triangle, such that the intervals are nonintersecting other than at their endpoints,

and cover the entire boundary of the triangle (as illustrated in Figure 6.4). If there is a

critical point present in the triangle, some links may include the critical point as a source or

destination interval. Thus, to store the Edge Map for a triangle, only a collection of links

needs to be stored.

As discussed in Section 6.2, intervals are constructed by merging adjacent origin points

whose destinations are also adjacent. At the maximum level of merging (base Edge Maps),

the intervals are bounded by the following three types of points:

• vertices of the triangle and their images (Figure 6.10(a)),

• transition points, and the images of internal transition points (Figure 6.10(b)), and

• sepx points, where the separatrices of a saddle exit or enter (Figure 6.10(c)).

To generate Edge Maps, these points need to be identified, requiring critical point

identification (discussed in Section 7.2). The advection of vertices, ITPs, and saddle points is



123

Figure 6.9. The 23 equivalent classes of mixed graphs, along with one possible rendition
of Edge Map for PL flow for each class, in the order of increasing number of links.
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(a) (b) (c)

Figure 6.10. The types of points (and their images) required to split the boundary of a
triangle to create Edge Maps. (a) A forward vertex image (grey dot) of the lower right
vertex; (b) An internal transition point (white circle) and its forward and backward image
(grey dots); (c) The sepx points (grey dots) of a saddle point (black dot), and a transition
point from external flow (white square). Note that in most cases, vertices also act as external
transition points.

performed using the local exact method (LEM) [108]. The LEM is an analytical solution that

computes the streamlines accurately without any floating-point truncation errors. During

the generation of Edge Maps, the LEM also computes the time taken by these points to

reach their images. This time information can be stored in Edge Maps for every point that

is advected. Thus, the endpoints of origin intervals are assigned the time they take to reach

the endpoints of their respective destination intervals.

Algorithm 6.1 describes the construction of the base Edge Map for a triangle without a

critical point. When the triangle has a critical point, the algorithm is similar except that

there can be additional cuts (from separatrices) and the critical point itself can act as an

interval.

Algorithm 6.1 ConstructEdgeMap(~V ,�).

1. Identify the transition points on @�. Advect the internal transition points forward
and backward to find their images. (There can be at most six transition points in a
triangle: one per edge and one per vertex.)

2. Advect any vertices of � that are not transition points forward (respectively back-
ward) to find their images. (The transitions points, vertices, and their images cut @�
into intervals of unidirectional flow.)

3. Using the direction (inflow/outflow) and connectivity implied by advecting, pair
intervals to form links. (Collection of these links compose the Edge Map.)
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6.5 Streamlines Computation Using Edge Maps
As discussed above, Edge Maps can be created by advecting the vertices, ITPs, and

sepx points of � dividing @� into links. For a compact and practical representation,

only the end points of the links are stored to represent the entire flow through �. Thus,

although the end points of the links represent the flow accurately, an approximation must

be made to represent the flow at the interior of the links. In this work, we consider a

linear approximation of Edge Maps within the links, which satisfies the property of order

preservation up to floating-point errors. The encoding of flow as Edge Maps ultimately

allows us to determine structural properties of the flow through the triangle using a simple

lookup, consequently, allowing the computation of flow-based properties e�ciently.

In particular, streamlines can be approximated on a per-link level by interpolating

between origin and destination intervals. Hence, Edge Maps provide a way to approximate

streamlines. As Figure 6.11 shows, for an origin point p on @�, its path to its destination

q̂ can be approximated by linearly interpolating in the origin interval corresponding to p

and projecting it to the same barycentric coordinate in the destination interval.

Using the precomputed Edge Maps, any numerical integration to calculate streamlines

given by Equation (6.1) can be replaced by a simple lookup:

x
n+1

= ⇠(x
n

); and t
n+1

= t
n

+ ⇠
t

(x
n

) (6.2)

Thus, at each lookup, an important property is preserved, that origin intervals are

mapped onto the same destination intervals they would have in the original PL flow in a

consistent manner. The linear approximation within the links discards the flow behavior

of the interior of triangles, but preserves enough information to maintain consistency of

�
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Figure 6.11. Linear approximation of the Edge Map from Figure 6.4 for the triangle from
Figure 6.2. The plots of ⇠ and ⇠

t

are reproduced (solid) from Figures 6.4(b) and 6.4(c), and
compared with their linear approximation (dashed). The deviation between the two curves
is the error of Edge Maps due to this approximation, shown in Figure 6.12.
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streamlines. Furthermore, the streamlines computed using Edge Maps have a bounded

error that can be explicitly computed and reduced, as will be discussed next.

6.6 Representation and Reduction of Error
Streamlines are typically traced through numerical integration. From a given starting

point, these techniques repeatedly take small steps to approximate the next position in

the path. The resulting error is controlled only indirectly by choosing a step-size [79].

Since typically the true streamline is not known, this error cannot be quantified explicitly.

Although some schemes are more accurate than others and sophisticated techniques exist

to locally adapt the step-size, the indirect control over an unknown error represents a

fundamental restriction. On the contrary, Edge Maps represent and control the error in

representation explicitly and do not require setting a step-size.

Furthermore, integrating streamlines numerically can also lead to inconsistencies, such

as intersecting streamlines and significant di↵erences between forward and backward traced

lines. Edge Maps replace integration with a 1D linear mapping that guarantees nonin-

tersecting streamlines and consistency between forward and backward traces up to the

floating-point precision of the linear interpolation. This section studies the approximation

errors in Edge Maps, and provides tools to quantify and visualize them.

6.6.1 Approximation Errors in Edge Maps

Section 6.5 discussed streamline propagation with a bounded error using Edge Maps as

given by Equation (6.2). Since an Edge Map approximates the true exit point q and the true

exit time t of a point p by linearly interpolating within the link as q0 and t0, respectively,

it incurs some error. The spatial error can be calculated as the deviation of the exit point

given by the map from that given by the exact method (" = kq � q0k). Similarly, the

temporal error can be calculated as the deviation of the exit time given by the map, from

that given by the exact method (� = t� t0). Figures 6.11(b) and 6.11(c) show this deviation

using a comparison between the true flow and its linear approximation using Edge Maps,

and Figure 6.12 shows the error plots for the spatial and temporal error. A derivation of

the mapping error in Edge Maps is provided in Appendix A.2.1.

The errors for both the spatial and temporal deviations are computed by sampling the

link. Figure 6.12 plots the spatial and temporal errors as a function of the boundary of the

triangle. The maximum spatial error in a link l is used as the spatial error of the link, "
l

.

Similarly, the temporal error of the link �
l

is defined as the maximum temporal error within
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Figure 6.12. The error plots for spatial (left) and temporal (right) errors for the linearly
approximated map shown in Figure 6.11. The average edge length of the triangle in
consideration is 0.03, and the time taken to travel across the triangle can be inferred from
Figure 6.11(c).

a link. To account for the amount of error incurred during the propagation, ⇠+
"

: P ! R
and ⇠+

�

: P! R are defined such that

⇠+
"

(p) = "
l

; and ⇠+
�

(p) = �
l

where "
l

and �
l

are the spatial and temporal errors of the link l containing p. Thus, two

floating-point values are stored per link to represent the mapping error in Edge Maps.

As explained in Section 6.4, the vertices, saddle separatrices, and transition points are

advected to split @� into intervals. Since the LEM is used for this advection, the endpoints

of the intervals are accurate up to the floating-point precision of the system. Hence, the

mapping errors (both spatial and temporal) are zero at the endpoints of links.

In our experiments, it was found that the spatial error is typically unimodal in a link.

However, the error can also be bimodal, as shown in Figure 6.13(a). Similarly, the temporal

error can be both positive and negative within the same link, as shown in Figure 6.13(b). It

must be noted that certain types of flows are less prone to error than others. For example,

consider concentric circular orbits or a linear flow where any two streamlines do not diverge

from or converge to each other. The mapping error is zero for such a case since the actual

flow agrees with the linear mapping within each link. Figure 6.14 corroborates this intuition

by testing the Edge Map propagation in a purely rotational flow. Hence, in the absence of

mapping error, the propagation using Edge Maps is as accurate as the underlying method

for advection used for map generation.

6.6.2 Refinement of Edge Maps

An upper limit to the mapping errors can be imposed by user parameters, "
max

and

�
max

. If for a link, "
l

> "
max

or �
l

> �
max

, the link is split at the point of maximum error to

improve the accuracy of the map through the refinement of Edge Maps. Figure 6.15 shows
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Figure 6.13. Two types of possible behavior of spatial and temporal errors. (a) A (forward)
Edge Map with bimodal spatial error in the green link. Note the horizontal axis has been
scaled to the range [x,C] to illustrate the error. (b) A (forward) Edge Map with both
positive and negative temporal error within the green link. The horizontal axis has been
scaled to range [A,C] to illustrate the mapping error. In the destination interval on edge
AB, there is no temporal error defined under the forward Edge Map. The average edge
length of both triangles in consideration is 0.3.

Figure 6.14. Comparison between streamline propagation using Runge-Kutta 4-5 (RK45)
(blue) and Edge Maps (magenta) on a vector field defined by a counterclockwise orbit seeded
at the same point (yellow). The magenta and blue lines overlap in the beginning, but a
substantial deviation in RK45 streamline is observed after only one revolution around the
critical point (purple). In the absence of mapping error, the mapped lines are accurate up
to floating-point precision.
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Figure 6.15. Reduction of mapping error through refinement of maps. The length of the
edge AC is 0.0354, and the average time taken by a particle to travel across the triangle is
1.7. (a) Base maps and the corresponding errors. (b) Spatial refinement with "

max

= 0.003
splits the green link into two, creating two new links (green and blue) with smaller errors.
(c) Temporal refinement with �

max

= 0.06 splits the red link twice, creating three new links
(red, cyan, and magenta) with even smaller errors.

the e↵ect of spatial (Figure 6.15(b)) and temporal (Figure 6.15(c)) refinement on the Edge

Map shown in Figure 6.15(a). The level of refinement needed for a given flow is subject to

the nature and magnitude of flow, and the triangle size. Thus, the computation time and

memory consumption of refined maps depend upon these factors.

6.7 Uncertainty Visualization of Spatial Error
Explicit representation of error in Edge Maps enables error visualizations of flow. This

section discusses how to generate visualizations of spatial error using Edge Maps.
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6.7.1 Expansion of Exit Points

So far, the forward (⇠+) and backward (⇠�) Edge Maps have been used as tools to look

up the streamlines of individual particles. However, we can also represent the spatial error

explicitly by redefining the Edge Maps as a one-to-many map.

⇠+(p,!) = Q,

where for an entry point p, instead of a single exit point q the map gives a range of possible

exit points, a segment Q, under the expansion factor, !, as illustrated in Figure 6.16. The

length of the segment Q is directly proportional to the expansion factor. Thus, we call Q

the expansion of the exit point q.

The spatial error " for p encodes the deviation of its exit point q defined by the Edge

Map from the true exit point q̃. Therefore, the expansion of the exit point Q calculated

using ! = ⇠+
"

(p) provides an upper bound on the possible exit points of p. Furthermore,

since the streamlines at the endpoints of the links are accurate, the expansion cannot span

across links, and is truncated at the endpoints of the link containing both p and q.

6.7.2 Streamwaves

The one-to-many mapping given by Edge Maps under the consideration of spatial error

can be visualized as a streamwave, which is defined as the set of possible destinations that

a massless particle may reach when accounting for possible expansions. Alternatively, a

streamwave can be seen as the expansion of a streamline due to spatial uncertainties. In

the current work, we quantify and visualize the spatial error as streamwaves propagate, by

setting ! = "
l

. However, any other kind of error can be modeled as the expansion ! for

streamwaves.

Using Edge Maps, streamwaves can be computed as follows.

X
n+1

= ⇠+(X
n

,!),

A

B

C

p

Q

Figure 6.16. Expansion of exit points represents error as a range of possible destinations.
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where X
0

= {x
0

} represents the seed point of the wave and X
n

the set of points currently

at the front of the wave. Since a streamwave models the spatial error only, the speed of

the wave is reflective of the linear time approximation of the Edge Maps. The temporal

error in the Edge Maps is ignored. Using traditional techniques to compute streamwaves

as a collection of streamlines can become computationally expensive and requires delicate

processing in regions of high divergence. Using Edge Maps, however, propagating a wave is

only as expensive as the number of links in the triangles currently at the front.

Furthermore, if there exist no bifurcations in a triangle, then only extremes of the range

of exit points X
n+1

are of interest, and all intermediate points are handled implicitly. For

triangles with bifurcation, a streamwave may split into two streamwaves, each of which can

be propagated independently.

Figure 6.17 shows streamwaves computed on a 2D flow resulting from the simulation of a

homogeneous charge compression ignition (HCCI) engine combustion [88] (see Data B.1.1).

This 2D flow defined on a [640 ⇥ 640] domain is incompressible, and exhibits turbulent

vortical structures of clockwise and counterclockwise rotations. The computation of Edge

Maps for 816,642 triangles in the dataset took 223 seconds and 200 MB. As shown in the

figure, a streamwave is the superset of a single streamline, so analyzing only the streamline

in the presence of error is an incomplete analysis. Notice how even small amounts of errors

(⇡ 3.2% and ⇡ 6.4%) can cause large compounded uncertainties in streamlines. Since

Figure 6.17. Streamwaves in the flow in an HCCI engine [88]. The [640 ⇥ 640] data is
mapped to a [�1, 1]⇥ [�1, 1] plane. Left: Two streamlines – one near a saddle’s separatrix.
Middle and right: Streamwaves at di↵erent levels of error: 0.0001 (⇡ 3.2% of horizontal
and vertical spatial resolutions) and 0.0002 (⇡ 6.4% of horizontal and vertical spatial
resolutions). Streamwaves are colored from green to red, showing the distance the flow
has propagated as a measure of the number of maps the streamwave has travelled through.
Note that the error levels have been exaggerated to illustrate expansion and bifurcation of
streamwaves.
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expansion of a streamwave in the presence of error may cause it to revisit a certain region,

it may need to be truncated so as to avoid going into infinite flow loops. This truncation

is consistent with the definition of streamwave: that it visualizes the region that can be

visited by a particle (at least once). The shape of streamwave reflects the nature of the

underlying flow. A ‘linear’ streamwave will be obtained if the flow is mostly linear (little

or no rotation), for example, Figure 6.18. If the flow is highly rotational, the streamwave

revisits certain regions and becomes ‘blob-like’, for example, in Figure 6.17. The color of the

streamwave progresses from green to red as it propagates forward in time, as an indication

of the speed of the streamwave.

Streamwaves also present a method to visualize error bounds of other integration tech-

niques. For example, Figure 6.18 shows the integration of a streamline connecting a source

to a sink using three di↵erent techniques. By showing a streamwave, whose expansion

is set larger than the maximum error for Euler integration, a comparison between Euler

integration, fourth-order Runge-Kutta, and LEM can be visualized.

6.7.3 Visualization of Fuzzy Topology

Topological structures in vector fields, such as their topological skeleton [89], are one of

the key features used to analyze vector field data. Traditionally, the skeleton is computed

by tracing four separatrices out of each saddle (two forward and two backward) by com-

Figure 6.18. Comparison of various integration schemes with streamwaves. A streamline
using Runge-Kutta 4 (RK4) (black dashed) using step-size } = 0.005, Euler (black dotted)
using step-size } = 0.005 and local exact method (LEM) (white solid), and a streamwave
using Edge Maps with ! = 0.0001 were seeded at the same point. Considering the local exact
method to be the ground truth, some deviation is observed in Euler and RK4 streamlines.
It is also observed that the streamwave, centered around the LEM streamline, bounds the
two erroneous streamlines at all the times.
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puting streamlines starting in the directions of the eigenvectors of all the saddles. These

separatrices terminate when they arrive at another critical point or leave the boundary of

the domain. However, this approach faces challenges since compound integration error can

cause the trace to end at an incorrect critical point. In particular, unstable topologies, such

as when a pair of saddles is connected by a separatrix, su↵er from this form of inconsistency.

Instead, streamwaves can be used to study the robustness of topological representations.

By growing a streamwave with ! = 0, in the forward direction from all sources and in the

reverse direction from all sinks, a partial topological decomposition of a vector field can be

performed that is analogous to stable and unstable manifolds in scalar field topology [48].

These streamwaves are initiated from the segments of the boundary flowing out of and into

the triangles containing the sources and sinks, respectively. Although the centers cannot

yet be accounted for, streamwaves can provide important information about the structure

of the flow. In particular, in the absence of closed orbits, the union of the forward and

backward streamwaves creates a covering of the domain similar to the segmentation induced

by traditional vector field topology.

However, in a similar construction for ! > 0, each point in the domain may be part of

several streamwaves creating a notion of fuzzy topology, as shown in Figure 6.19. Setting

! = "
l

highlights the regions of the domain that are unstable/uncertain under the approxi-

mation errors of Edge Maps as thick red bands, thus providing important information about

any potential instabilities in the topological segmentation. In particular, it provides users

with an intuitive measure of how certain a given structure is.

To illustrate the new concept of fuzzy topology, streamwaves are compared with the

Figure 6.19. Fuzzy topology (right) in a synthetic flow containing three sources
(green), two sinks (red), and three saddles (blue). Compare with “certain” toplogy (left).
Streamwaves with ! = 0 (left) and ! > 0 (right) are used for such a construction.
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traditional scalar field techniques, as visualized in Figure 6.20. Laney et al. [115] performed

a topological analysis on the interface surface of a heavy fluid placed above a light fluid

to understand the Rayleigh-Taylor instability (see Data B.2.1). In particular, the unstable

manifolds of the height function segment the surfaces into “bubbles”—the primary feature

of interest. To generate a similar result, the gradient flow of the height function can be

used to construct the manifolds using streamwaves. Both techniques provide a similar view

of the data, but streamwave-based representation is richer by also showing the inevitable

inconsistencies at the boundaries of the bubbles.

Figures 6.21 and 6.22 show, respectively, fuzzy topology computed on surface flows for

a diesel engine and a combustion chamber [117] (see Data B.2.2) with refined maps. Since

the spatial error in the maps is very low, the fuzzy regions are negligible.

Figure 6.20. Fuzzy topology in Rayleigh-Taylor instability (see Data B.2.1). The bubbles
extracted using scalar field topology similar to the work of Laney et al. [115] (top left)
are shown side-by-side with the unstable manifolds (streamwaves computed using ! = 0),
(right). Bottom row: when the error factor, ! > 0, is accounted for, emerging overlaps are
observed, as highlighted in zoomed-in views.
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Figure 6.21. Stable (left) and unstable (right) manifolds of the flow defined on the surface
of a combustion chamber [117] (see Data B.2.1). The flow has 13 sources (green), 15 sinks
(red), and 27 saddles (blue). With su�ciently refined maps, the fuzzy regions are negligible,
indicating a more accurate representation.

Figure 6.22. Stable and unstable manifolds of the flow defined on the surface of a diesel
engine (see Data B.2.1). Stable (left), unstable (middle), and both (right) manifolds.

6.8 Uncertainty Visualization of Temporal Error
For a streamline that is computed assuming error-free propagation, there is a unique

time instant given for every position and vice versa. Although all numerical integration tech-

niques have some associated error, however small or big, this error is generally ignored [156].

Using Edge Maps, it is possible to bound and visualize the temporal error in streamlines.

The discussion in this section considers only the temporal errors in the map, and assumes

no spatial error.
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6.8.1 Temporal Error in Streamlines

The temporal error of a link (�
l

) represents the maximum possible deviation in an

Edge Map’s approximation of time from the true time. The points on the streamline

corresponding to a temporal error will span across triangles. Since an Edge Map is not

aware of the vector field in neighboring triangles, it cannot return a temporal expansion

of points as in the case of the spatial expansion (see Section 6.7.1). Instead, the temporal

expansion of points is computed indirectly using the temporal error. When a streamline is

integrated using Edge Maps, the temporal error of the links it passes through is accumulated.

�
n+1

= �
n

+ ⇠+
�

(x
n

).

Thus, every point x
n

on the streamline has a value of time t
n

and a temporal error �
n

.

Figure 6.23 illustrates the accumulation of temporal error along a streamline. Given a

point p on the streamline, the time and the temporal error can be easily found by interpo-

lating the data stored in the streamline. The accumulated temporal error is visualized as

an error field along the streamline in Figure 6.24.

6.8.2 Spatial Visualization of Temporal Error

The temporal error �
n

for a point x
n

on a streamline defines a range of possible values

of time [t
n

� �
n

, t
n

+ �
n

] that can be associated with x
n

. This range is shown as the vertical

thickness of the error envelope in Figure 6.23. Another way to visualize the temporal error

is to understand its spatial manifestation, which gives a more intuitive understanding of

flow behavior under error.

T
im

e

Streamline

Figure 6.23. Accumulation of temporal error shown as an error plot for a streamline in
time space. Every point on the streamline has an associated temporal error, shown by the
vertical thickness of the dashed envelope. The vertical thickness of the envelope is twice
the amount of temporal error.
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Figure 6.24. Accumulated temporal error in streamlines for the 2D ocean winds flow (see
Data B.1.2). The flow contains three repelling foci (green balls), two attracting foci (red
ball), and four saddles (blue balls). The seed points of the streamlines are shown as small
magenta balls. The color map cyan-dark blue is mapped to increasing temporal error along
the streamline. A sharp increase in accumulated errors near the saddle at the center of the
field indicates a region of high temporal error.

A streamline generated using Edge Maps can be queried for all the points that could

be visited at a given time ⌧ . This query returns every point whose time-range contains

⌧ . However, since an Edge Map streamline contains only the points lying on the edges of

the triangulation, the time-ranges between adjacent points on streamline are interpolated to

include the points on the interior of triangles. This computation is analogous to intersecting

the time envelope (in Figure 6.23), with a horizontal line representing some value of time,

and projecting this intersection onto the horizontal axis as shown in Figure 6.25. Thus, a

spatial range is obtained that is centered around the true position—the position in absence

of temporal error—of the particle at every time instant.

τ1

τ2

τ3

p1 p2’ p2 p2’’ p3’ p3 p3’’

T
im

e

Streamline

Figure 6.25. Computation of the spatial range corresponding to the temporal error in
a streamline. For every time instant (⌧

i

) represented by a dashed blue horizontal line,
its intersections with the temporal error envelope (black dashed) are computed, and then
projected onto the horizontal axis (the streamline), giving the spatial range of points (p0

i

,p00
i

)
on the streamline, shown in green. The true position (considering no error) is the projection
of the intersection with the actual time (black solid) (p

i

), shown in magenta.
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Figure 6.26 shows the visualization of the spatial range due to temporal error. The

spatial range presents a way to visualize the bounds on the uncertainty in the position

of the particle at a given time. Note that the extracted spatial range is only a spatial

manifestation of temporal error. An equal amount of temporal error will produce a longer

spatial range for higher vector magnitudes. By showing the positional extents of these

temporal errors, we can investigate the interplay between velocity magnitude and time.

6.9 Evaluation and Results
We demonstrate these visualization techniques on a [200 ⇥ 200] subset of the top slice

of a 3D simulation of global oceanic currents (see Data B.3.3), as shown in Figure 6.27.

These simulations were produced using a technique based on a boundary impulse response

functions [133] with the aim of studying the global eddies patterns in oceanic currents.

The subset is mapped to a [�1, 1] ⇥ [�1, 1] domain. Although the flow in the original 3D

simulation is incompressible, a 2D slice from this 3D flow does not satisfy incompressibility

anymore, since slicing creates sinks and sources due to the flow across depths.

Figure 6.28(a) shows a streamwave at two error thresholds. The streamwave hits a

saddle before exiting the domain from top-left. At high error, the streamwave flows into

many slowly rotating critical points. A sudden and substantial increase in the thickness of

the streamwave reveals the sensitivity of this region to the spatial error.

Figure 6.26. Temporal error in streamlines in the flow in the HCCI engine (see Data B.1.1).
Two streamlines are seeded in the flow: one in the bottom left (exiting from top left), and
the other in the upper center (exiting from the bottom right). Increasing time-steps are
shown with increasing size of the magenta ball, and thickness of the green tube. With
increasing time, the magenta ball travels along the streamline representing the movement
of the particle, and the green tube elongates representing the increase in the spatial range
due to the temporal error in the propagation.
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Figure 6.27. The oceanic currents in the Gulf of Mexico and the Caribbean Sea (see
Data B.3.3). This [200 ⇥ 200] subset is taken from a larger simulation of oceanic cur-
rents [133] (inset), and mapped to a [�1, 1] ⇥ [�1, 1] plane. The region has 56 sources
(green balls), 63 sinks (red balls), and 117 saddles (blue balls). The increasing speed of the
flow is mapped to color from cyan to purple.

Figure 6.28(b) shows the spatial range corresponding to the temporal error as a sequence

of time instants starting from 0 with a step of 0.3. A steady increase in the lengths of the

green tubes is observed, reflecting a steady increase in the temporal error. This behavior is

in conjunction with a steady increase in the thickness of the streamwave (Figure 6.28(a))

until it hits the saddle. Visualizing both these errors together is important to get a complete

understanding of how the flow behaves under error.

Figure 6.28(c) shows the unstable manifolds grown from all the sources in the flow.

These regions overlap with each other based on the approximation error in the flow. This

overlap indicates the fuzziness in the boundary between them due to this error. Observe

that higher refinement reduces the overlaps. There are many sources in the domain with

very low divergence, in which case the corresponding manifold does not grow enough to be

noticeable at this scale, especially at the higher refinement (bottom). Spatial refinement

of Edge Maps increases their fidelity to piecewise linear flow, which can create cycles that

were previously absent in the flow. Such cycles bound these growing regions. It is observed

that large regions of the dataset remain untouched by these manifolds, suggesting that the
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(a) (b) (c)

Figure 6.28. Streamwaves, temporal error, and fuzzy topology in the oceanic currents
flow. (a) Streamwave visualization at a spatial error refinement of 0.1 (top) and 0.0001
(bottom). (b) Spatial range due to temporal error at a temporal refinement of 0.01 (top)
and 0.0001 (bottom). (c) Unstable manifolds at a spatial refinement of 0.0001 (top) and
0.00001 (bottom).

flow in these regions is not associated with the sources in the domain. Hence, the flow in

these untouched regions must either be bounded by orbits, or flowing in from the boundary

of the domain.

The computation of Edge Maps for this dataset containing 63, 010 triangles took 19.4

seconds and 19 MB, giving on an average 2.23 links per triangle. Spatial refinement (from

unrefined maps) of 0.0001 took 29.5 minutes and 36 MB, giving 4.2 links per triangle, and

temporal refinement (from unrefined maps) of 0.0001 took 25 minutes and 35 MB, giving

4.1 links per triangle.

6.10 Summary
This chapter presents Edge Maps, which is a new representation of piecewise linear vector

fields. As compared to the traditional representation of such data that stores vectors at

the vertices of a triangulation, Edge Maps encode the underlying flow (streamlines) directly

in the representation. As a result, they remove the need for numerical interpolation and
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numerical integration of vectors for streamline computation.

An attractive characteristic of Edge Maps is that they partition the flow through the

triangle into connected pieces, and only a few special streamlines are needed to compute

this partition, based on which they can represent the entire flow through the triangle. To

compute these initial streamlines during preprocessing, a highly accurate analytic solution

for linear vector fields can be used. It must be noted that although other techniques can

be used for this purpose, Edge Maps will be only as accurate as these streamlines.

In order to concisely represent Edge Maps, base Edge Maps can be constructed as an

approximation to the underlying Edge Maps. We use a linear interpolation of Edge Maps to

compute the streamlines. However, unlike other representations and integration schemes,

Edge Maps can capture this representation error (the error due to linear mapping). As a

result, the error compounded during the streamline integration is not ignored, allowing for

the visualization of the incurred error in both space and time. Furthermore, refinement of

Edge Maps is possible to reduce this mapping error, and a user-defined threshold for error

can be imposed on the system.

The most important property of Edge Maps is that they can preserve the order of

streamlines through the triangle, and, therefore, can create consistent streamlines—the

ones that never cross. The linear mapping discussed in this chapter respects this order

preservation, but only up to floating-point precision. Due to the numerical nature of Edge

Maps, there may still exist cases where consistency is violated. To fully utilize the theoretical

advantages of Edge Maps, Chapter 7 presents an integer-based datastructure to store Edge

Maps, which guarantees consistent streamlines.

In order to understand the construction and properties of Edge Maps, this chapter

also discusses various properties of piecewise linear flow on triangulations, and also shows

that there exist 23 equivalence classes of Edge Maps. Although the focus of the work

presented here was piecewise linear flow on triangulated domains, the concept of Edge

Maps as a boundary-to-boundary mapping is more general, and is applicable to other forms

of interpolations and spatial discretizations as well.

For example, one could imagine Edge Maps for quadrilateral cells with bilinear interpola-

tions. However, to construct such a representation, one needs to perform the corresponding

study of equivalence classes and understand the properties of bilinear flow. Similarly, one

can potentially create such representations for tetrahedral elements for 3D flow, which,

however, appears very challenging, since instead of using subsets of edges, one must use

arbitrarily-shaped subsets of the faces to map the flow. Another potential future direction is
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creating Edge Maps for time-varying vector fields. Such representations must map pathlines

instead of streamlines. However, this task also requires addressing multiple challenges, since

each triangle will have an Edge Map for each time-step, and an e�cient way of interpolating

between these Edge Maps will be required.



CHAPTER 7

REPRESENTATION AND ANALYSIS OF

FLOW WITH CONSISTENCY

GUARANTEES

Computational models for experiments, simulations, and analysis are typically based

upon smooth theories—mathematical theories that assume smooth fields defined over smooth

domains. In practice, however, these tasks are performed using computing machines, which

are fundamentally limited in how they can represent and process data. In particular,

scientific data is represented numerically as sampled fields defined over discretized domains,

and restricted to using floating-point numbers. Thus, although such floating-point repre-

sentations are based upon smooth theories as well, they have a finite precision, and cannot

represent the infinite-precision real numbers with 100% accuracy, causing representation

errors. Furthermore, analysis techniques must incur rounding-o↵ errors, and often make

various numerical approximations while processing this data, thus adding to the error.

Therefore, when numerical analysis based on a smooth theory is applied to sampled data,

the obtained results contain substantial errors [70] (refer to the green column in Figure 7.1).

This lack of numerical robustness can cause serious problems of inaccuracy and/or incon-

sistency (defined and discussed in Chapter 1).

In contrast to the numerical representations, combinatorial approaches based upon

discrete theories—where both the domains and the functions are discrete—can be used

to represent the data with full fidelity. Illustrated as the blue column in Figure 7.1,

these representations, as well as the analysis they enable, typically use integers or graphs

to represent and process the data, and do not require floating-point arithmetic. As a

result, the addition of errors in the results can be controlled, and the underlying discrete

theory can be replicated exactly in computer applications, enabling the analysis to produce

accurate and consistent results using robust algorithms and datastructures. These discrete

representations are useful for a variety of important phenomena such as graph traversals,
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Figure 7.1. A schematic of two important paradigms of representations and analysis.
Instead of smooth fields whose analysis represents the ground truth, numerical techniques
must work with sampled data whose analysis can produce inaccurate as well as inconsistent
results. Instead, combinatorial techniques, which can be used for discrete data only, o↵er
significant advantages. This dissertation develops a new discrete theory for vector fields,
with which the representation and analysis leads to accurate and consistent results.

number theory, binary logic, decision theory, etc.

The paradigm of discrete representations o↵ers significant advantages over its numerical

counterpart. However, vector fields—the type of data of interest in this dissertation—cannot

be directly represented in discrete form as they capture smooth physical phenomena. In

order to enable consistent feature extraction from vector fields, this dissertation underlines

a shift in paradigm of representation and analysis of such data—in principle, also applicable

to other forms of smooth data. In particular, for a given smooth theory, it is possible to

create its discrete version, which can be implemented using the necessary combinatorial

approaches; for example, Forman’s discrete Morse theory [54, 57] provides an attractive

counterpart to the Morse theory of smooth functions [137, 140]. Although the discrete

theory makes certain approximations with respect to the smooth theory, the primary

advantage is that it allows enforcing the physical laws and invariants that need to be

preserved. Additionally, the loss of information during the conversion from smooth to

discrete theory can be performed in a controlled manner, and the downstream analysis can

be performed in an error-free manner. As a result, the overall error present in the pipeline
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can be encoded and tracked.

In this context, the contributions of this dissertation are highlighted in red arrows in

Figure 7.1. The work presented in this chapter develops the first comprehensive discrete

theory for piecewise linear (PL) vector fields defined for triangulated domains. In particular,

the goal is to preserve two important laws: (1) two streamlines do not intersect, and (2) the

Poincaré index theorem is not violated. In the construction of this new theory, we make

certain approximations; most importantly, we sacrifice the geometry of streamlines within

each triangle. Nevertheless, as will be shown in this chapter, the corresponding combina-

torial representation and algorithms produce consistent analysis—a significant advantage

when deriving scientific insights from the data. The main characteristics of numerical and

combinatorial approaches to representation and analysis are summarized in the following:

• The results of numerical analysis produce inaccurate and inconsistent results with

respect to the smooth theory.

• The results of combinatorial analysis are both consistent and accurate with respect

to the discrete theory.

• With respect to the smooth theory from which the discrete theory was developed, the

results of combinatorial analysis are not 100% accurate, since some approximations

have to be made during the initial conversion. Nevertheless, more importantly, the

results are consistent with respect to the invariants that are preserved.

In this context, Edge Maps (presented in Chapter 6) can be seen as an intermediate

paradigm (another vertical pipeline) between the smooth and the discrete theories. A

comprehensive study of the theory of PL vector fields was presented (as equivalence of

maps and the enumeration of possible cases), and a datastructure (Edge Map itself) was

developed to implement this theory. Edge Maps enable encoding of discretization errors,

because of a controlled conversion of PL theory to a numerical representation. Nevertheless,

since Edge Maps are still numerical in nature, they could guarantee consistency only in

theory (see Theorem 6.1). Guaranteeing consistency in practice requires developing and

implementing a discrete theory, which will be presented next.

This chapter develops a new discrete theory for 2D piecewise linear vector fields. This

theory defines critical points, streamlines, and periodic orbits that can be computed con-

sistently. Extending the Edge Map datastructure presented in the previous chapter, this

chapter presents quantized Edge Maps. Quantized Edge Maps use integers to represent

the data instead of floating-point numbers, and can be used to implement the discrete

theory developed above. Maintaining the error-encoding property of Edge Maps, their
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quantized counterparts have an additional capability of representing the underlying flow

(behavior of streamlines) as graphs to impart robustness and guarantee consistency. This

chapter presents a new combinatorial framework for robust detection of critical points for

2D and 3D vector fields that fall under a large class of interpolation schemes, including the

piecewise linear case. Together, these techniques provide a unified framework for consistent

topological analysis of vector fields, as demonstrated in Section 7.3.

7.1 Consistent Streamline Tracing
To construct quantized Edge Maps for consistent streamline tracing, the framework from

Edge Maps will be extended. Therefore, all notations, definitions, and assumptions used in

this section are the same as described in Chapter 6 unless otherwise noted.

Edge Maps are maps between subsets of the triangle boundary (@�), called intervals.

Every point on @� is an inflow point, an outflow point, or a transition point. By definition,

transition points, their images, and sepx points form the boundary of intervals in the map.

Assumption 6.2 ensures that transition points on the edges of � are isolated, or conversely,

no edge is entirely parallel to the flow. Furthermore, Assumption 6.1 disallows the existence

of a critical point on @�. This assumption is typically not satisfied in practice, and prevents

the modeling of higher-order critical points. Therefore, for the construction of quantized

Edge Maps, Assumption 6.1 is removed.

7.1.1 Quantized Edge Maps

To represent quantized Edge Maps, every edge in M is explicitly discretized into n = 2k

bins, with k = 32 unless otherwise noted. A bin denoted as p̂ corresponds to the sample

point p at its center, and, therefore, the terms bins and samples will be used interchangeably.

A quantized interval, P̂, is a sequence of bins {p̂
0

, p̂
1

, . . . , p̂
n

} along an edge of the triangle,

and can be uniquely identified through two integers:

• its edge number (within the triangle under consideration), and

• its first bin (with respect to the edge under consideration).

Since intervals are stored contiguously, their extent can be inferred by their neighbor.

Given a pair of quantized origin and destination intervals, Ô and D̂, a quantized Edge

Map is defined as a map ⇠̂ : Ô ! D̂, that, for an inflow bin, gives the destination of the

streamline passing through it—the outflow bin. A quantized Edge Map is illustrated in

Figure 7.2. Mapping an interval with m bins onto an interval with n bins can be solved

by any rasterization procedure, such as Bresenham’s algorithm [16]. Given a bin i < m,
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Figure 7.2. Quantized Edge Maps are created by discretizing the edges using n = 2k

bins, and mapping intervals of bins that represent connected flow behavior. For clarity in
presentation, the illustration uses only 16 bins per edge.

the destination of the streamline passing through it is computed by rounding n(i/m) to the

nearest integer. This computation can potentially produce a round-o↵ error, in which case,

the destination is taken to be n(i/m) + 1. The error introduced due to this linear mapping

will be discussed in Section 7.1.1.5. It is important to note that although this rasterization

emulates a linear interpolation, it is an entirely integer procedure, thus enabling consistent

representation of flow.

7.1.1.1 Construction. One disadvantage of the original Edge Map representation

is that it relies on constructing nondegenerate local flow numerically. Especially, the

construction of Edge Maps requires tracing streamlines of transition points and saddle

points—by definition, the most unstable structures in the flow. As a result, any numerical

instabilities encountered during the construction can produce inconsistencies causing the

construction of Edge Maps to fail. Instead, the quantized Edge Map construction is

designed to, first and foremost, produce a consistent map independent of any errors in

tracing streamlines, or classifying inflow/outflow points. Furthermore, contrary to the Edge

Map construction (Algorithm 6.1), the structure of the mapping, that is, the number and

connection of intervals, is computed using the most stable aspects of the flow and thus,

typically produces a more accurate map as well. In particular, quantized Edge Maps are

constructed using a divide-and-conquer approach for each triangle, where edges are divided

into intervals where the flow can be mapped continuously, and the resulting intervals are

paired to form links.

The first step of the construction algorithm identifies all transition points on the edges

and vertices of a given mesh based on the interpolated vector field in each triangle, and

are classified into internal and external. Since a triangle is convex, all transition points
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on vertices must be external (see Lemma 6.2). Transition points on edges are classified by

examining the local flow direction. Every bin in a quantized Edge Map is defined to be

either an inflow bin or an outflow bin. Therefore, all transition points (and their images)

must exist on the boundary of bins. At an ETP, the two bins on either side are mapped to

each other, whereas at an ITP, both bins map to disparate locations. Furthermore, any ITP

is immediately classified as ETP in its neighboring triangle since by definition, a dual ITP

classification is inconsistent with a PL flow, since it creates a higher-order critical point.

Unlike Edge Maps, this construction allows existence of critical points on edges, for example,

a transition point classified as ETP in the triangles on both sides of the corresponding edge

naturally produces a rotating critical point.

This classification is a combinatorial procedure, and can be performed robustly. How-

ever, it disregards the paths streamlines would take. If there exists a closed orbit in

the interior of a triangle that touches an edge, the original Edge Maps would create a

corresponding ITP (Figure 7.3(b)). However, according to the local flow behavior, it is

classified as an ETP (Figure 7.3(c)). This discrepancy reflects the fact that quantized Edge

Maps only store the flow behavior as it pertains to the boundary (the initial approximation

made during the development of the corresponding discrete theory). Nevertheless, either

classification is consistent with the given boundary map.

In the second step, an initial list of inflow and outflow intervals is identified based on the

pre-identified transition points. Starting from the initial inflow/outflow intervals, the largest

interval (inflow or outflow) is selected, and a streamline is traced (numerically using the

local exact method [149]) from its center bin to identify its corresponding source/destination,

(a) (b) (c)

Figure 7.3. Combinatorial classification of transition points disregards the flow behavior
inside the triangle. (a) Quantized Edge Map of a spiraling source. Transition points (white
squares) and their images (black dots) form the colored intervals. (b) An interior orbit
touching an edge creates an ITP whose boundary flow (c) appears as an ETP.
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which divides the flow within the triangle into two subregions.

Subsequently, each region is handled recursively until one of the three possible final

configurations is obtained: (1) a region without transition points, (2) a single ITP, and (3)

a single ETP with only two intervals. In (1), there may exist either only two intervals that

must be linked, or multiple intervals that must contain sepx points. For the latter case,

candidates for separatrices and split the intervals are numerically identified. For (2), the

forward and backward image of the ITP is identified and the intervals are split. Finally,

for (3), the two intervals around the ETP are linked. By the time the algorithm resorts

to numerically tracing potentially unstable streamlines, the basic structure of the maps is

already established. Thus, the tracing simply computes the best geometric fit to a known

flow structure. At last, a cleanup step is performed to merge intervals not separated by

transition, image, or sepx points to construct the final quantized Edge Map.

7.1.1.2 Consistent flow representation. The construction of quantized Edge Maps

relies on the tracing of streamlines, which can produce inconsistent results and numerical

errors. This is, in fact, the primary motivation for constructing quantized Edge Maps. The

algorithm described above, nevertheless, guarantees consistency by explicitly storing any

numerical decision in the form of the region decomposition.

The order of intervals along the triangle boundary can be captured as a linked list,

where each node of the list represents an interval, and a link between nodes represents

that the corresponding intervals are contiguous. Since the triangle boundary is closed, the

initial linked list is circular. The first streamline that is traced divides the triangle into

subregions, such that no subsequent streamline can leave its subregion. This subdivision is

equivalent to the splitting of the initial circular linked list into two noncircular linked lists.

Each region (and the corresponding linked list) represents flow that must stay within itself.

Therefore, any subsequent streamline tracing forces the source and destination bins to be

a part of the same linked list. As a result, it becomes possible to prevent any streamline

crossings, thereby guaranteeing a consistent representation of the flow. Note that this

approach does not prevent numerical errors, but instead forces any numerical decision to

defer to all previous decisions.

7.1.1.3 Datastructure. For each triangle, a circular linked list of intervals around

the boundary is stored. The datastructure to store each interval in a quantized Edge

Map is illustrated in Figure 7.4. Each interval stores a k-bit integer as the index of the

first bin for the interval. Additionally, two bytes per interval are bit-packed with the

following information: 2-bits for the edge number within the face since bin numbering is only
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Figure 7.4. The quantized Edge Map of a triangle is stored as a counterclockwise oriented
linked list of intervals. Each interval stores a k-bit value (k = 3 here) for the beginning bin
of the interval and a two-byte descriptor.

unique per edge; a 1-bit flag indicating inflow or outflow; 1-bit indicating the orientation

of the interval, relative to the bin numbering; and 12-bits for the index of the paired

source/destination interval.

7.1.1.4 Quantization error. The conversion of edges into a sequence of bins can

cause quantization error, which is controlled by the number (and, hence, size) of bins.

Varying the number of bins provides variable granularity or precision in representing flow,

and determines how many unique streamlines are used to represent the flow. The geometric

location of all landmarks, that is, critical points, transition points, images points, etc., can

be o↵ by at most half the bin size. In practice, using 232 bins makes the precision of this rep-

resentation higher than possible with a 32-bit floating-point representation. Furthermore,

these bins are distributed uniformly along edges, unlike the IEEE floating-point standard.

Thus, when compared to vertex-sampled and interpolated flows, the quantization error is

negligible, especially considering the gained consistency.

7.1.1.5 Linear mapping error. The error introduced due to linear mapping be-

tween intervals, on the other hand, cannot be neglected. Similar to that in the Edge Maps,

the mapping error of the quantized Edge Maps at a given source bin p̂ is represented in

terms of the distance between its mapped destination ⇠̂+(p̂) and its true destination relative

to the edge length. Unfortunately, there exists no closed-form solution for this error, but

experimentally (evaluated using the local exact method [149]), it appears to be smooth and

well behaved. Thus, it is possible to evaluate the error for each link using a dense sampling.

Furthermore, similar to Edge Maps, their quantized counterparts can also be refined by

selecting links with high error, and iteratively splitting them using the streamline at the

point of maximal error. Assuming fewer than 212 intervals per triangle (the interval array

is indexed using 12 bits), each split requires only 2(32 + 16) additional bits of storage (the

overhead for storing two new intervals). Although refinement requires careful sampling,
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after map refinement the extra intervals do not have much e↵ect on the runtime for map

queries. Figure 7.5 shows the e↵ect of refinement on the stable and unstable manifolds of

the 2D global oceanic currents (see Data B.3.3), and the observed convergence in terms of

the maximal and average error for a given number of links. It can be seen that this error is

well behaved in both a maximal and average sense, with only a small initial dip as flow is

refined (mostly near saddles) initially.

(a) (b)

(c)

Figure 7.5. Refinement and error-convergence of quantized Edge Maps. The refinement of
links at the point of maximal error from (a) 0.18% to (b) 0.023% of the edge length shows
a large change in the unstable region to the west of Florida (top-left of the flow). (c) Total
mapping error as a function of average number of links shows well-behaved convergence as
more links are used.
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7.1.2 Quantized Streamlines

Quantized Edge Maps provide a consistent representation of the flow within each trian-

gle. This section describes how they can be used for tracing consistent streamlines across

multiple triangles. In particular, the quantized Edge Maps allow finding the destination bin

of a given sample point (bin) robustly using integer arithmetic. Therefore, the streamlines

traced using quantized Edge Maps are discrete sets bins on the edges of triangles reached

by following the destination maps forward and the source maps backward.

Definition 7.1 (Quantized Streamline). A forward quantized streamline, x̂+

S

(p̂
0

) starting

at bin p̂
0

is an ordered sequence of bins {p̂
0

, p̂
1

, . . . , p̂
n

} such that ⇠̂+(p̂
i

) = p̂
i+1

. A

backward quantized streamline x̂�
S

(p̂
0

) is defined symmetrically using ⇠̂�.

A quantized streamline disregards the path of the true streamline, and instead stores

a pair of bins (p̂
i

, p̂
j

). These points are called source and destination points, and the

pair is called a source-destination pair. However, in order to use quantized streamlines

as a stand-in for smooth streamlines, it must be ensured that they respect the same set

of invariants—most importantly the fact that streamlines do not intersect. Using only

the above definition of source and destination does not necessarily preserve this invariant.

Although each sample has exactly one source and one destination, multiple samples can

have the same source/destination and the source-destination maps are not inverse to each

other. Therefore, in areas of su�cient divergence, quantized forward streamlines can cross

backward lines, creating an inconsistent flow (see Figure 7.6(a)).

To avoid this problem, the mapping can be modified slightly to define the forward map

⇠̂+(p̂) of a sample p̂ by considering all pairs (p̂, q̂
i

). In particular, ⇠̂+(p̂) is defined as the

(a) (b)

Figure 7.6. Quantized streamlines using forward and backward quantized Edge Maps are
indicated by the solid and dashed arrows, respectively. (a) The red streamline (using ⇠̂+)
intersects the green streamline (using ⇠̂�). (b) Adjusted ⇠̂± pairing picks the rightmost
source/destination with respect to the tracing direction. The forward and backward
streamlines may share a bin but do not intersect.
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rightmost (relative to ~V ) sample q̂
i

. Symmetrically, the backward map ⇠̂�(p̂) is defined as

the leftmost sample among all pairs (q̂
i

, p̂); see Figure 7.6(b). Using the modified maps

ensures that quantized streamlines may share samples (equivalent to becoming infinitely

close) but never cross, thus, building quantized streamlines that are a provably consistent

approximation of the flow.

7.1.3 Quantized Streamlines as Graphs

An important advantage of the quantized flow is that it can be represented as a mul-

tiresolution graph. In particular, since two triangles sharing an edge also share the bins on

that edge, the maps of such triangles represent inflow and outflow consistently across their

shared edges. As a result, the maps across the triangle edges can be connected to form a

large graph called the bin-graph. Separate bin-graphs are needed to represent forward and

backward flows. The forward and backward bin-graphs have the same nodes (bins) but

di↵erent connections (mapping) between them.

Definition 7.2 (Bin-Graph). Let P̂ be the set of bins on a triangulation. The forward

bin-graph is a directed graph GB
+(P̂,E+), such that

• the nodes are the set of bins on the given triangulation, P̂.

• the directed edges are the pairs of all source/destination bins under the quantized

Edge Maps of all triangles, that is, E+ = {(p̂, ⇠̂+(p̂)) | p̂ 2 P̂}.

The backward bin-graph, GB
�, is defined symmetrically using the backward map, ⇠̂�.

Corresponding to the quantized Edge Maps for the triangles shown in Figure 7.7, the

forward and backward bin-graphs are shown in Figure 7.8. Using the bin-graphs, the flow

can be represented as a finite number of streamlines possible through the traversals through

this graph starting from any given bin. Each bin uniquely represents one forward and one

backward streamline. Together, forward and backward bin-graphs describe the complete

flow in a combinatorial manner. However, since they capture every bin in the triangulation

as a separate node, their size is prohibitively large for practical applications.

Instead, a coarser representation of the vector field called link-graph can be defined for

practical use. To define the link-graph, it is important to realize that converting quantized

flow into graphs requires two types of mappings: the mapping within each triangle (links

of quantized Edge Maps), and the mapping (across edges) between neighbor triangles.

The bin-graphs directly encode the former, and the latter is a trivial one-to-one mapping

since neighboring triangles share bins. However, when considering links defined as pairs of
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Figure 7.7. Selected links of the quantized Edge Maps for a set of triangles are shown
in di↵erent colors, with grey dashed lines for each bin-to-bin rasterization. Two quantized
streamlines are shown: forward with a solid black line and black triangles; and backward
with a dashed black line and white triangles. Triangle direction indicates the direction of
the vector field, not the direction of integration. In both cases, the quantized streamlines
choose the rightmost (with respect to the integration direction) bin.

Figure 7.8. Forward and backward bin-graphs for the quantized flow in Figure 7.7. For
each edge in this sequence, the bins are displayed as a column of circles, colored to indicate
the links they fall in on either side of the edge.

sequences of source and destination bins, the intratriangle map becomes implicit, whereas

the intertriangle map is nontrivial.

Consider the bin-graphs shown in Figure 7.8. The intratriangle mappings are indicated

by the arrows, whereas the intertriangle map is implicit in the ordering of bins. Figure 7.9

shows the corresponding link-graph, where the nodes (boxes) represent the set of bins

indicated by the color, and the edges encode that links have overlapping sequences of bins

across an edge. For example, the red link’s destination bins are split between the blue

and orange link and, thus, the red node has two directed edges to the blue and orange

nodes, respectively. Thus, the link-graph stores the intertriangle maps explicitly (as edges),

whereas the intratriangle map is maintained internally within each node as a rasterization

between two sequences of bins.
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Figure 7.9. Link-graphs for the quantized flow in Figure 7.7.

Definition 7.3 (Link-Graph). A link-graph is a directed graph GL (VL,EL), such that

• VL = {⌘
i

}, where each link-node, ⌘
i

, represents a contiguous sequence of bins from a

single link.

• EL = (⌘
1

, ⌘
2

), such that ⌘
1

and ⌘
2

share at least one bin.

Since the link-graph, by definition, ignores the intratriangle mapping, it represents paths

between links for which no quantized streamline exists. For example, the dark green and

light green links in Figure 7.9 are connected even though no quantized streamline exists

that shares both these bins (see Figure 7.7). However, the link-graph is a conservative

representation, meaning that if two links share a quantized streamline, they are connected

in the link-graph, but the reverse is not necessarily true.

7.1.4 Quantized Critical Points

In PL vector fields, critical points are typically detected by numerically solving for

points with ~V (x) = ~0, and classified using the eigenvalues of the Jacobian matrix of

~V [89]. However, this classification is limited to nondegenerate first-order critical points.

Furthermore, finding exact zeros is numerically unstable. An alternate classification is to

use the Poincaré index [92], which captures the aggregate structure of ~V on the interior of

a closed curve �. In particular, if � encloses no critical points, then ind
�

(~V ) = 0, and if

there exists only a single critical point, the ind
�

(~V ) is called the index of the critical point.

Finally, given a set of critical points c
i

with a simple enclosing curve �, the Poincaré index,

ind
�

(~V ) =
P

i

ind(c
i

), where ind(c
i

) is the index of the critical point c
i

. The Poincaré index

can distinguish isolated higher-order critical points such as k-saddles with ind
�

(~V ) = �k

or k-poles with ind
�

(~V ) = +k when they are enclosed by �.



156

Nevertheless, computing the Poincaré index in practice is nontrivial as it becomes

di�cult to ensure that � does not contain a critical point. Instead, using quantized flow,

ind
�

can be computed by a simple count of transition points. In particular, one can

imagine transforming ~V in an ✏-neighborhood of � such that ~V is orthogonal to d�/dt,

and switches infinitely fast from outflow to inflow at transition points, thus, concentrating

the rotation of ~V at the vertices and transition points and does not a↵ect ind
�

. This process

can be seen as the equivalent of using exterior angles as a discrete curvature measure for

polygonal curves [72], where all curvature is concentrated at vertices. In particular, for a

counterclockwise traversal around a triangle �, each transition point contributes a rotation

of ⇡ (positive for ITPs and negative for ETPs), and each vertex contributes ↵, its exterior

angle to ind
�

(which sum to 2⇡ for all three vertices). When there is an ETP on a vertex,

it is possible to separate the contribution of the transition point from that of the exterior

angle. Thus, it is possible to compute the Poincaré index using just the number of ITPs

and ETPs in a triangle.

ind
@�

=
1

2⇡

0@X
kIk

⇡ +
X
kEk

�⇡ + 2⇡

1A = (kIk � kEk)/2 + 1, (7.1)

where I and E are the sets of ITPs and ETPs, respectively. Note that the Expression (7.1)

ignores potential critical points that may exist at the edges or the vertices of �. Since

the classification of transition points into ETPs and ITPs is made based on the local map,

critical points on the boundary of a triangle can be treated as conventional transition

points, e↵ectively computing the Poincaré index of �̊. Computing the Poincaré index for

all triangles detects and classifies all critical points on the interior of triangles.

For critical points on edges, one can compute ind
�

, or the boundary of the quadrilateral

formed by the adjacent triangles, and subtract the index of both triangle interiors, which

is possible since transition points at quadrilateral corners can be easily classified into ETPs

and ITPs based on the local maps. Note that the algorithm of Section 7.1.1.1 avoids creating

critical points on edges, but other approaches may not, and the representation naturally

supports edge criticalities. Finally, the Poincaré index of a vertex is computed using the

boundaries of its star and subtracting the triangle and edge indices. Overall, this strategy

provides a generic, combinatorial detection and classification of critical points, including

the often problematic cases of critical points near vertices and edges.
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7.1.5 Quantized Closed Orbits

An equally important aspect of vector field analysis focuses on other invariant structures

than just critical points. A general vector field can contain closed orbits that generically

can be attracting, repelling, or both. Closed orbits are particularly di�cult to detect with

numerical techniques. Instead, a quantized flow is, at its core, described by a very large

graph, and thus, closed orbits exist explicitly as circular quantized streamlines.

Definition 7.4 (Quantized Cycle). A quantized cycle is a quantized streamline x̂
S

=

{p̂
0

, p̂
1

, . . . , p̂
n

}, such that p̂
0

= p̂
n

for some n > 0.

Since the forward and backward maps are di↵erent, there exist three types of closed

orbits: those stable in ⇠̂+, those stable in ⇠̂�, and those stable in both directions. Also,

closed streamlines are limit sets and can be classified based on whether they are attracting,

repelling, or neither on the sides of their trajectories. Furthermore, due to some subtleties

in the definition of the the maps ⇠̂±, there are only six classifications.

Consider the forward-stable closed orbit C shown in Figure 7.10. Since C is defined by

⇠̂+ (shown as solid arrows), there cannot exist a streamline diverging from C towards its

right (with respect to the flow direction). Thus, on its right, C can either be attracting

(Figure 7.10(a))—if there exists at least one other streamline converging to it—or neutral

(neither attracting nor repelling). On its left, C can be neutral if no other streamline

approaches, attracting if there exists one or more forward streamlines approaching C

(Figure 7.10(c)), or repelling otherwise (Figure 7.10(b)). The reason for this classification

is that if there exists one or more forward streamlines that approach C from the left, then

all backward streamlines that share bins with C will ultimately leave C. However, all

(a) (b) (c)

Figure 7.10. Classifications of forward-stable closed orbits shown as grey bins. Forward
maps/streamlines are indicated by solid arrows and backward by dashed arrows. (a) On the
right of the closed orbit, streamlines can only converge leading to attracting behavior. (b)
If no forward streamlines approach from the left, the closed orbit is repelling from the left.
(c) If a single forward streamline merges with the closed orbit, it is attracting; all backward
lines only touch it.
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streamlines are considered as distinct entities, which may become infinitely close but never

touch. Such backward streamlines are never part of C, but simply approach and leave its

vicinity. As a result, a forward-stable closed orbit can be attracting, repelling, or neutral

on its left, but only attracting or neutral on its right. Symmetrically, a backward closed

orbit can be attracting, repelling, or neutral on its left but only repelling or neutral on

its right. One consequence of these properties is that no quantized closed orbit can switch

between attracting and repelling, and thus cannot form a saddle-like region in the sense of

the Conley theory [27].

7.1.5.1 Exact detection of closed orbits. To detect all closed orbits in a flow,

a two-stage process is used. First, the link graph of the given flow is created. The link

graph is a conservative description of the flow, such that two links sharing a streamline are

connected in the link graph, but not all connected links share a streamline (see Figure 7.11).

Subsequently, all maximally-strongly-connected components (MSCCs) are extracted from

this graph using the algorithm of Barnat and Moravec [9]. Since usually most triangles

are noncritical, they contain at most four links, and thus the initial link graph typically

has four links per triangle on average. However, since all critical points have already been

identified, one can avoid creating any nodes whose flow is entirely connected to sinks or

sources, which drastically reduces the size of the initial link graph, and also splits it into

independent components that can be processed separately.

After the first stage, each MSCC represents a set of bins forming a region that may

contain closed orbits. To identify individual closed orbits, the initial graph is pruned by

geometrically shrinking its nodes. The region is shrunk by removing the bins that either

enter or leave the region of interest. Once no more bins can be pruned, the boundary

(a) (b)

Figure 7.11. Exact closed orbit detection. The bin-level connectivity (a) defines the
initial link graph (b). Extracting MSCCs removes the faded links, and the bin-level pruning
removes the circled bins.
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of the MSCC forms a bin-level closed orbit. Next, all the bins in the closed orbit are

removed, exposing new bins to the pruning. This process continues until all regions are

empty. A closed orbit stable in one direction may not be stable in the other. As a result,

pruning bins according to ⇠̂+ may remove parts of a closed orbit in ⇠̂� and vice versa. Thus,

pruning is performed twice—individually to identify all forward and backward closed orbits.

Figure 7.12 shows all closed orbits in the 2D global oceanic currents (see Data B.3.3) around

Italy with the color indicating the classification.

7.1.5.2 Approximate closed orbit detection. The pruning algorithm is guar-

anteed to find all closed orbits as a sequence of bins that can subsequently be classified.

However, in practice, there can exist regions with extremely low divergence, and in many

applications, vector fields are theoretically divergence-free. Typically, these are not repre-

sented exactly and the resulting approximated vector field has near-zero divergence. In such

cases, a quantized flow may represent billions of closed orbits. Extracting these individually

is neither practical nor desirable. Instead, potential closed orbits can be approximated up

to a user threshold.

To approximate closed orbits, MSCCs are split by tracing quantized streamlines. Specif-

ically, the MSCC node with the largest width of bins is selected, and forward and backward

streamlines are traced through the bin at the center of the corresponding link. For all

nodes that are part of these streamlines, the corresponding bin is duplicated, the node is

split into two disconnected nodes, and arcs of either node are updated. The streamlines

can: (1) form a closed orbit, (2) leave the MSCC, or (3) connect to a source and/or sink,

all of which significantly change the connectivity of the graph. To avoid tracing such a

streamline for too long, a user-specified maximal length is used, after which the tracing

is terminated. Note that even a partial streamline splits graph nodes and thus provides

Figure 7.12. Classification of closed orbits in the 2D global oceanic currents (see
Data B.3.3) around Italy. The flow is dominated by both-side attracting (red) and both-side
repelling (green) closed orbits. Blue closed orbits are neutral on both sides, and are both
forward- and backward-stable. Other types of closed orbits exist but are too small to be
seen.
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new information. Once the graph connectivity has been updated, new MSCCs are looked

for. This process is iterated until the cross-section of all remaining regions falls below a

threshold of minimal number of bins, as shown in Figure 7.13. These regions become the

current approximation of potential closed orbits, and their aggregated flow behavior can be

determined by examining the maps along their boundary.

7.1.5.3 Comparison. Figure 7.14 presents a comparison of the closed orbit detec-

tion technique presented in this chapter with that of Chen et al. [28] and Szymczak and

Zhang [198]. The flow representing the 2D global oceanic currents (see Data B.3.3) in a

small region around Iceland containing 23,655 triangles is used for this purpose. This figure

highlights di↵erences between the presented technique and the other two, in part because

of the instabilities and very small scale orbits that are contained within. The triangle-based

approach of Chen et al. identifies 160 Morse sets. Szymczak and Zhang’s approach detects

297 Morse sets, of which 113 are trivial. In this example, they have refined their transition

graph with 11 iterations of refinement, subdividing far beyond the Morse sets seen by Chen

et al. Our approach detects 122 closed orbits and 166 critical points (45 sinks, 38 sources,

and 83 saddles) after refining to a threshold of 0.023%.

The limit sets that each technique produces are qualitatively quite similar, as depicted

for the larger orbits. This example shows that numerical instabilities are handled di↵erently

by each approach. Chen et al. prefer a coarser approximation, covering whole triangles with

regions that behave as Morse sets. Szymczak and Zhang find a finer scale approximation

by refining the transition graph represented by their PC flow. One di↵erence with our

technique is explained in the blue box of Figure 7.14. Our refinement, instead of equally

splitting links as done by Szymczak and Zhang, splits links based on an error measure,

Figure 7.13. Graph-splitting progressively converges to closed orbits in the flow inside the
HCCI engine (see Data B.1.1). (Left-to-right) A gradual reduction in the size of regions.
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Figure 7.14. Comparison of closed orbit detection with Morse sets (bottom-left, Chen et
al. [28]), and refined PC Morse sets (bottom-right, Szymczak and Zhang [198]). Both Morse
techniques compute cyclic regions in the blue boxed region, but our approach (top-right)
identifies none, as the visualization in the top-left confirms by indicating a streamline that
spans the region.

which indicates geometric closeness to the original PL flow. It turns out that in this region,

we find no closed orbits, because the PL flow prescribes a streamline (computed using the

local exact method [149]) that crosses over the closed orbit regions detected by the other two

techniques, which leads to an interesting contrast between the three discrete approaches. All

three approaches make some sacrifice when computing the input PL data to a combinatorial

representation. However, our approach strives to capture as much geometric information as

possible by encoding an approximation of the streamlines prescribed by the input PL field.

7.2 Consistent Critical Point Detection
As discussed in Chapter 1, consistent critical point detection is also a key component for

reliable analysis of vector fields. A manifestation of inconsistency in critical point detection

was illustrated in Figure 1.5. To address such problems, this section presents a solution to

guarantee consistent critical point detection. In particular, this section makes the following

contributions:
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1. It proves necessary and su�cient conditions for the existence of critical points within

cells of a simplicial mesh (in both 2D and 3D) for a broad class of interpolation

functions, and

2. It shows how to turn these necessary and su�cient conditions for the existence of

singularities into a combinatorial algorithmic approach.

7.2.1 Existence of a Critical Point in a Simplex

The discussion presented in this section assumes the availability of a generic sampled

vector field (see Definition 2.10). This assumption simplifies the underlying theory required

to develop the technique for critical point detection. Later, Section 7.2.2 discusses how this

assumption can be relaxed.

In the following expressions, S represents a simplex, S̊ the interior of the simplex, and

M a simplicial complex. The star of a given vertex x is denoted as St(x). This work focuses

on a class of interpolated vector fields that can be expressed as

~V (x) =
X
˚Si2M

~V
i

(x),

~V
i

(x) =
X
xj2Si

↵
j

(x)~V
j

,
(7.2)

where the weight functions ↵
j

(x) defined for vertices x
j

are continuous, non-negative, and

local, meaning ↵
j

(x) > 0, 8x 2 St(x
j

), and ↵
j

(x) = 0, 8x /2 St(x
j

).

Following the definition of the weight functions ↵
j

(x), it is clear that for the simplex

S
i

= {x
i0 , . . . ,xid}, ↵j

(x) > 0 only for j 2 {i
0

, . . . , i
d

}. Furthermore, ↵
j

(x)! 0 as x! S
j

,

where S
j

is a facet of S
i

. Since vector samples, ~V
i

, are defined only on the interior of

simplices, the resulting vector field, ~V , is C0 continuous across the faces of the simplices. It

is simple to confirm that PL interpolation falls into this class of functions. Also, a variant of

Radial Basis Function (RBF) interpolation falls into this class where the weights smoothly

fall to zero at the boundary of the vertex stars.

Using the concepts introduced in Section 2.2, this section will show that a simplex S

contains a critical point if and only if the origin, 0, lies in the convex hull of the vectors

at the simplex’s vertices. To connect the results of the Brouwer degree with vector fields

on simplices, a one-to-one mapping from a simplex to an enclosing ball is defined. Let

S = {x
0

, . . . ,x
m

},m  n,x
i

2 Rn be an m-simplex of M, and B be a m-dimensional unit

ball, that is, B = {x 2 Rm | kxk = 1}. Without loss of generality, assume that the origin

0 belongs to the interior of S. Let x ( 6= 0) be a point in the interior of S, and x0 be the

intersection of the boundary of S with the ray from the origin through x. Then, define
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a mapping B : S ! B as B(x) = x/||x0|| for x 6= 0, and B(0) = 0. The mapping B is

illustrated in Figure 7.15.

Assuming nondegenerate simplices, B is continuous and invertible, with 0 as its fixed

point. Then, B can be used to map ~V from any simplex in M onto an enclosing ball B
with the center in the interior. We now show that if 0 is contained in the convex hull of ~V ,

the Brouwer degree of this simplex with respect to 0 is odd.

Lemma 7.1. Let S = {x
0

, . . . ,x
n

},x
i

2 Rn be a simplex of M containing the origin 0,

and ~V be a vector field as defined above. If 0 lies in the convex hull of {~V
0

, . . . , ~V
n

}, then

its Brouwer degree, deg(~V ,S,0), is odd.

Proof. Let B be the unit ball of S as defined above. Define a vector field ~VB : B ! Rn, as

~VB(x) = ~V (B�1(x)). Assume there exists an x
b

2 @B such that

~VB(xb

) = a~VB(�xb

), with a > 0.

The following argumentation proves that this assumption leads to a contradiction.

Since B is continuous, it cannot map adjacent points of S to antipodal points of B, and,
therefore, it follows that there exist two di↵erent facets of S, namely S

j

and S
k

, containing

parallel vectors. Let x 2 S
j

and y 2 S
k

, such that
P

i 6=j

↵
i

(x)~V
i

= a
P

i 6=k
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(y)~V
i

, j 6= k,
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Figure 7.15. Mapping of a simplex to a unit ball to understand robust critical point
detection, B : S ! B in R2. The interior of S contains the origin 0.
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Also, since 0 lies in the convex hull of {~V
0

, . . . , ~V
n

}, there exist weights c
i

such thatP
n

i=0

c
i

~V
i

= 0, and c
i

� 0, 8i, and
P

n

i=0

c
i

= 1. Now, since {~V
0

, . . . , ~V
n

} forms an a�ne

combination,
P

�
i

~V
i

=
P

µ
i

~V
i

, �
i

= µ
i

8i, which implies that

c
i

= ↵
i

(x)� a↵
i

(y), 8i 6= j, k,

c
k

= ↵
k

(x),

c
j

= �a↵
j

(y).

However, since all c
i

’s, ↵
i

’s, and a are positive, the third condition gives a contradiction.

Hence, a point x
b

with ~VB(xb

) = a~VB(�xb

) does not exist. By Theorem 2.2, deg(~VB,B,0),
and hence deg(~V ,S,0) is odd.

The above result allows proving the main result, which follows.

Theorem 7.1. Let S = {x
0

, . . . ,x
n

},x
i

2 Rn be a simplex of M and ~V be a vector field

on M as defined above. Then S contains a critical point if and only if 0 is in the interior

of the convex hull of {~V
0

, . . . , ~V
n

}.

Proof. If 0 is in the interior of the convex hull of {~V
0

, . . . , ~V
n

}, then by Lemma 7.1, the

Brouwer degree of the origin inside S is odd. Thus, by Theorem 2.1, there exists a critical

point in S.
If a critical point is located at x in S, then

~V (x) =
nX

i=0

↵
i

(x)~V
i

= 0,

)
nX

i=0

↵
i

(x)P
n

j=0

↵
j

(x)
~V
i

=
nX

i=0

c
i

(x)~V
i

= 0.

where c
i

(x) = ↵i(x)Pn
j=0 ↵j(x)

. Since all ↵
i

’s are non-negative, it implies that 0  c
i

 1, 8i, andP
n

i=0

c
i

= 1. Therefore, 0 is in the interior of the convex hull of ~V
i

’s.

The practical implication of this result is that, to identify a simplex containing a critical

point, one does not need to know the actual interpolation function as long as it satisfies

the properties expressed by Equation (7.2). Furthermore, it su�ces to check the convex

hull of the vectors at the vertices to find singularities. Thus, detection of singularities for

any interpolation scheme is reduced to a simpler PL test that can be performed using a

combinatorial approach discussed in Section 7.2.2.

If the space is sampled too sparsely, or a more complex interpolation scheme is used,

multiple critical points may appear within a single simplex. In this case, the presented
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technique will assume the simplest possible interpretation of the vectors at the vertices. In

particular, if the singularities in the same simplex cancel each other, then no singularities

will be reported, since the vector field on the boundary can be completed with an entirely

regular vector field in its interior.

Next, the topological consistency of the presented approach will be proved.

Theorem 7.2. Using Theorem 7.1 always leads to topologically consistent critical point

detection for ~V defined on M as above.

Proof. Any smooth vector field on a closed orientable n-dimensional manifold M must have

an even number of critical points. Therefore, given a simplicial complex M corresponding

to M, and a sampled vector field ~V defined on M, consistency will be demonstrated by

showing that the presented technique detects an even number of critical points for ~V .

Consider M in function (vector) space, that is, consider the simplicial complex defined

by the vectors of ~V , and denote it as M
~

V

. Note that an orientable and closed M implies an

orientable and closed M
~

V

. There exists an embedding of M
~

V

in Rn+1, where the n + 1th

component is chosen at random. Trace a line ` through the origin and orthogonal to the

Rn subspace. The line ` corresponds to zero vector 0. By Theorem 7.1, singularities are

not allowed to exist on the faces of simplices of M. Since M
~

V

is closed, there exist an even

number of transveral intersections between M
~

V

and `. Consequently, each intersection

corresponds to a single simplex containing a critical point at its interior, leading to an

even number of simplices with critical points, and, therefore, an even number of critical

points.

7.2.2 Robust Computation

Detection of critical point in a simplex S requires a robust way of determining whether

the zero vector is contained in the convex combination of the vectors of S. Let S
~

V

denote the

simplex created by the vectors of ~V at the vertices of S. Then, the detection of critical point

simply translates into testing whether the origin 0 lies inside S
~

V

. This point-in-simplex test

can be further reduced to computing the orientation of the test point with respect to the

facets of the simplex. This section describes how this procedure can be performed in a

combinatorial manner.

7.2.2.1 Robust computation of orientation. The orientation of n+ 1 points in

Rn can be computed as the sign of the following determinant.
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det(x
0

, . . . ,x
n

) =

0B@ x
0,0

. . . x
0,n�1

1
...

. . .
... 1

x
n,0

. . . x
n,n�1

1

1CA .

The determinant is zero if all of the points lie on a common hyperplane. For example, in 2D,

the orientation of three points is counterclockwise (positive) if the sign of the corresponding

determinant is positive, or clockwise (negative) if the sign is negative. The degenerate case

where the three points are collinear leads to the determinant being zero. Recall that the

sign of a determinant switches if an odd number of row-exchanges are carried out; therefore,

care must be taken with respect to the order of the points. Algorithm 7.1 [49] calculates the

orientation of a set of points, by first assigning them a consistent order (that is, sorting),

and then computing the sign of the determinant.

Algorithm 7.1 Positive
n

(x
j0 , . . . ,xjn).

s Sort (j
0

, . . . , j
n

): s is the number of swaps needed to sort
d sign det(x

j0 , . . . ,xjn)
if odd(s) then

d �d
end if
return d

It is easy to confirm that this determinant is always nonzero for generic vectors. To

impose genericity, the Simulation of Simplicity (SoS) [49] is used. The SoS is a general-

purpose programming technique to handle degeneracies in the data. It applies a symbolic

perturbation to the data, preventing any of the determinants from becoming zero, and, thus,

providing a nondegenerate point-in-simplex test. Intuitively, if a point lies on a shared coface

of two or more simplices, the SoS makes a consistent choice by forcing it to be contained

inside one of them, and outside the rest of the simplices.

Numerical robustness is achieved by first converting the data to a fixed-precision format,

and then representing the values as long integers in computing the determinant (as done

by the Geomdir library [146]), hence removing the need for floating-point arithmetic.

As a result, the determinant computation is both robust and combinatorial. It should

be noticed that Algorithm 7.1 is the fundamental step in the process of critical point

detection, and helps achieve robustness by replacing numerical data (vector components)

with combinatorial information (orientation).

7.2.2.2 Robust point-in-simplex test. Using Algorithm 7.1 for robust computa-

tion of orientation, Algorithm 7.2 [49] performs the point-in-simplex test. Given a simplex
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S = {x
0

, . . . ,x
n

}, x
i

2 Rn, the first step is to determine the orientation of the facets

of the simplex. Then, one by one each facet is replaced by the given test point and the

corresponding orientation is computed. If all such combinations have the same orientation,

then the test point lies inside the simplex, otherwise not.

7.2.3 Experimental Results

This section presents the results of the presented technique to identify critical points in

PL vector fields on a triangulated domain. For each simplex in the domain, whether the

origin is contained inside the simplex created by the vectors at the vertices of the domain

is determined. The Geomdir library [146] that uses the SoS was used to compute the

determinants robustly. The obtained results are compared with the numerical method to

detect critical points [118] that solves a linear system for every simplex in the domain.

To evaluate the two techniques, a synthetic 2D vector field with known critical points is

created. Two of the critical points are placed on an edge and a vertex of the triangulation.

Figure 7.16 shows that for both these critical points, the numerical technique determined

that all triangles sharing the corresponding edge and vertex, respectively, contain critical

points—a topologically inconsistent result. However, the proposed method uses the SoS to

make a choice for using a single triangle for representing each critical point.

To demonstrate dimension-independence of the presented technique, it is tested on the

Lorenz system (A 3D vector field ~V (x, y, z) = {�(y � x), x(⇢� z)� y, xy � �z}) with

parameters � = 10, � = 8/3, and ⇢ = 1/2. For ⇢ < 1, the system contains a singularity at

the origin. Figure 7.17 shows a comparison where the presented technique selects a single

tetrahedron touching the origin to represent the singularity. The numerical technique, on

the other hand, detects all 20 tetrahedra touching the origins as critical.

To compare the running times of the two methods, the flow representing the 2D global

Algorithm 7.2 Point x in Simplex S = {x
0

, . . . ,x
n

},x
i

2 Rn.

s Positive
n

(x
0

, . . . ,x
n

)
for i = 0 to n do

(x0
0

, . . . ,x0
n

) (x
0

, . . . ,x
n

)
x0
i

 x
s
i

 Positive
n

(x0
0

, . . . ,x0
n

)
if s 6= s

i

then
return false

end if
end for
return true
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Figure 7.16. Consistent detection of singularities in a 2D analytic vector field. The top
row shows the triangles where critical points were detected numerically. Zoom-in views
show that multiple triangles test positive for two critical points lying on the boundaries of
triangles. The bottom row shows the consistent results detected using our algorithm where
only one triangle per critical point tested positive.

Figure 7.17. Consistent detection of singularities in a 3D Lorenz vector field. Numerical
method (left) detects 20 tetrahedra touching the origin, whereas our technique (right)
detects a single tetrahedron to represent the singularity.
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oceanic currents (see Data B.3.3) was used. The ocean surface is represented by 10, 633, 760

triangles. The numerical method [118] takes⇡ 89.22 seconds to detect 24, 552 critical points,

whereas the presented method takes only ⇡ 6.85 seconds to detect the same critical points

(as illustrated in Figure 7.18), and, thus, is significantly faster.

7.3 Summary
This chapter presents two techniques for consistent analysis of vector fields—quantized

Edge Maps and combinatorial critical point detection. Both approaches are based on

discrete theories, and are combinatorial in nature, so robust algorithms can be applied for

feature detection. Combining these techniques, consistent topology is demonstrated next in

Figures 7.18 to 7.25. The first flow used is the top slice of the flow representing 3D global

oceanic currents (see Data B.3.3) followed by the 2D ocean winds flow (see Data B.1.2) and

the 2D flow inside the HCCI engine (see Data B.1.1).

The quantized Edge Maps represent the flow by discretizing the flow along the edges of a

triangulation, and constructing Edge Maps on top of this representation. As a result, all the

advantages of the Edge Maps are naturally carried over to the new quantized representation.

This quantized flow represents an important step towards a new theory of vector fields

by combining discrete algorithms with the approximation power of interpolated fields.

This representation enables graph-based algorithms that extract typical flow structures

consistently and with geometric fidelity. Consequently, they have the potential to form the

basis of a new set of analysis techniques that repeat the recent success of discrete scalar

field topology.

The current chapter focuses on PL vector fields and triangulated surfaces; however, one

of the advantages of this new representation is that it is easily extensible to di↵erent mesh

types and interpolation schemes. By reserving more bits to encode the edge number on

an interval, the existing datastructure can be used to encode flow on any polygonal mesh.

Furthermore, the flow is queried in just two clearly defined ways: to find zero-crossings and

to find exit points of streamlines. Thus, the input flow representation could be a black

box solver, making it amenable to, for example, higher-order interpolation schemes. The

main adjustment necessary would be a more general conversion algorithm as some of the

convenient assumptions, for example, the limited number of transition points per edge,

would no longer hold. In this manner, quantized flow forms a unifying representation able

to separate the flow encoding used by a simulation from the analysis within a strict and

well-known approximation error. A complete understanding of the theoretical nature of
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Figure 7.18. Consistent critical points of the 2D global oceanic currents detected 24, 552
triangles with critical points, each represented by a black dot.
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Figure 7.19. Consistent periodic orbits of the 2D global oceanic currents detected⇡ 39, 000
orbits.
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Figure 7.20. Consistent topological skeleton of the 2D slice of the global oceanic currents
data.
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Figure 7.21. Consistent (unstable) manifolds of the 2D global oceanic currents data, each
represented by a di↵erent color.
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Figure 7.22. Consistent topology in the North Atlantic region of the 2D global oceanic
currents. The region is discretized as a [600 ⇥ 600] regular grid. (Left) Black lines are
separatrices grown from all saddles (blue balls), and green curves show detected closed
orbits. (Right) Di↵erent colored regions are unstable manifolds grown from all the sources
(green balls).

these approximation errors remains future work.

The second part of this chapter provides a necessary and su�cient condition for the

existence of critical points in a simplex for a broad class of interpolated vector fields.

This existence condition for critical points allows developing a robust method to detect

critical points in nD. Furthermore, when given finite-precision values, the technique is

guaranteed to use finite precision, and, therefore, the result can be computed exactly

in a combinatorial manner. In the future, it will be useful to investigate further the

class of interpolation functions for which these results were shown, identifying which other

interpolation techniques fall into this class. It will also be useful to classify critical points

in a similar combinatorial approach.
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Figure 7.23. Consistent unstable manifolds in the North Atlantic region of the 2D global
oceanic currents. These structures are di↵erent from those in Figure 7.22 (right) due to
di↵erent error thresholds of the underlying maps. Nevertheless, irrespective of the accuracy,
the results are consistent.
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Figure 7.24. Consistent topology of the 2D ocean winds flow (see Data B.1.2). Orbits and
separatrices are shown in yellow and black, respectively.

Figure 7.25. Consistent topology of the 2D flow inside HCCI engine (see Data B.1.1).
Orbits and separatrices are shown in yellow and black, respectively.



PART IV

CONCLUSION



CHAPTER 8

SUMMARY AND OUTLOOK

This dissertation presents new theories and frameworks to perform consistent feature

extraction from vector fields. These techniques enable analysis applications to answer two

important concerns during feature extraction: (1) “Are the extracted features correct?” and

(2) “Is the extraction procedure precise?”. As a result, the work presented here is directly

useful for gaining scientific understanding of a variety of physical phenomena that can

be represented using vector fields, for example ocean currents [133], wind patterns [15],

turbulent combustion [73, 222], solar convection in astrophysics [194], etc.

One of the most fundamental challenges in vector field analysis is its dependence upon

reference frames. Most features of vector fields are defined with respect to the assumed

reference frame. As a result, the definition of “correct” features is subjective. Part II of

this work promotes the idea that each analysis task must define its own preferred reference

frame, in which the extracted features are most useful. This work presents new reference

frames that focus on the local properties of the flow.

Chapter 3 develops a new formulation of a known vector field decomposition. This so-

called natural Helmholtz-Hodge decomposition (HHD) decomposes a given vector field into

three components, uniquely and without imposing any boundary conditions. As a result,

any analysis using the natural HHD mimics an open boundary useful in many applications.

Most of the existing applications that compute the conventional formulations of the HHD

make use of the two nonharmonic components of the decomposition, and typically discard

the harmonic component as error. Chapter 4, for the first time, describes the utility of

the harmonic component obtained through the natural HHD to represent a local reference

frame, which allows extracting important features that cannot be detected using other

techniques and in other frames.

These local reference frames have an important additional advantage. Most vector fields

of practical interest are unsteady (time-varying) in nature, and their analysis poses serious

challenges—both fundamental and computational. Transforming a given unsteady vector
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field into this local reference frame simplifies its analysis by treating it as a sequence of steady

(time-independent) vector fields. Features of unsteady vector fields are spatiotemporal in

nature, and as such, spatial analysis is incapable of detecting these features. However,

enabling the representation of unsteady fields as sequences of steady fields decomposes

their spatiotemporal analysis into two separate components: spatial and temporal. As a

result, such flows can be analyzed through a spatial (streamline-based) analysis, followed

by a temporal collation of the spatial features. Chapter 5 gives a case study to moti-

vate such analysis by demonstrating that commonly accepted ideas of using pathlines for

understanding unsteady flows are unreliable.

Part III of this dissertation addresses the second question asked above, and focuses

on the numerical robustness of analysis techniques. Commonly used techniques for vector

field analysis are susceptible to numerical errors, leading to the problems of inaccuracy

and inconsistency. This dissertation argues that consistency is the sine qua non of any

computational algorithm, since lack of consistency with the underlying theory can have far

graver consequences than inaccuracy.

Chapters 6 and 7 develop a new discrete theory of vector fields. This theory is im-

plemented using Edge Maps, which are a new representation that allows computing the

streamlines of a steady vector field in a guaranteed consistent manner. The fundamental

philosophy behind obtaining consistency is to impart memory to the application, so that

every analysis decision is consistent with all the decisions made in the past. The Edge

Maps implement this idea by dividing triangles in the given mesh into smaller pieces that

represent mutually nonintersecting flow—an initial decision made by analysis. Subsequently,

a streamline passing through one of the pieces can be guaranteed to stay inside, that is, not

intersect with any other piece. The number of pieces in this triangle decomposition dictates

the available geometric resolution; nevertheless, the flow is always consistent irrespective of

the amount of subdivision. Thus, Edge Maps represent the flow through a single triangle

in a consistent manner. By induction over triangles, streamline tracing, which is the most

fundamental task in streamline-based analysis of steady vector fields, can be performed

in a consistent manner. Chapter 7 also presents a combinatorial framework for consistent

detection of critical points. Based on a similar philosophy, the framework uses symbolic

perturbations to “remember” the triangles that contain critical points, making possible

their consistent detection. Together with consistent streamline tracing, this framework

allows consistent feature extraction in streamline-based analysis.
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8.1 Scope of This Dissertation
As discussed in Chapter 1, vector fields are versatile in nature, in that they can represent

many types of data and phenomena. Although most of the results of the techniques

presented in this dissertation have been demonstrated on vector fields that represent flow

of material, these techniques are more generally applicable to other types of vector fields.

In particular, the ideas of local reference frames are directly applicable to other types

of vector fields. For example, one can imagine extracting the behavior of a local force

field (gravitational, magnetic, etc.) in the presence of a more globally existing force field.

Similarly, understanding dynamical systems may require studying local influences, in which

case the proposed reference frames may be used. These techniques may also be applied to

isotropic vector fields found in electromagnetics, or cosmological vector fields. Furthermore,

the discrete representation is also applicable and useful for di↵erent types of vector fields

where one may require streamline tracing—almost all vector fields.

Currently, this work is limited in the spatial dimensionality of vector fields. The

work presented in Part II is built upon the fundamental ideas of the Helmholtz-Hodge

decomposition, which is defined for vector fields in 2D and 3D; as a result, our formulations

and definitions are also limited to 2D and 3D. However, there may be ways to generalize

the techniques presented in this dissertation to higher dimensions using more general vector

field decompositions [86, 87, 109, 190]. These ideas will require further investigation.

8.2 Directions for Future Research
Although the work described in this dissertation, in its current form, is useful for a variety

of applications, there are a number of ways to improve it and make it even more widely

applicable. First of all, this dissertation proposes the idea of boundary-to-boundary flow

mapping, and applies it only to 2D triangular meshes (in Chapters 6 and 7). Nevertheless,

as a concept, the same idea can be applied to other forms of discretizations and/or interpo-

lation schemes. In particular, developing Edge Maps for quadilateral cells with bilinearly

interpolated flow will be especially interesting, since many simulations’ output data defined

on regular grids. With a change in interpolation, however, the properties and construction

of Edge Maps will be di↵erent, since a bilinear interpolation does not fulfill the properties

of piecewise linear flow. In particular, simplifying assumptions such as a single transition

point per-edge will not be true anymore, and a fresh study of possible equivalence classes

must be performed.

Another research direction is to study the Edge Maps in 3D, in which case they should

instead be called “Face Maps”. The construction of 3D maps appears to be particularly
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challenging since one may be required to represent arbitrarily shaped subsets of faces of

tetrahedra and map them to other similar pieces of possibly di↵erent shapes. However,

constructing the Face Maps may be possible through appropriate “gridding” (similar to

binning presented in Chapter 7) of the faces, and snapping the flow to the nearest grid point.

Then, the next step would be to understand how to encode them concisely, since moving

from 2D to 3D will increase the memory footprint of this representation substantially. Yet

another interesting research direction is to develop similar representations for unsteady

vector fields. For the 2D case, one may be able to use the Edge Maps framework for steady

vector fields that is presented in this dissertation. Nevertheless, since now the flow changes

over time, every triangle will require multiple Edge Maps—one for each time-step. The

most important challenge then becomes interpolating between these Edge Maps to trace

pathlines. When these ideas are implemented, however, they will provide a first-of-its-

kind consistent framework for pathline tracing and the associated topological structures in

unsteady vector fields. These directions require deeper thinking and substantial research

e↵orts—an excellent opportunity for a new graduate student for a successful and impactful

Ph.D. dissertation.

Chapter 4 of this dissertation develops a new theory of internal reference frames for

unsteady vector fields. Although the internal frames are already useful for many complex

simulated flows, this work is only the tip of the iceberg in this new direction of research.

In particular, the motion of the internal frames is represented as a harmonic flow, which,

although more general than currently used uniformly moving frames, is still far away from

addressing even more-general types of vector fields. A number of physical scenarios may

contain di↵erent reference frames, which currently remain unknown. For example, consider

a small vortex rotating inside a bigger vortex. None of the existing techniques (including

the work presented in this dissertation) may be able to di↵erentiate between and detect

both the vortices, even at di↵erent scales. There is a need to develop techniques that can

automatically provide a multiscale analysis of unsteady flows, and in the process, determine

the “correct” reference frame for every scale. Defining the “correct” reference frame in

this context is also still unclear, and provides an excellent direction for future research. It

appears that a more-general reference frame, such as an expanding or a rotating frame,

will address more-general types of flows. In particular, the famous examples of the double

gyre [187] and the petri dish [218] may provide good litmus tests for more-general reference

frames.



182

8.3 Future Impact
The work presented in this dissertation is a fundamentally new way of representing and

analyzing vector fields. Not only does it improve the state of the art in vector field analysis,

this work also makes the existing well-established steady vector field analysis techniques

accessible to unsteady vector fields—the more prevalent form of vector fields. Especially

since the analysis of steady vector fields is more advanced and better understood than the

analysis of unsteady ones, the ideas presented in this dissertation o↵er significant advances

for the analysis of the latter. Using the ideas presented in this dissertation, unsteady

vector fields can be analyzed on a per time-step basis, thus allowing temporal locality,

and hence, better data management and higher levels of parallelization. These ideas also

create a potential for in situ analysis of large-scale flow phenomena. Analyzing such flows

is integral in a variety of applications across scientific domains. A number of contemporary

challenges in science and engineering—for example, development of fuel-e�cient designs

of combustion engines, understanding of critical processes that drive climate changes, and

exploring e�cient renewable energy sources—can benefit from the techniques developed in

this work.



APPENDIX A

DERIVATIONS

A.1 The Helmholtz-Hodge Decomposition (HHD)

A.1.1 Proof of Existence of HHD

• For the Poisson system (2.20).

�D = r·~V on ⌦

~n ·rD = ~n · ~V on @⌦

In this case, the divergence theorem [71],Z
⌦

r·~V dx =

Z
@⌦

~n · ~V dx

ensures that the compatibility condition for the Poisson equation is satisfied, and

hence, it has a solution D, which is unique up to a constant leading to the existence

of a unique ~d (= rD) and thus a unique ~r = ~V � ~d. The compatibility condition

associated with the Neumann boundary condition is discussed in Section 2.1.

• For the Poisson system (2.19).

~r2 ~R = �r⇥~V on ⌦

~n⇥r⇥~R = ~n⇥ ~V on @⌦

Once again, it can be shown that the Green’s theorem [71] satisfies the compatibility

condition. Thus, it admits a solution ~R which is unique up to a constant leading to

the existence of a unique ~r = r⇥~R, and, thus, a unique ~d = ~V � ~r.

A.1.2 Orthogonality of the HHD

The orthogonality with respect to the L
2

inner product
�
hf, gi =

R
f · g

�
is established

by showing that Z
⌦

~d · ~r dx = 0. (A.1)

Corresponding to the di↵erent boundary conditions, it is shown that (1) the space of gradient

vector fields is orthogonal to the space of divergence-free vector fields that are parallel to
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the boundary, and (2) the space of divergence-free vector fields is orthogonal to the space

of gradient vector fields that are normal to the boundary.

• In the case of boundary conditions (2.17) (~n · ~r = 0),Z
⌦

~d · ~r dx =

Z
⌦

rD · ~r dx

=

Z
⌦

r·(D~r)�D(r·~r) (by chain rule)

=

Z
⌦

rD · ~r (as r·~r = 0)

=

Z
⌦

r·(D~r) dx

=

Z
@⌦

D ~r · ~n dx (by divergence theorem)

= 0

• In the case of boundary conditions (2.18) (~n⇥ ~d = 0),Z
⌦

~d · ~r dx =

Z
⌦

~d ·
⇣
r⇥~R

⌘
dx

=

Z
⌦

r·
⇣
~R⇥ ~d

⌘
dx ( ~A · ( ~B ⇥ ~C) = ( ~A⇥ ~B) · ~C)

=

Z
@⌦

⇣
~R⇥ ~d

⌘
·~n dx (by Gauss theorem)

=

Z
@⌦

~R ·
⇣
~d⇥ ~n

⌘
dx ( ~A · ( ~B ⇥ ~C) = ( ~A⇥ ~B) · ~C)

= 0

Thus, for the decomposition to be L
2

-orthogonal, the boundary conditions (2.17), (2.18),

(2.19), and (2.20) are all su�cient, but not necessary. The orthogonality may be established

with other types of boundary conditions too, as long as Equation (A.1) is satisfied.

A.1.3 Uniqueness of the HHD

As already discussed, the boundary conditions imposed on the decomposition determine

the uniqueness. It is important to note that the two boundary conditions (2.17) (or (2.20))

and (2.18) (or (2.19)) may give di↵erent unique decompositions, as the harmonic component

is represented di↵erently. Here, we show the uniqueness of the decomposition corresponding

to these boundary conditions.



185

• Assume that two di↵erent orthogonal decompositions of a vector field (with respect

to boundary condition (2.17)) exist,

~V = rD
1

+ ~r
1

= rD
2

+ ~r
2

) 0 = ~r
1

� ~r
2

+r(D
1

�D
2

)
(A.2)

Taking the inner product of Equation (A.2) with ~r
1

� ~r
2

gives

0 =

Z
⌦

k~r
1

� ~r
2

k2 + (~r
1

� ~r
2

) ·r(D
1

�D
2

) dx

=

Z
⌦

k~r
1

� ~r
2

k2 dx+

Z
⌦

(~r
1

� ~r
2

) ·r(D
1

�D
2

) dx

=

Z
⌦

k~r
1

� ~r
2

k2 dx+

Z
⌦

(~r
1

·rD
1

+ ~r
2

·rD
2

� ~r
1

·rD
2

� ~r
2

·rD
1

) dx

=

Z
⌦

k~r
1

� ~r
2

k2 dx+ 0�
Z
⌦

(~r
1

·rD
2

+ ~r
2

·rD
1

) dx (by orthogonality)

=

Z
⌦

k~r
1

� ~r
2

k2 dx�
Z
@⌦

(D
2

~r
1

·~n+D
1

~r
2

·~n) dx (by divergence theorem)

=

Z
⌦

k~r
1

� ~r
2

k2 dx (since ~r·~n = 0)

Thus, the above equality is satisfied only if
R
⌦

k~r
1

� ~r
2

k2 dx = 0 ) ~r
1

= ~r
2

, which

implies rD
1

= rD
2

, which violates the assumption. Thus, the decomposition given

by the boundary condition (2.17) is unique.

• Similarly, by taking the inner product of Equation (A.2) with r(D
1

�D
2

), it can be

shown that the decomposition given by the boundary condition (2.18) is unique.

A.1.4 Derivation of the Two-Component HHD on Finite Domains

The Expressions (2.16) for the two-component HHD on finite domains can be derived

as follows:

~V (x) =

Z
~V (x

0

) �(x� x
0

) dx
0

(by definition of Delta function)

=

Z
~V (x

0

) r2G1(x,x
0

) dx
0

(r2G1(x,x
0

) = �(x� x
0

))

=

Z
r2

⇣
G1(x,x

0

)~V (x
0

)
⌘

dx
0

(~V (x
0

) is constant w.r.t. r)

=

Z ⇣
rr ·G1(x,x

0

) ~V (x
0

) �r⇥r⇥G1(x,x
0

) ~V (x
0

)
⌘

dx
0

(r2 = rr·�r⇥r⇥)

= r
Z
r ·
⇣
G1(x,x

0

) ~V (x
0

)
⌘

dx
0

�r⇥
Z
r⇥

⇣
G1(x,x

0

) ~V (x
0

)
⌘

dx
0

= rD(x) +r⇥ ~R(x)
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In the following, ~n represents the exterior normal to the boundary. For simplicity in the

following expressions, we swap x and r with x
0

and r
0

, respectively. Consider the first

integral term.

D(x
0

) =

Z
r

0

·
⇣
G1(x,x

0

) ~V (x)
⌘

dx (by definition of D)

=

Z
~V (x) ·r

0

G1(x,x
0

) dx (~V (x) is constant wrt r
0

)

= �
Z

~V (x) ·rG1(x,x
0

) dx (rG1(x,x
0

) = �r
0

G1(x,x
0

))

=

Z
G1(x,x

0

)
⇣
r · ~V (x)

⌘
dx �

Z
r ·
⇣
G1(x,x

0

) ~V (x)
⌘
dx

((rf) · ~V = r·(f ~V )� f(r·~V ))

=

Z
G1(x,x

0

)
⇣
r · ~V (x)

⌘
dx �

I
G1(x,x

0

) ~n · ~V (x) dx

(by divergence theorem)

Now, consider the second integral term.

~R(x
0

) = �
Z
r

0

⇥
⇣
G1(x,x

0

) ~V (x)
⌘

dx (by definition of ~R)

= �
Z

~V (x)⇥r
0

G1(x,x
0

) dx (~V (x) is constant wrt r
0

)

=

Z
~V (x)⇥rG1(x,x

0

) dx (rG1(x,x
0

) = �r
0

G1(x,x
0

))

=

Z
r⇥

⇣
G1(x,x

0

) ~V (x)
⌘
dx �

Z
G1(x,x

0

)
⇣
r⇥ ~V (x)

⌘
dx

((~V ⇥rf) = r⇥(f ~V )� f(r⇥~V ))

=

I
G1(x,x

0

)
⇣
~n⇥ ~V (x)

⌘
dx �

Z
G1(x,x

0

)
⇣
r⇥ ~V (x)

⌘
dx

(by Gauss theorem)

A.1.5 Simplified Expressions of the HHD in 2D

Equations (2.22) and (2.23) can be derived using the properties of J . By definition, if

~V = (v
1

, v
2

), then J ~V = (�v
2

, v
1

). Then, r⇥~V = �r·J ~V as derived below.

r·~V =
@v

1

@x
+

@v
2

@y

r⇥~V =
@v

2

@x
� @v

1

@y

= r·(v
2

,�v
1

)

= r·(�J (v
1

, v
2

))

= �r·J ~V

Denoting a scalar field as S, its gradient rS is an irrotational vector field. Then, JrS

is an incompressible vector field, since r·JrS = �r⇥rS = 0. Thus, instead of defining
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~r = r⇥~R, the incompressible component can be defined as ~r = JrR, where R is a scalar

potential. Finally, the vector Laplacian in Equation (2.14) can be simplified as follows:

r⇥~r = r⇥~V

�r·J (~r) = �r·J ~V

�r·J (JrR) = �r·J ~V

r2R = �r·J ~V

A.1.6 Invalidity of the PN Boundary Conditions

This section provides an analytical example to show that the PN boundary conditions

are not applicable to compute the HHD in general, as they may violate the divergence

theorem.

Definition A.1 (The HHD with PN boundary conditions). The HHD with PN bound-

ary conditions is a three-component form of the HHD computed using the PN boundary

conditions, meaning, its components satisfy the following:

• ~n · ~d = 0, that is, the irrotational component is parallel to the boundary.

• ~n⇥ ~r = ~0, that is, the incompressible component is normal to the boundary.

where ~n is the outward normal to the boundary.

To understand the invalidity of the PN boundary conditions, consider a vector field

defined by a source at the origin of R2, that is, ~V (x, y) = {x, y}. For ~V , r·~V = 2, and

r⇥~V = 0. Since ~V contains no rotation, its irrotational component should be zero, that

is, ~r = 0. Also, since the field is purely divergent, ~h = 0. Thus, computing the HHD for ~V

should give ~V = ~d.

The divergence of ~d is simply r·~d = r·~V = 2. Combining the divergence theorem [71]

and the PN boundary conditions leads toZ
⌦

r·~d dA =

Z
@⌦

~n · ~d dS (A.3)

,
Z
⌦

2 dA =

Z
@⌦

0 dS (A.4)

, 2

Z
⌦

dA = 0 (A.5)

Thus, for this example, the HHD with PN boundary conditions exists only for a domain with

zero area. Essentially, by the divergence theorem, any decomposition with PN boundary
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conditions has zero global divergence, and, thus, does not apply to most vector fields. More

specifically, it can be applied only to the vector fields withZ
⌦

r·~V dA =

Z
@⌦

~n · ~V = 0.

Similarly, it can be shown that for a purely rotational field, ~V (x, y) = {�y, x}, ~n ⇥ ~r = ~0

cannot be maintained. The combined result is that PN boundary conditions are not valid

for general vector fields.

A.2 Edge Maps

A.2.1 Derivation of Mapping Error in Edge Maps

The motion of a particle under a linear vector field ~V (x) = Ax + ~o is defined as [108]

x(t) = e(t�t0)Ax
0

+ (e(t�t0)A � Id)A�1~o,

where, x
0

, t
0

give the particle’s initial position and time, and x(t) gives the position after

time t. A is a 2⇥ 2 matrix, ~o is the translation vector, and Id is the identity matrix.

Consider a link, in which origin interval (a,b) flows to destination interval (c,d). Point

a flows to point c in time t(a). Similarly, point d is calculated as the true destination of

point b, reached in time t(d).

c(a, t(a)) = et(a)Aa+ (et(a)A � Id)A�1~o

d(b, t(b)) = et(b)Ab+ (et(b)A � Id)A�1~o

Now, consider a point x on the source interval, whose true destination is given by y.

y(x, t(x)) = et(x)Ax+ (et(x)A � Id)A�1~o

Suppose, x = �a+ (1� �)b. We can interchangebly use y(x) and y(�), and t(x) and t(�).

The map gives x0s destination as y0, and the mapping error is calculated as e(�) =

y0(�)�y(�). The map interpolates the destination interval to approximate the destination

of x.

y0(�) =�c+ (1� �)d

=�et(a)A(a+A�1~o) + (1� �)et(b)A(b+A�1~o)� Id A�1~o
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Calculating the deviation between the two,

e(�) = y0(�)� y(�)

= �et(a)A(a+A�1~o) + (1� �)et(b)A(b+A�1~o)� Id A�1~o

� {et(x)Ax+ (et(x)A � Id)A�1~o}

= �et(a)A(a+A�1~o) + (1� �)et(b)A(b+A�1~o)� et(x)A(x+A�1~o)

= �et(a)A(a+A�1~o) + (1� �)et(b)A(b+A�1~o)� et(�)A(�a+ (1� �)b+A�1~o)
(A.6)

The maximum length of this deviation of e(�) over every link is assigned as the mapping

error of the link

" = max
0�1

||e(�)||
2



APPENDIX B

DATASETS

B.1 2D Flows

B.1.1 Flow Inside the Homogeneous Charge Compression
Ignition Engine

The flow visualized in Figure B.1 is a 2D flow resulting from the simulation of a

homogeneous charge compression ignition (HCCI) [88]. The HCCI engines have higher

compression ratio and no throttling losses, and, therefore, they may be able to provide

e�ciency gains over conventional spark-ignition engines. The flow was generated by the

direct numerical simulation (DNS) of autoignition performed by Dr. Jacqueline Chen at

the Sandia National Laboratories. This 2D flow is incompressible, and exhibits turbulent

vortical structures of clockwise and counterclockwise rotations. It is defined on a [640⇥640]

domain that is periodic in both horizontal and vertical dimensions (di↵eomorphic to a torus).

The flow is unsteady, and is available for 299 time-steps.

B.1.2 Ocean Winds Flow

The flow illustrated in Figure B.2 represents a simulation of the wind flow on the ocean’s

surface. This 2D incompressible flow is defined on a [573 ⇥ 288] regular grid, and is due

to Zhanping Liu at the Mississippi State University. We thank Han-Wei Shen of the Ohio

State University for providing us access to this data.

B.1.3 Flow Behind a Cylinder

Figure B.3 illustrates a well-studied flow phenomenon representing the flow moving past

a rigid obstacle, a cylinder in this case. The characteristic feature of this phenomenon is

the shedding of vortices in the wake of the cylinder, called the von Kármán vortex street.

The von Kármán vortex street is a sequence of counter-rotating vortices shed alternately by

the top and the bottom of the cylinder. The shedding phenomenon is found in nature, for

example, winds blowing past mountains or isolated islands, in engineering problems, such as
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Figure B.1. Visualization of the flow inside a homogeneous charge compression ignition
engine (HCCI) engine. Lighter color represents faster velocity.

Figure B.2. Visualization of the ocean winds flow. Lighter color represents faster velocity.
253EXPERIMENTAL HYDRODYNAMICS OF SWIMMING

FIG. 10. Comparison of theoretically expected patterns of wake flow behind a stationary cylinder (A) and a heaving and pitching foil (B).
Incident fluid flow in both panels is from left to right. The bluff body in A generates a drag wake composed of staggered counterrotating
vortices with interspersed jet flow (gray arrows) oriented upstream (i.e., a von Kármán street). As the streamlined foil in B oscillates it also
leaves a staggered wake of vortices, but because the sense of vortex rotation is opposite to that shown in A this wake is termed a reverse von
Kármán street. This actively generated wake produces jet flow between alternating vortex pairs that is oriented downstream. In reaction to
these momentum jets, forward thrust is exerted on the foil.

each stride is partitioned among the three fin systems
as shown in Figure 11A; note that the soft dorsal fin
contributes 12% of total thrust on average. During
slow turning maneuvers in sunfish (described above),
the soft dorsal fin is also active, shedding a laterally
oriented momentum jet at the end of the body-rotation
phase (Drucker and Lauder, 2001a). Both the pectoral
and dorsal fins, therefore, exert laterally oriented wake
forces during this unsteady swimming behavior, with
the dorsal fin generating an average of 35% of the total
(Fig. 11B). The fact that the soft dorsal fin produces
approximately 10% of the total thrust generated by all
fins during steady swimming, and more than one-third
of the total lateral force during turning, underlines its
active role in propulsion. The partitioning of swim-
ming force among multiple fins is likely a widespread
characteristic of the teleost locomotor system, but as
yet has received very little experimental study.

9. DPIV shows that wake interaction among fins may
enhance thrust production
The observation that more than one fin can shed a

vortex wake at the same time suggests the possibility
of hydrodynamic interaction among nearby propulsors.
Theoretical studies of fish locomotion have empha-
sized the potential for wake interaction among fish fins

to increase propulsive efficiency (Lighthill, 1970; Wu,
1971; Yates, 1983; Weihs, 1989). Experimental work
in non-biological systems has demonstrated that vortex
trails shed by upstream bodies can intercept and affect
the strength of developing vortices generated by bod-
ies downstream. Specifically, it has been shown that
the drag wake of an upstream bluff body can interact
in either a constructive or destructive way with the
near-field thrust wake produced by a downstream os-
cillating foil (Gopalkrishnan et al., 1994; Anderson,
1996; Triantafyllou et al., 2000). The type of interac-
tion observed depends on the sign of vortex rotation
and the encounter phase of the foil with respect to the
upstream vortices. For two adjacent foils shedding a
thrust wake, as in a swimming fish, annihilation or
reinforcement of vorticity will also depend on encoun-
ter kinematics.
Using DPIV, Drucker and Lauder (2001a) examined

the dynamics of wake interaction between the soft dor-
sal fin and tail of bluegill sunfish. Given the proximity
of these fins (see Fig. 11A), both constructive and de-
structive interactions among wake vortices are theo-
retically possible. During steady swimming slightly
above the gait transition speed (1.1 L sec21), both fins
exhibit a sinusoidal pattern of motion with a mean
phase lag of 120 msec. A horizontal laser light sheet
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Figure B.3. Illustration of the von Kármán vortex street in the flow behind a cylinder [45].
Notice the backward flow between counter-rotating vortices that induces drag on the
cylinder.



192

design of skyscrapers, etc. In particular, the collapse of the three towers of the Ferrybridge

Power Station C in 1965 was caused by the vortex shedding created during high winds.

The properties of the shedding, such as its speed and frequency, depend upon the velocity

and the viscosity of the flow, and the size of the cylinder – all of which are characterized

by the Reynolds number (Re). This flow is common in the fluids and analysis community,

and is often used to illustrate vortex detection techniques. The 2D flow behind a cylinder

used in this dissertation was simulated by Dr. Mahsa Mirzargar at the SCI Institute using

Nektar++ [23]. The flow is sampled on a [1450⇥ 800] domain for various Reynolds number

and time ranges.

B.2 Surface Flows

B.2.1 Interface Surface in Rayleigh-Taylor Instability

Laney et al. [115] performed a topological analysis on the interface surface of a heavy

fluid placed above a light fluid to understand the Rayleigh-Taylor instability. The interface

surface shows a characteristic structure of rising bubbles and falling spikes, as visualized in

Figure B.4. The data was generated by William Cabot and Andrew Cook at the Lawrence

Livermore National Laboratory. The results presented in this dissertation use the gradient

field of the height function defined on the interface surface, and focus on an interesting

subregion containing 27, 737 vertices and 54, 737 triangles.

Figure B.4. A topological segmentation of the height function of the bubbles surface
representing the Rayleigh-Taylor instability.
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B.2.2 Surface Flows of Combustion Chamber and Diesel Engine

Figure B.5 shows visualizations of simulated flows on the surface of a combustion

chamber and a diesel engine. The goal of studying these flows is to achieve ideal flow

patterns inside the engines to optimize the mixture of oxygen and fuel during the ignition

phase of the valve cycle, ultimately leading to more e�cient combustion. The surface of the

combustion chamber consists of 13, 151 vertices and 26, 298 triangles, whereas that of the

diesel engine consists of 110, 789 vertices and 221, 574 triangles. We thank Robert Laramee

for giving us access to these datasets.

B.3 3D Flows

B.3.1 Lifted Ethylene Jet Flame

Figure B.6 shows a 2D slice through the center of the flow generated by a large-scale

combustion simulation of a lifted ethylene jet flame [223, 222] performed using S3D [29]. De-

veloped at the Sandia National Laboratories, S3D is designed to perform massively parallel

direct numerical simulation for turbulent combustion, which uses a Runge-Kutta integrator

to solve the full compressible Navier-Stokes equation, and balance equations for conserving

mass, momentum, energy, and chemically reactive species. The resulting flow is used to

(a) (b)

Figure B.5. Visualization of the surface flows on (a) a combustion chamber and (b) a
diesel engine. Lighter color represents faster velocity.
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Figure B.6. Visualization of a 2D slices through the center of the 3D lifted ethylene jet
flame. Lighter color represents faster velocity.

investigate turbulent lifted jet flames with the goal of improving the understanding of direct

injection stratified spark ignition engines for commercial boilers, as well as fundamental

combustion phenomena.

The flow in consideration is compressible, and is defined on a [2025⇥1600⇥400] rectilin-

ear grid, with a variable spacing in the horizontal dimension, and is available for a total of

299 time-steps. The data was generated on Jaguar (now Titan) at the Oak Ridge leadership

computing facility, using 30, 000 cores with [27 ⇥ 40 ⇥ 40] grid points per processor. The

simulation captures a large number of variables representing the flow velocity, temperature,

pressure, species, etc., and the total file-size for storing these variables, just for a single

time-step, is about 280 GB.

B.3.2 Jet in Cross-Flow

The flow illustrated in Figure B.7 represents a jet in cross-flow (JICF) [73], which is a

fundamental flow phenomenon relevant to many engineering applications, e.g., film cooling

of turbines, fuel injections, and dilution jets in gas-turbine combustors. The experimental

set-up contains injection of flow through a jet at the bottom in the presence of a strong

background flow in transverse direction, the cross-flow. The goal of the experiment is to

study di↵erent types of vortical structures created by the interaction of the burning jet with

the cross-flow. The most prominent structures in this flow are a pair of counter-rotating
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X

Y

Z

Figure B.7. Illustration [60] of the four types of vortical structures associated with
this flow: jet shear-layer vortices at the perimeter of the bending jet, the developing
counter-rotating vortex pair, horseshoe vortices on the wall, and wake vortices extending
from the wall to the jet. Reproduced with permission from Cambridge University Press.

vortices, which occur as a result of the impulse of the jet on the cross-flow, and become

dominant in the far field. At the periphery of the jets inflow, jet shear-layer vortices are

created due to the annular shear layer that separates from the edge of the jet orifice. These

vortices dominate the initial portion of the jet. The horseshoe vortices wrap around the

base of the jet issuing from a wall into a cross-flow, and the wake vortices are the structures

existing between the bottom wall and the jet itself. The JICF data used in this work was

simulated by Dr. Jacqueline Chen at the Sandia National Laboratories. This 3D flow is

incompressible, and is defined on a [2025⇥ 1600⇥ 400] regular grid.

B.3.3 Global Oceanic Currents

Figure B.8 shows a visualization of the top slice of a 3D simulation of global oceanic

currents. These simulations were produced using a technique based on boundary impulse

response functions [133] with the aim of studying the global eddies patterns in oceanic

currents. The data is available on a [3600 ⇥ 2400 ⇥ 300] regular grid, and 365 time-steps

representing each day of an year. Although the flow in the original 3D simulation is

incompressible, a 2D depth slice from this 3D flown does not satisfy incompressibility

anymore, since slicing creates sinks and sources due to the flow across depths. We thank

Mathew Maltude from the Climate, Ocean and Sea Ice Modelling program at Los Alamos

National Laboratory and the Biological and Environment (BER) O�ce of Science and the

Ultrascale Visualization - Climate Data Analysis Tool (UV-CDAT) team for providing us

access to this data.
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Figure B.8. Visualization of the top 2D slice of 3D global oceanic currents. Darker color
represents faster flow.
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