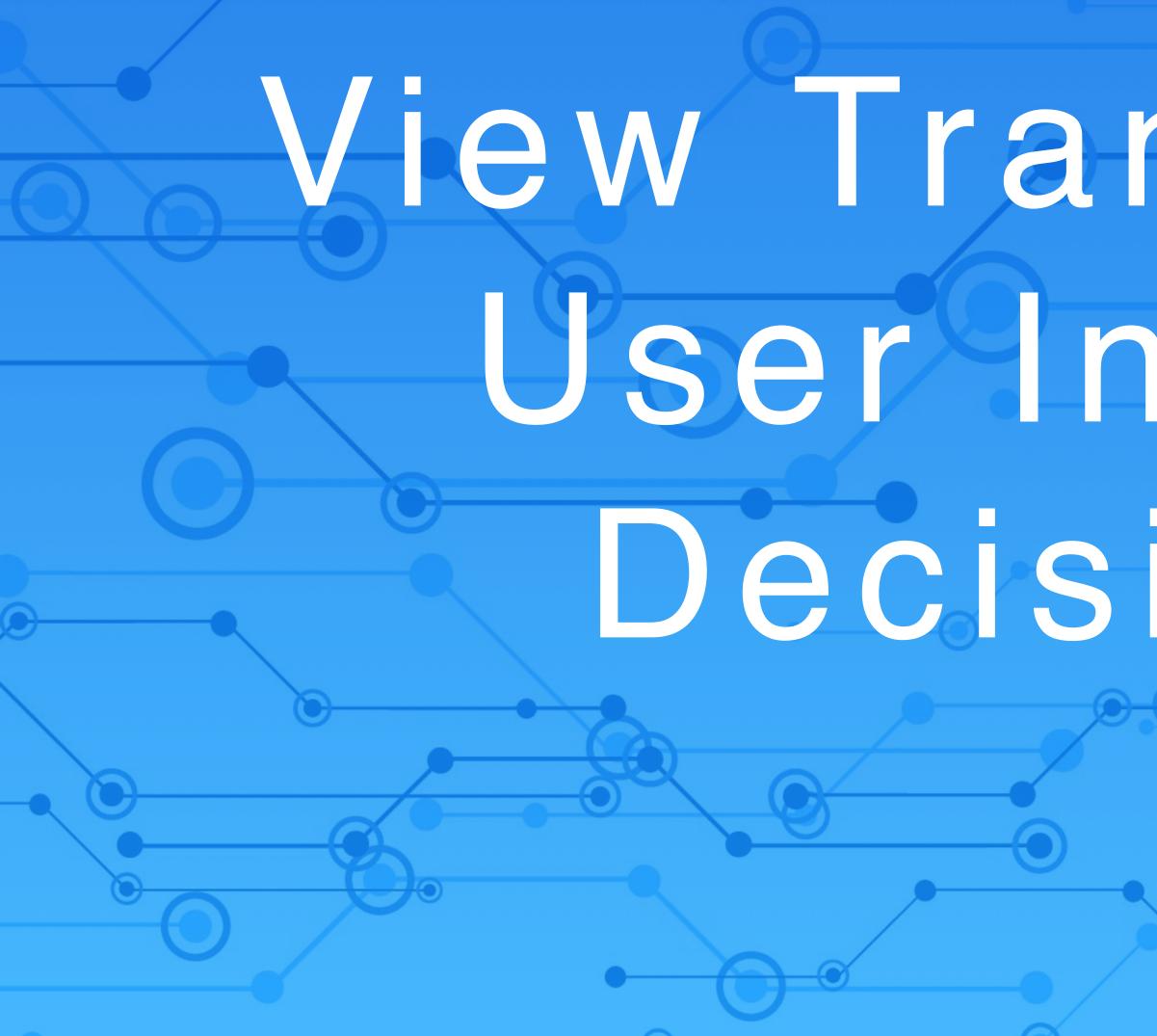
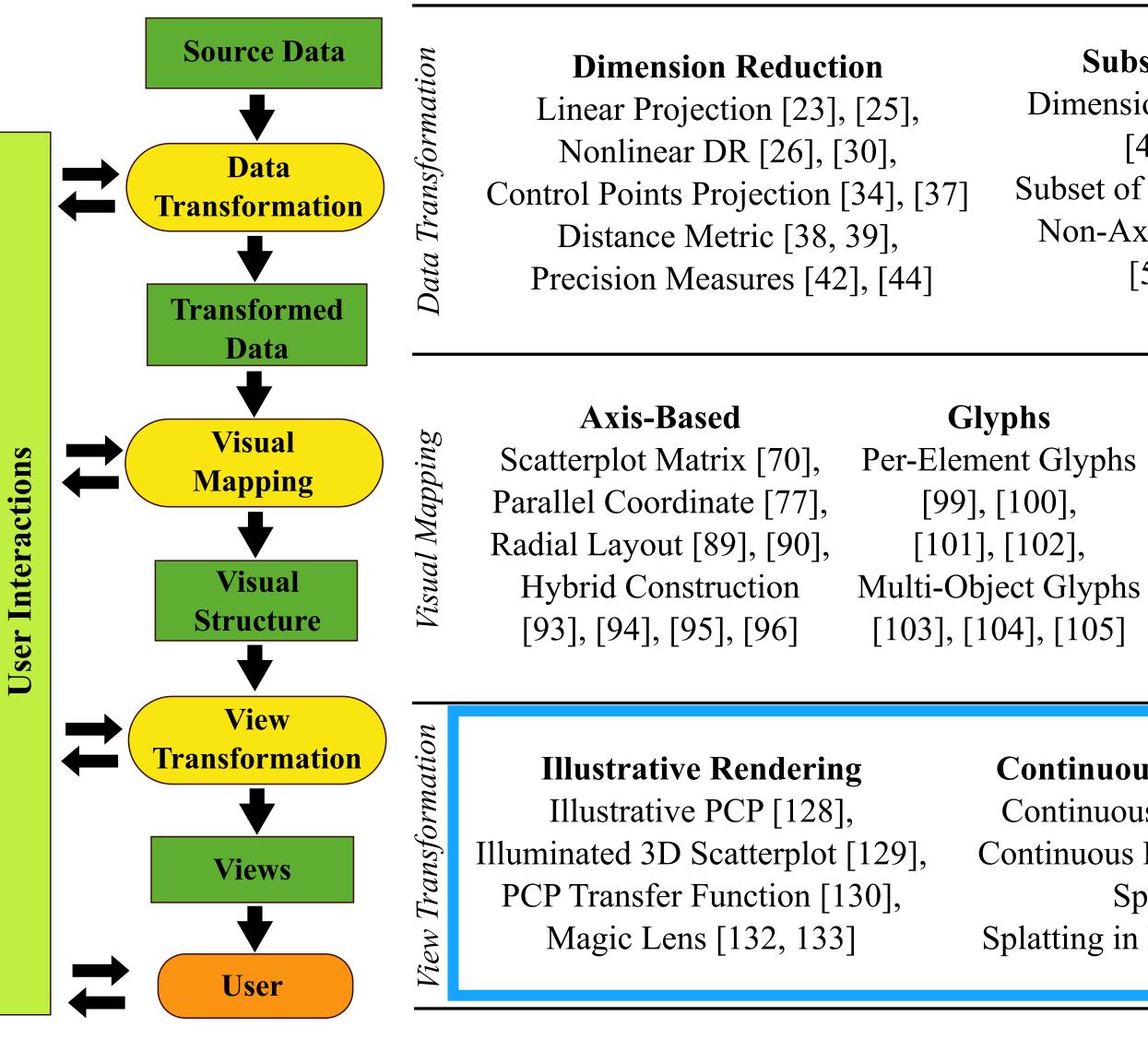
Advanced Data Visualization

- CS 6965
- Fall 2019
- Prof. Bei Wang Phillips University of Utah



View Transformation User Interaction Decision Tree

HD



Visualization pipeline for HD data

Subspace Clustering Dimension Space Exploration [47], [48], [49], Subset of Dimension [51], [53], Non-Axis-Parallel Subspace [56], [57], [58]

Regression Analysis

Optimization & Design Steering [61], [62], [63], **Structural Summaries** [67], [68]

Topological Data Analysis Morse-Smale Complex [166], [168], [169], [170], Reeb Graph [174], [175], [181] Contour Tree [179, 180], Topological Features [191], [192]

Pixel-Oriented

Jigsaw Map [109], Pixel Bar Charts [108], Circle Segment [107] Value & Relation Dispaly [110]

Hierarchy-Based

Dimension Hierarchy [113], Topology-Based Hierarchy [197], [198], Others [115], [117]

Animation

GGob i[119], TripAdvisorND [52], Rolling the Dice [120]

Evaluation

[122], [123] Parallel Coordinates Effectiveness [124],

Continuous Visual Representation

Continuous Scatterplot [134], [135] Continuous Parallel Coordinates [136], Splatterplots [138], Splatting in Parallel Coordinates [136]

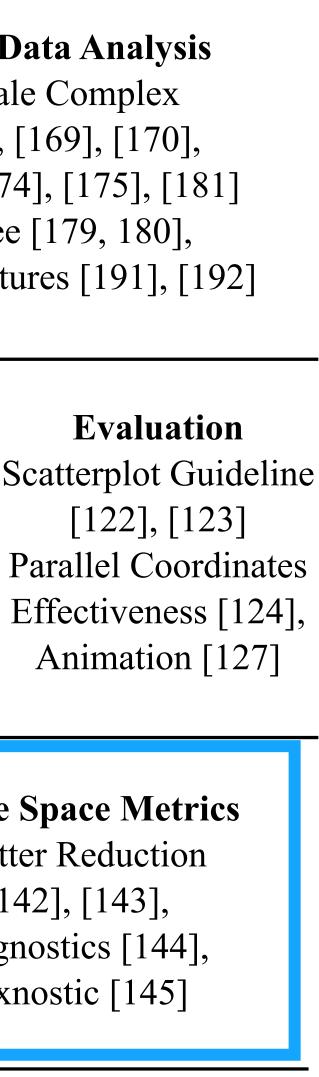
Accurate Color Blending

Hue-Preserving Blending [140], Weaving vs. Blending [141]

Image Space Metrics Clutter Reduction [142], [143],

Pargnostics [144], Pixnostic [145]

[LiuMaljovecWang2017]



View Transformation

The rendering process that generates images in the screen space... dictate what we ultimately see on the screen...

View Transformation

- custom rendering algorithms
- representations visual clutter and computational cost
- Accurate color blending

Illustrative rendering: achieving a specific visual style by applying

Continuous visual representation: limitations for discrete

Illustrative Rendering

Illustrative PCP achieving a specific visual style by applying custom rendering algorithms



(davis.wpi.edu/ \sim xmdv).

Figure 1: Traditional parallel coordinates visualization (color-coded by cluster) of the 392-point, sevendimensional "cars" dataset. Point distributions along axes are given by histogram bars. All datasets visualized in this paper are courtesy of the XmdvTool home page

McDonnellMueller2008

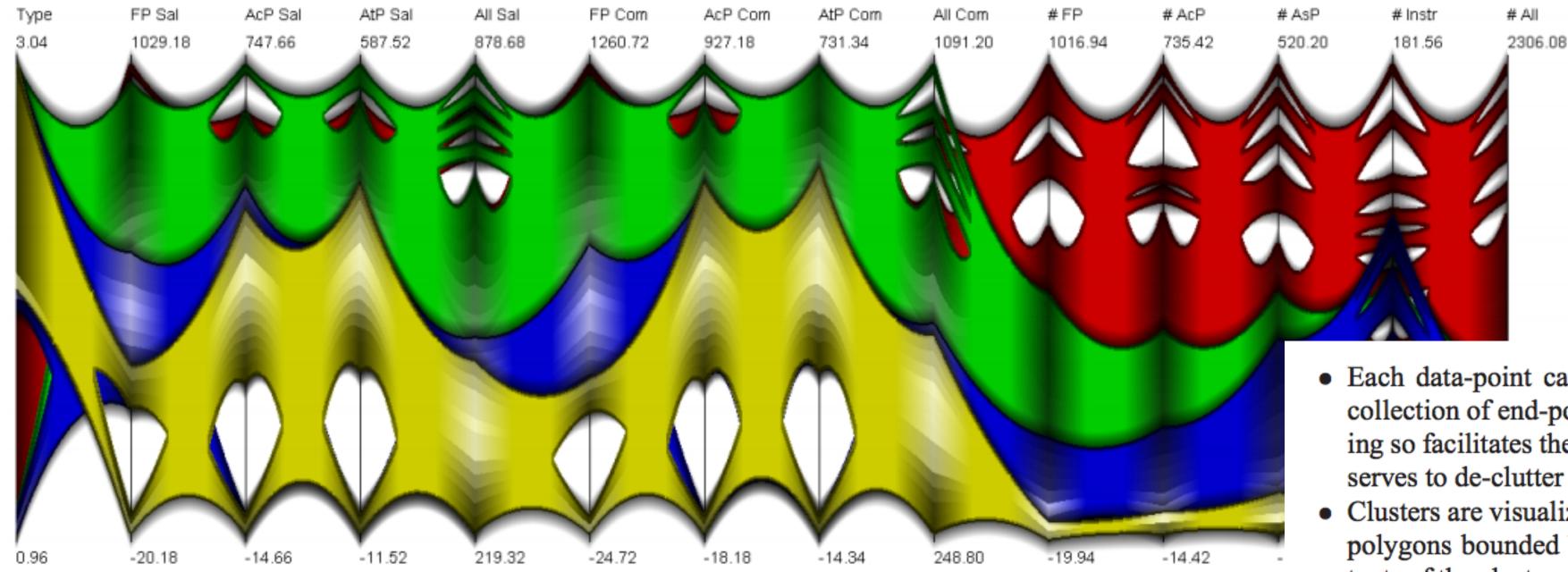


Figure 2: An example of illustrative parallel coordinates (IPC) showing some of the major feat approach. Shading and opacity are used extensively in IPC to convey information.

Illustrative

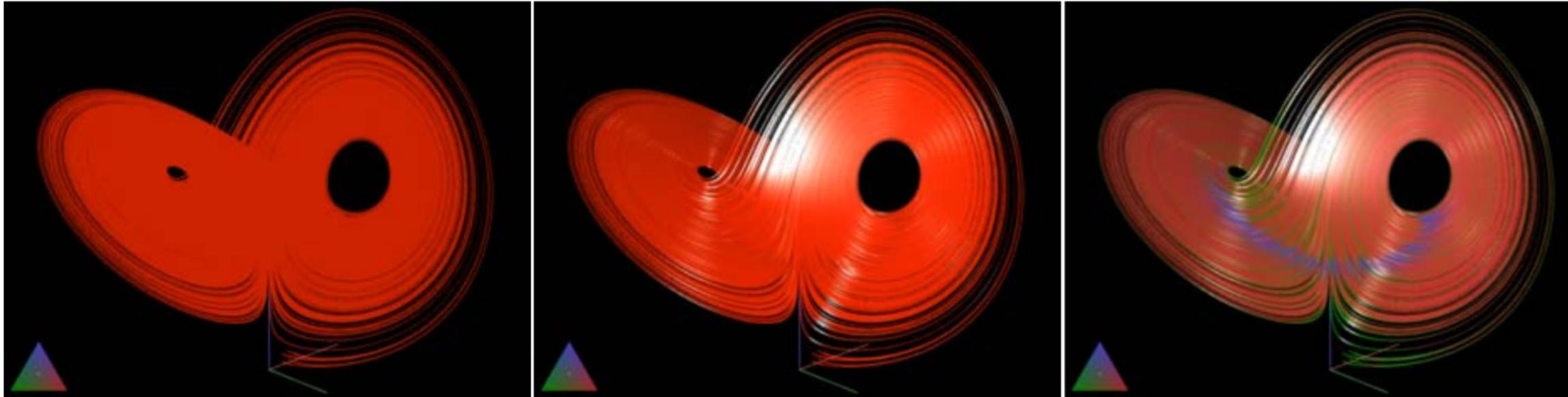
Enhancing visual patterns in PCP, e.g. line density, etc.

- Each data-point can be rendered as a polycurve, i.e., a collection of end-point interpolating B-spline curves. Doing so facilitates the creation of edge bundles [Hol06] and serves to de-clutter the visualization.
- Clusters are visualized as a collection of semi-transparent polygons bounded by spline curves, which show the extents of the clusters and which can be scaled to control the screen area they consume. Higher cluster opacities correspond with clusters containing more points.
- The distribution of the data can be viewed at different levels of detail by displaying the clusters in a branched, treelike manner.
- A density plot that conveys the distribution of the lines or curves between axes can be used to show correlations between axes.
- The distributions along individual axes are shown as faded quadrilateral strips and provide per-cluster histograms of the dataset for each dimension.
- Silhouettes, shadows and halos not only assist the eye in distinguishing between overlapping clusters, but also provide an interesting artistic effect.

McDonnellMueller2008

Illustrative Scatterplots

Classify points based on the Eigen analysis of the covariance matrix Give the user the opportunity to see effects such as planarity and linearity when visualizing dense scatterplots



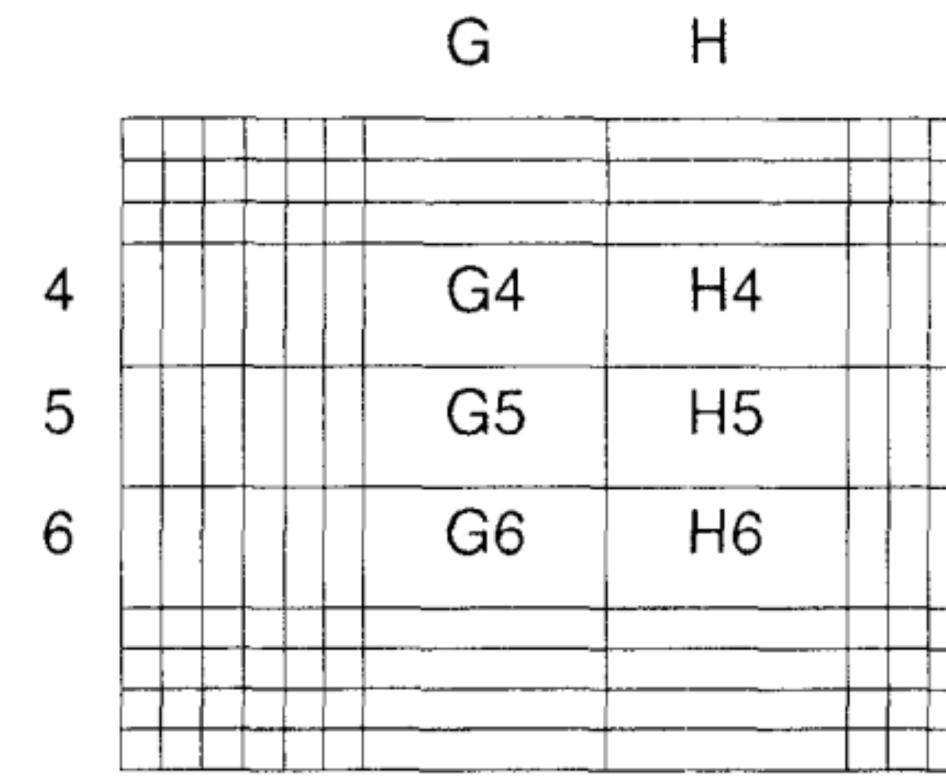
equal intensity.

Figure 1: A Lorenz attractor. Left: traditional 3D scatterplot; middle: illuminated scatterplot; right: linear, planar, and spherical structures highlighted through mapping to green, red, and blue colors respectively. The base colors are chosen to have

SanftmannWeiskopf2009

Focal area highlighting: TableLens

Over the views of the views



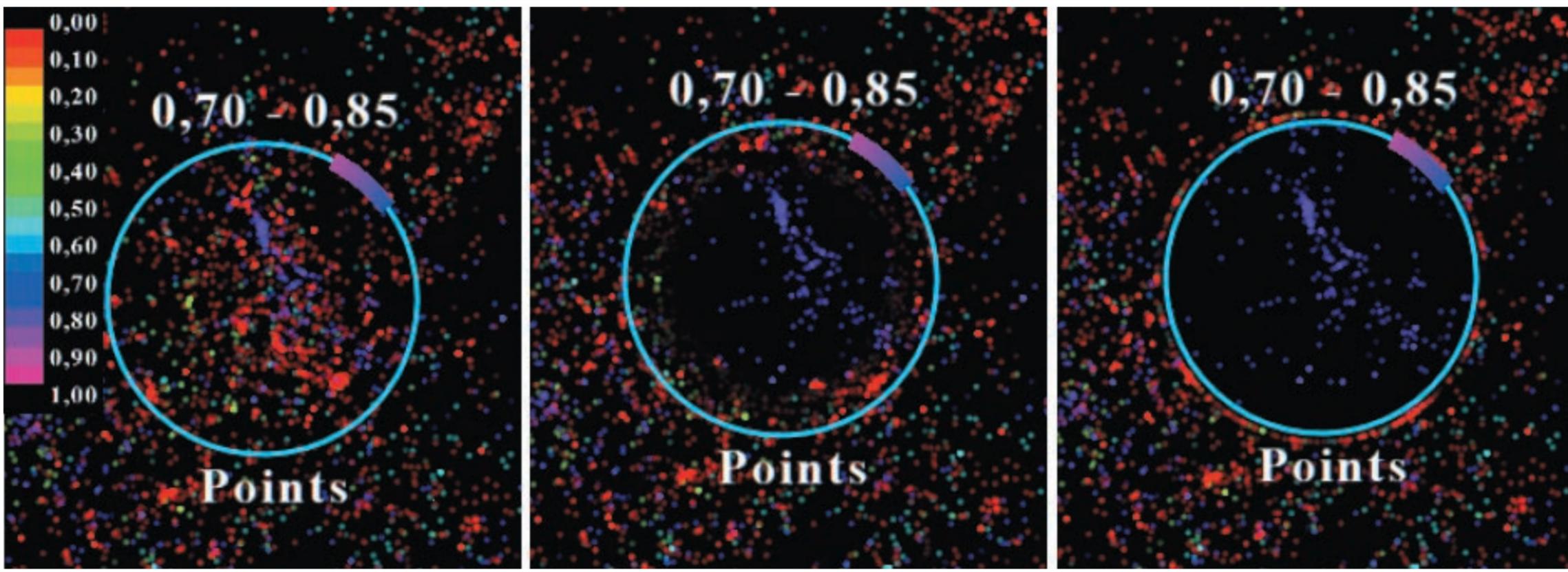
65 H5	
6 H6	
	F

Figure 1: The Table Lens Focal Technique.

RaoCard1994

Focal area highlighting: MoleView

 MoleView: visualizing scatterplots and graphs
 Using semantic lens to focus on area of interest
 Keeping the in-focused data unchanged while simplifying or deforming the rest of the data to maintain context HurterTeleaErsoy2011



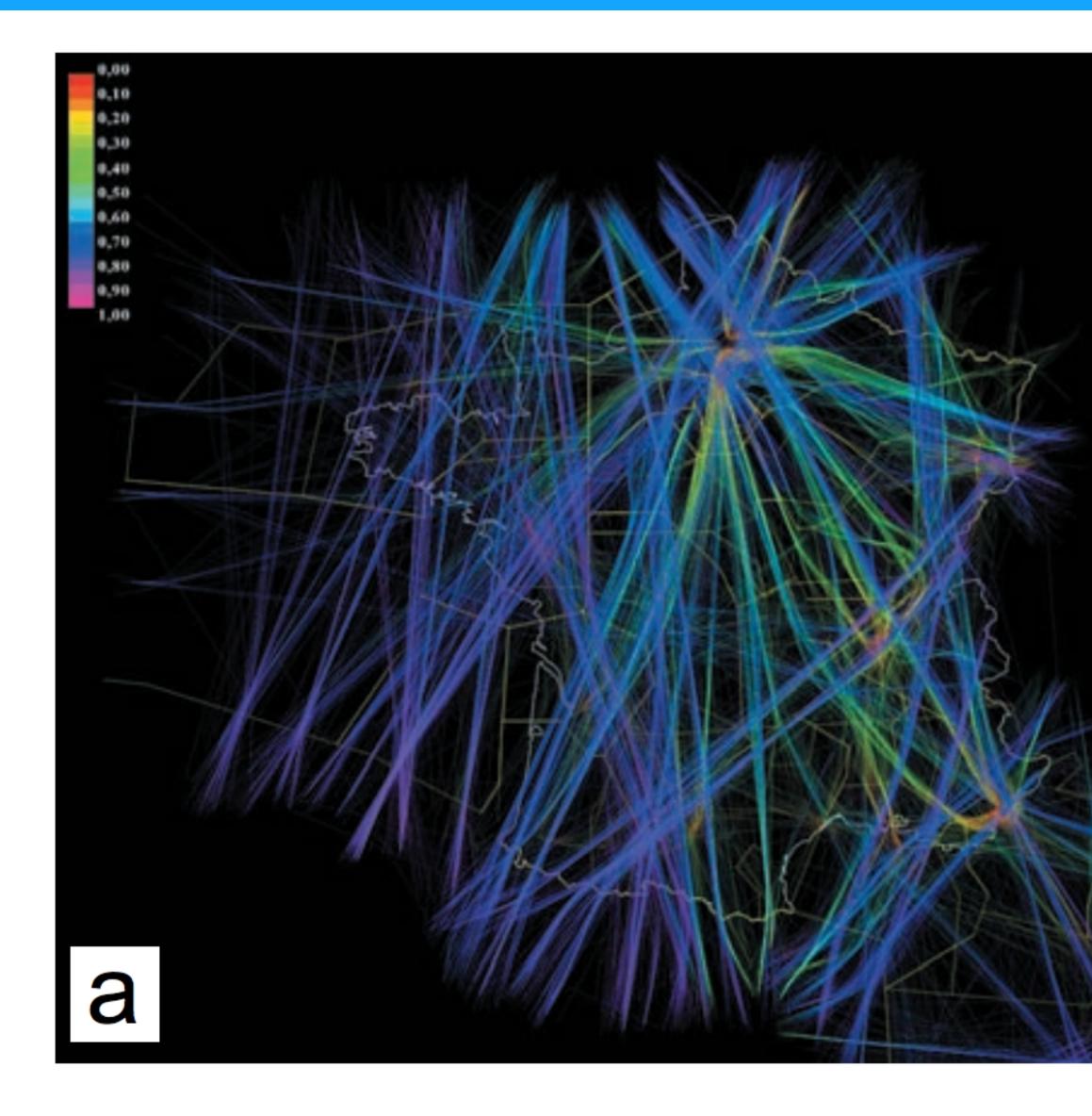
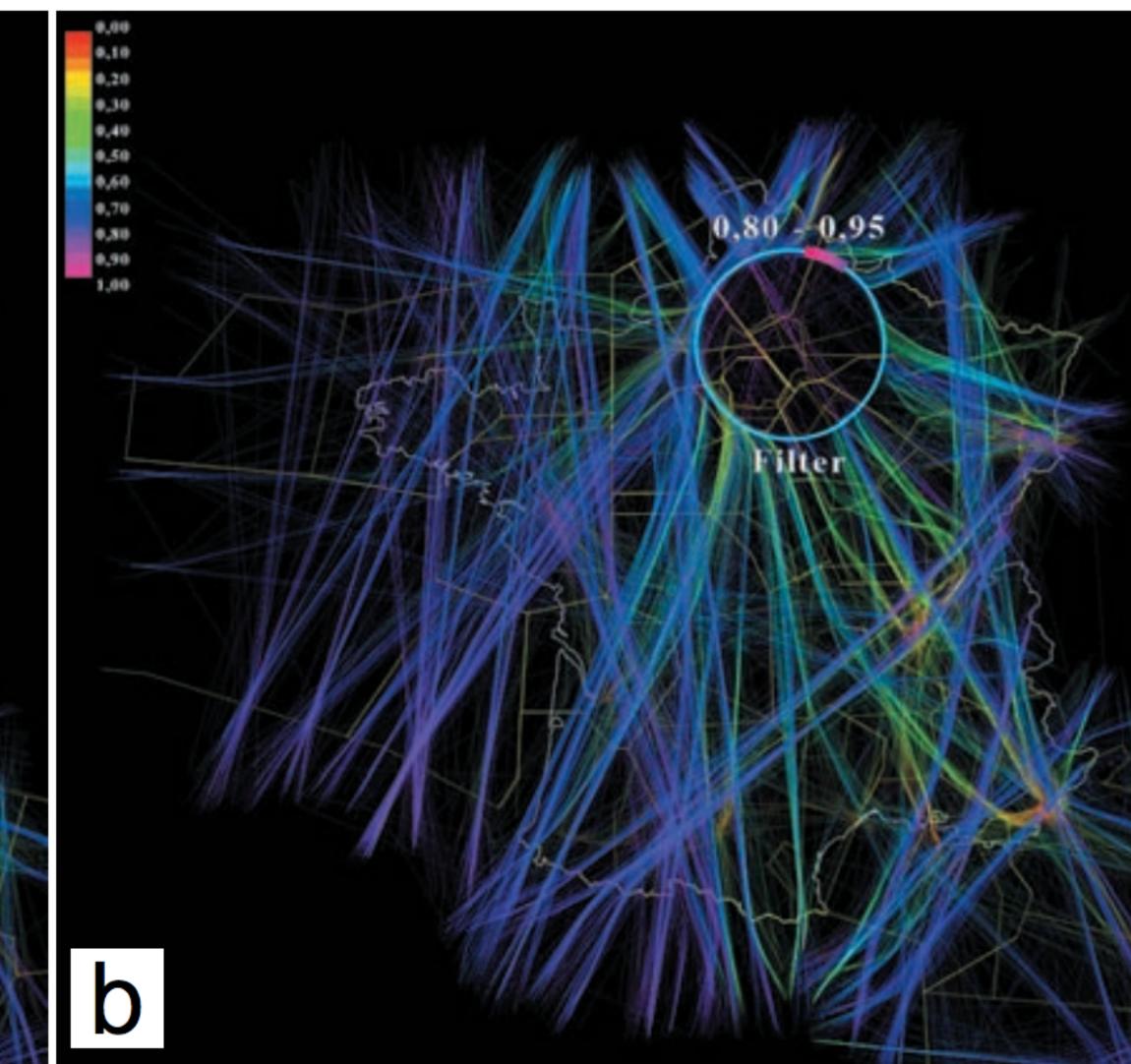


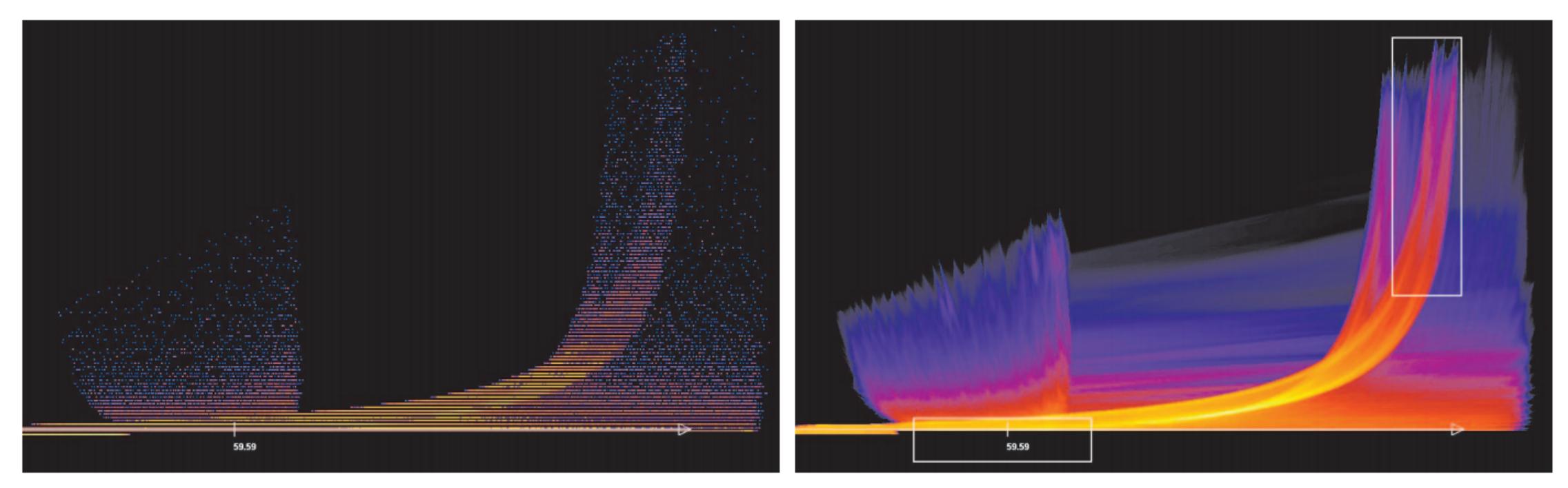
Fig. 4. Flight trails dataset (a) and element-based MoleView lens (b) E.g.find flights with a certain altitude over a given spatial region



HurterTeleaErsoy2011

Continuous visual representation

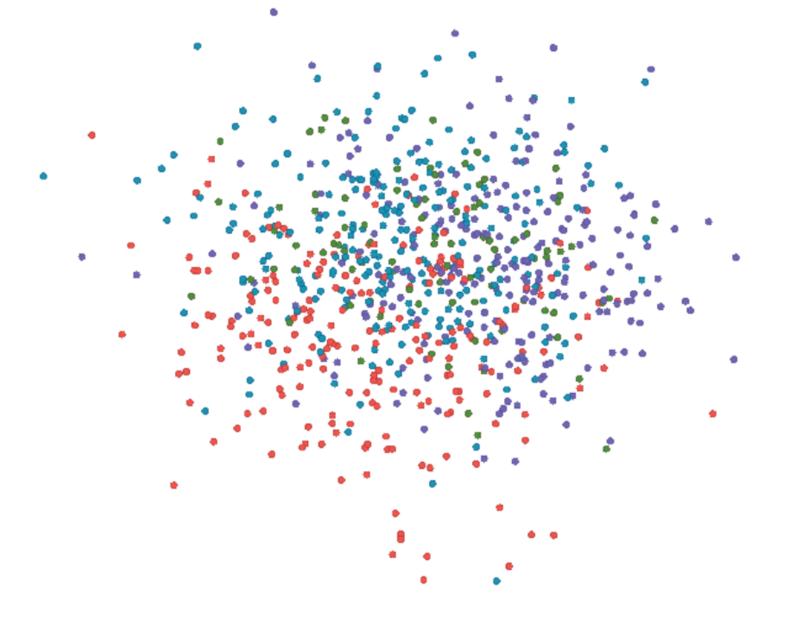
Continuous scatterplot



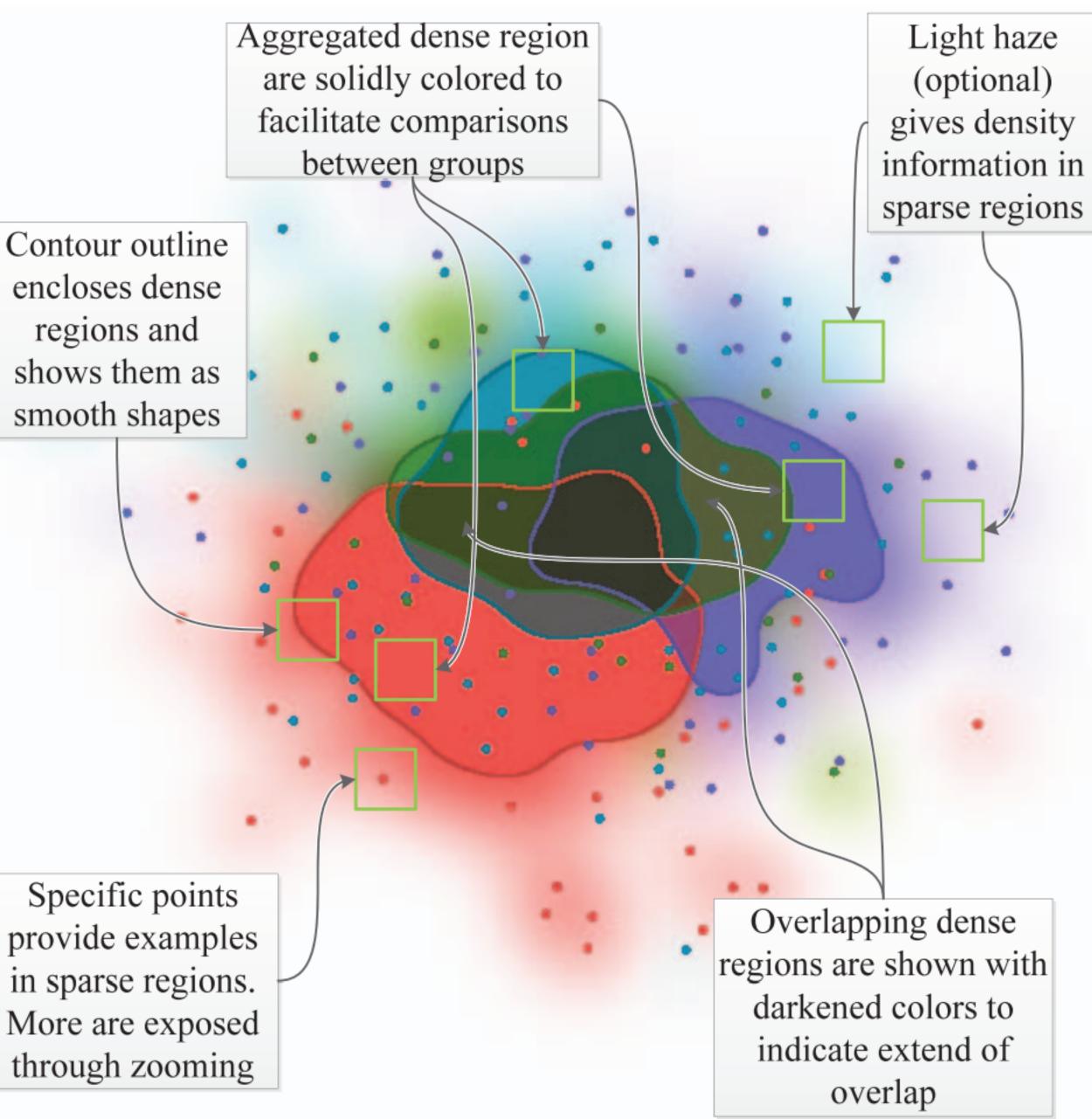
Takes into account the varying size and shape of grid cells by computing gradients within cells.

BachthalerWeiskopf2008

Continuous scatterplot



- Automatically groups dense regions into an abstract contour
- Renders the rest of the area using selected representatives, thus preserving the visual cue for outliers.



Accurate Color Blending

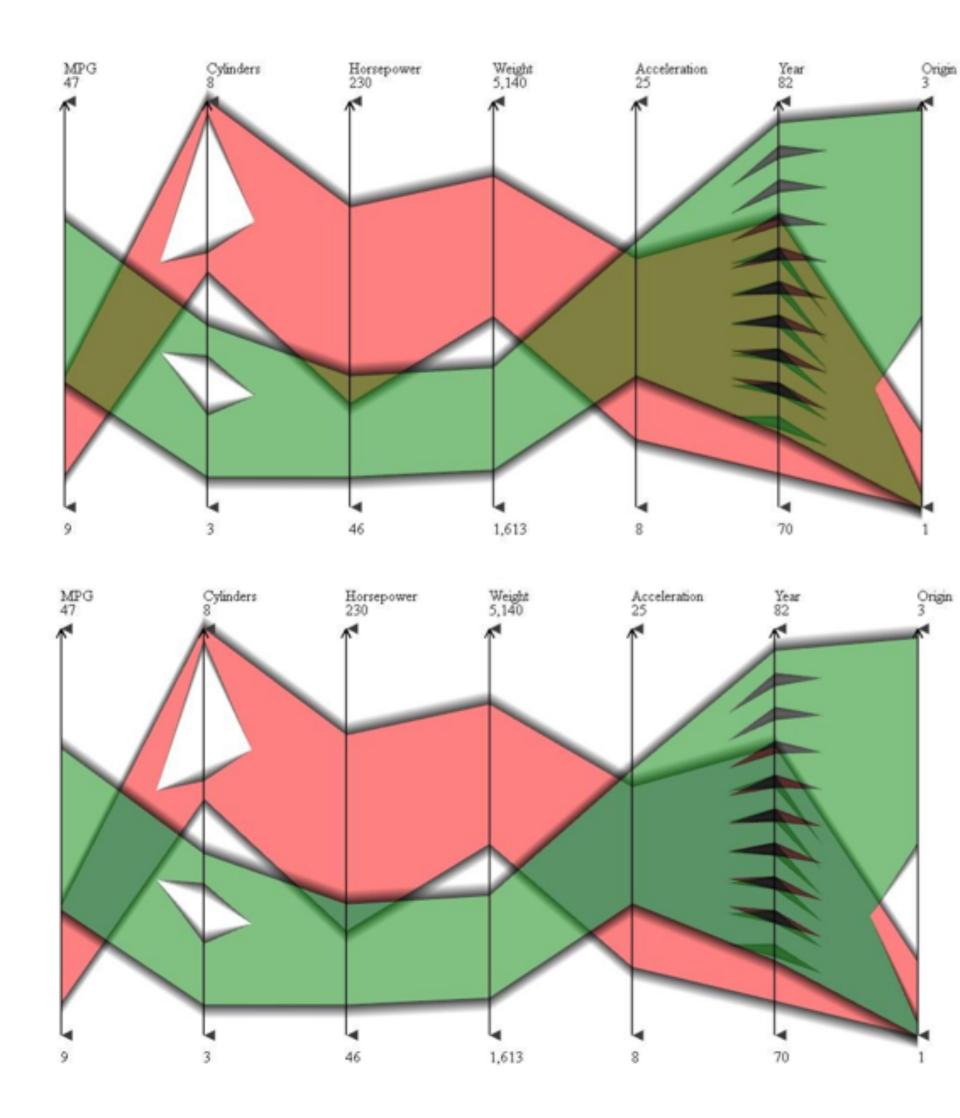


Fig. 9. A two-layer IPC with a green layer on top and red layer in the background: (top) blending using alpha-compositing; (bottom) blending using the data-driven blending operator.

Hue-preserving color-blending

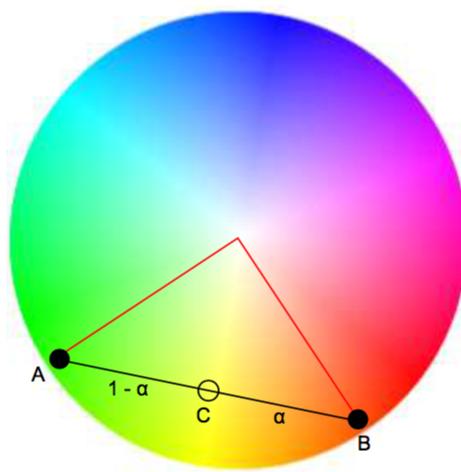
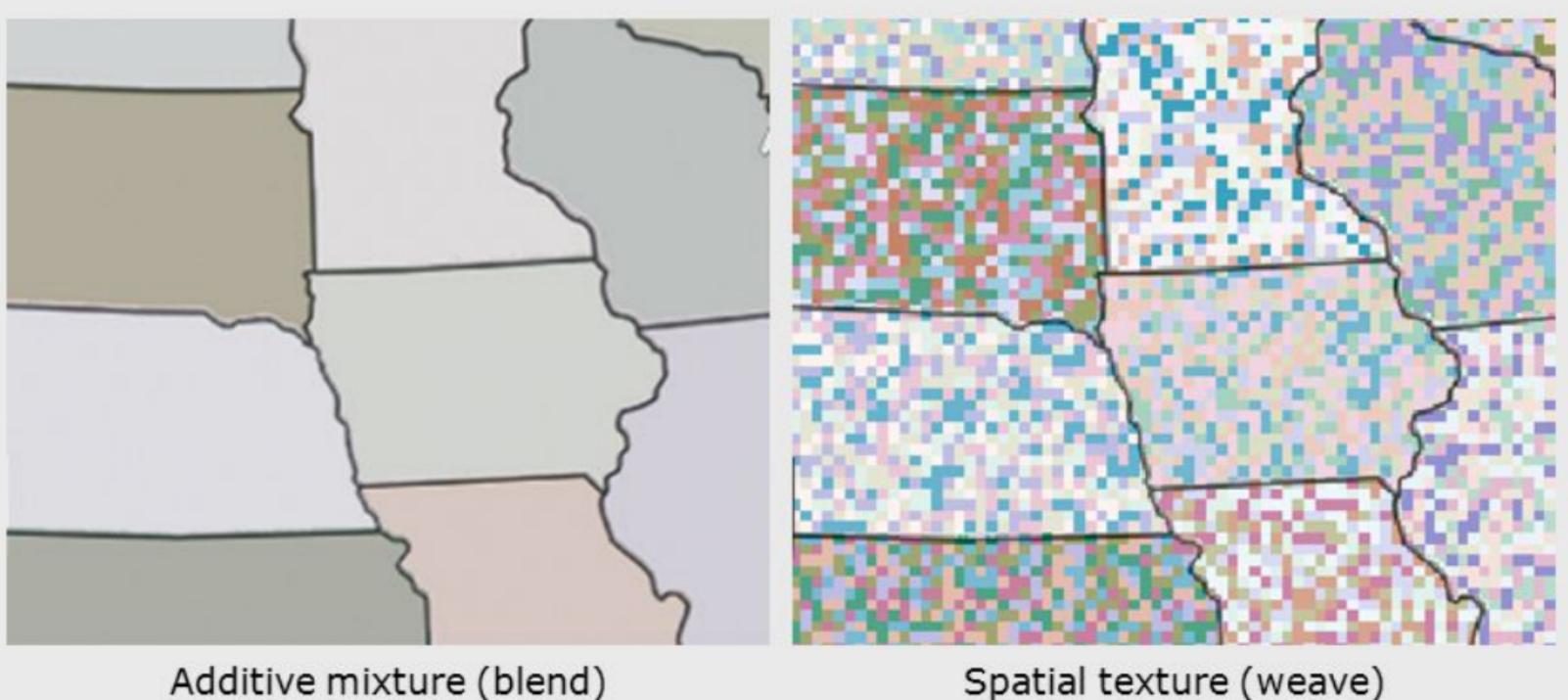


Fig. 1. Alpha-compositing. Two colors A and B create a false color C in a slice of the HSV representation of the sRGB color space of equal luminance (color circle). The hue denotes an angle in the color circle.

KuhneGiesenZhang2012

Weaving vs. Blending

6 variables = 6 hues, which vary in brightness



Additive mixture (blend)

Color weaving allows users to better infer the value of individual components; however, as the number of components increases, the advantage of color weaving diminishes. Hagh-ShenasKimInterrante2007

http://slideplayer.com/slide/3850767/13/images/95/Color+In+Information+Display,+Vis05.jpg

Image Space Metrics

Screen Space Quality Metrics

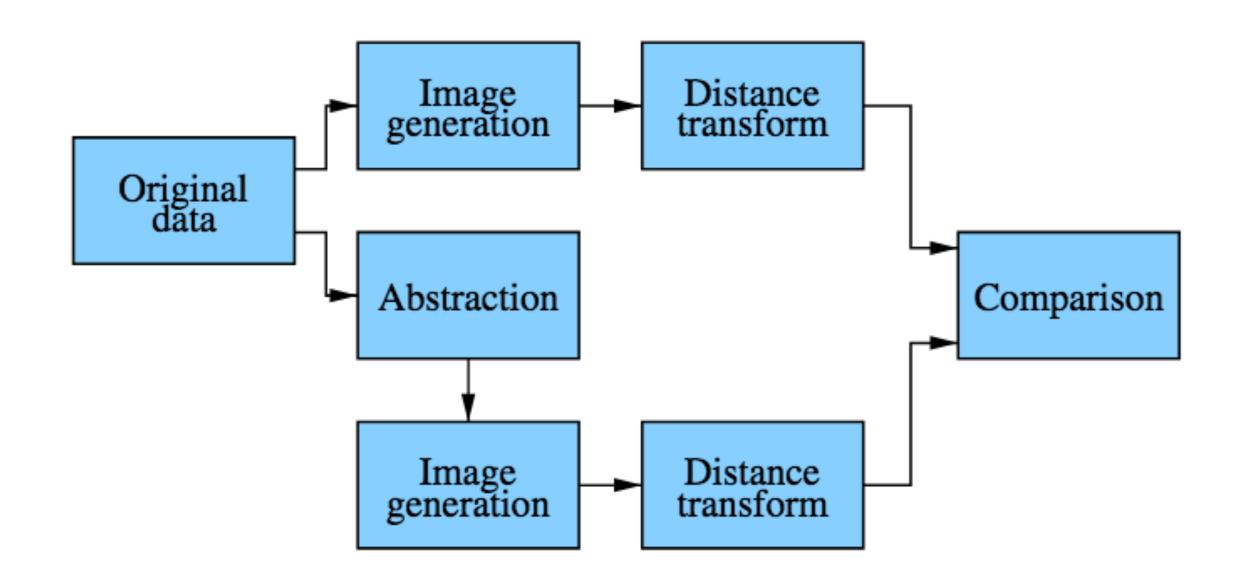


Figure 2: The screen space quality method consists of the following steps: (1) the original data set is abstracted, (2) the graphical representations of the original and abstracted data sets are rendered as images, (3) the images are transformed using distance transforms, and (4) a comparison function gives the quality value.

Measure for clutter reduction Based on distance transformation

JohanssonCopper2008

Screen Space Quality Metrics

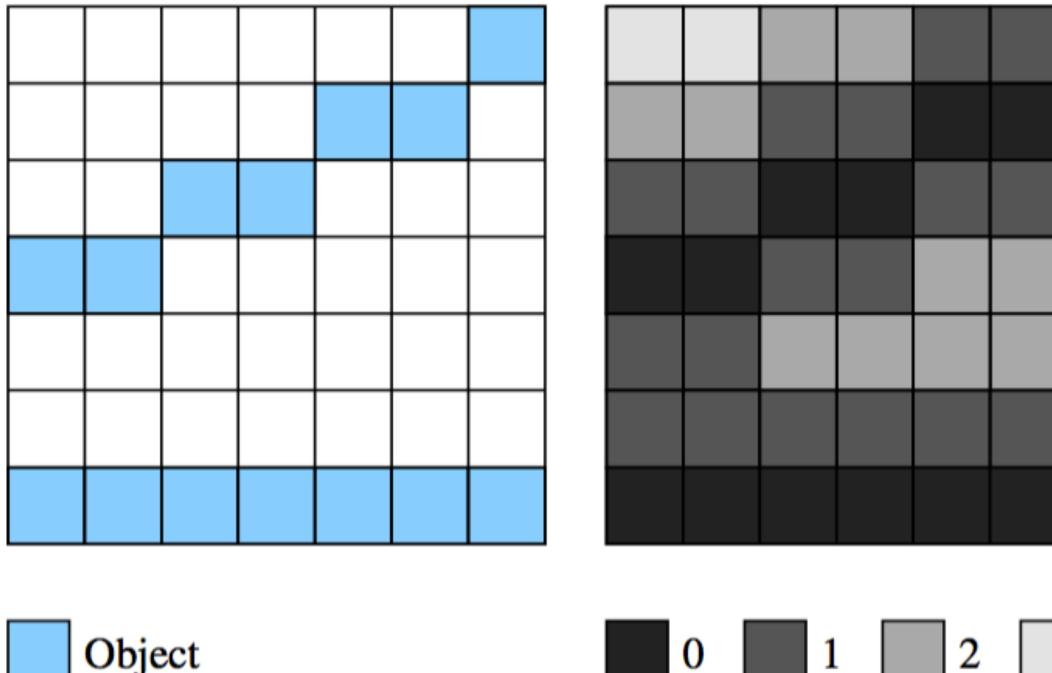
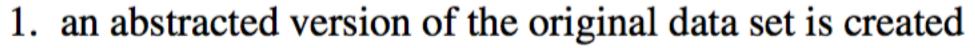


Figure 4: An illustration of the distance transform used for parallel coordinates. The left figure shows a graphical representation consisting of two lines, each resulting in several objects (in blue). The right figure shows the corresponding distance map where each pixel describes the vertical distance to the closest object, colour coded from black (a distance of 0) to light grey (a distance of 3).

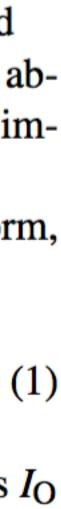


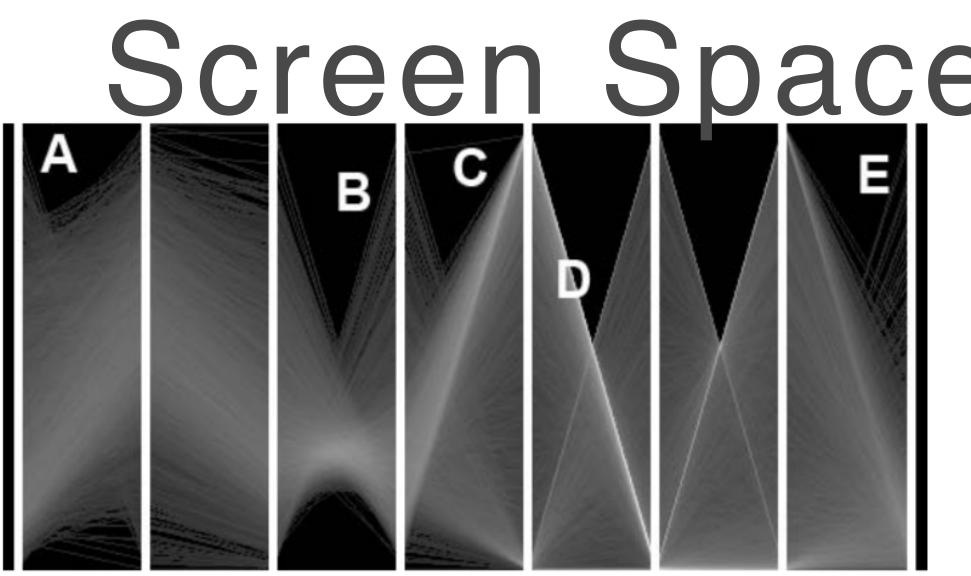
- 2. the graphical representations of the original and abstracted data sets are rendered as two, equally sized images (I_{O} and I_{A}).
- 3. the images are transformed using a distance transform, $\phi_{\rm D}$, according to

$$D_{\rm O} = \phi_{\rm D}(I_{\rm O})$$
$$D_{\rm A} = \phi_{\rm D}(I_{\rm A})$$

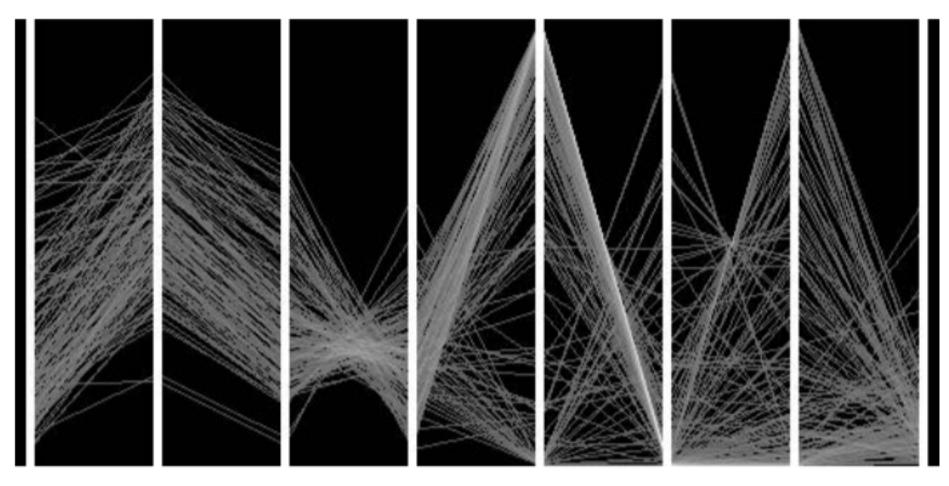
where D_{O} and D_{A} are new images of the same size as I_{O} and I_A representing the corresponding distance maps 4. the similarity between the distance maps is calculated as $s = \Psi(D_{O}, D_{A})$, where Ψ is a comparison function

JohanssonCopper2008





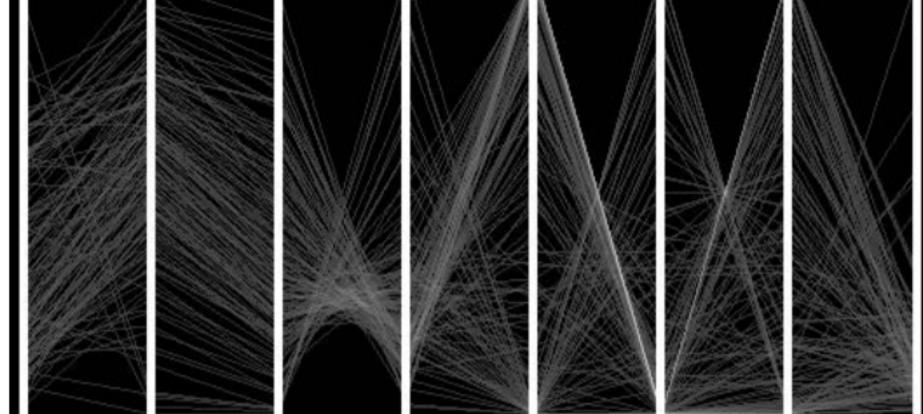
(a) Original data set comprising 7342 items.



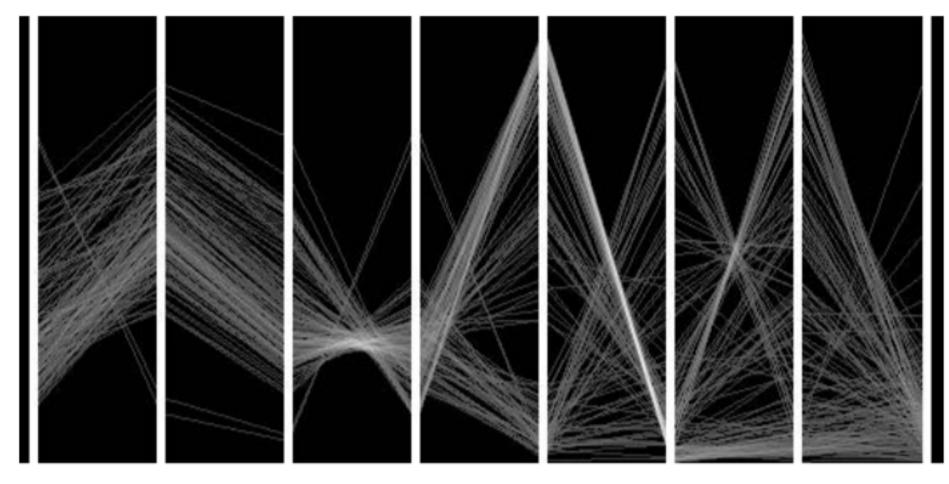
(c) Using 155 randomly picked items results in a visual quality of 0.74.

Figure 8: Producing an abstraction of the household economics data set (a) by (b) targeting a visual quality of 0.90 using sampling retains 155 items. Structures are preserved in **B**–**E** and outliers are revealed in **A**. Randomly picking 155 items with no quality control (c) only preserves structures in **D**. Using 155 cluster centroids (d) also preserves structures in **A** and **E**.

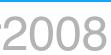
JohanssonCopper2008 Screen Space Quality Metrics



(b) Targeting a visual quality of 0.90 retains 155 items.



(d) Using the K-means algorithm to construct 155 clusters results in a visual quality of 0.76.



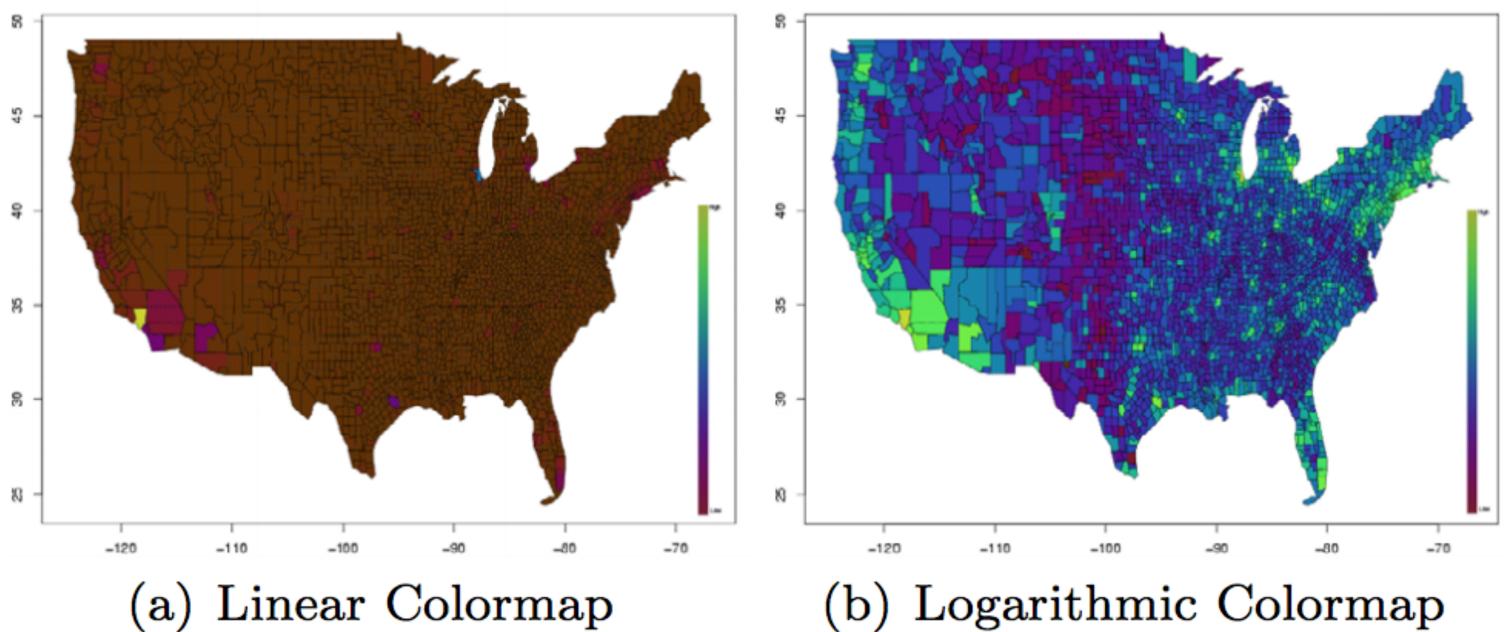


Figure 1: A typical application scenario – The visual analysis of a census data set involves different normalizations to a color scale; Although both visualizations are based on exactly the same input data, the right figure provides more insight since a logarithmic color scale is more suitable for the underlying data distribution

Rank interestingness for pixel based visualization such as pixel bar charts

Pixnostic

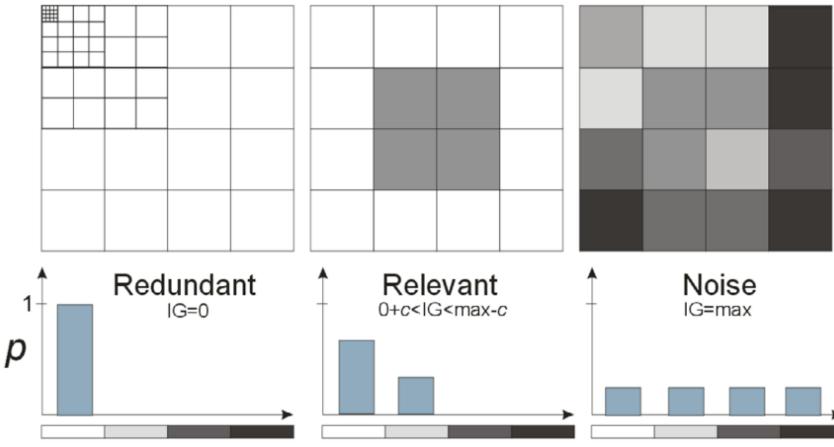
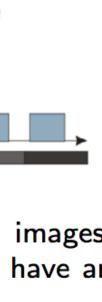
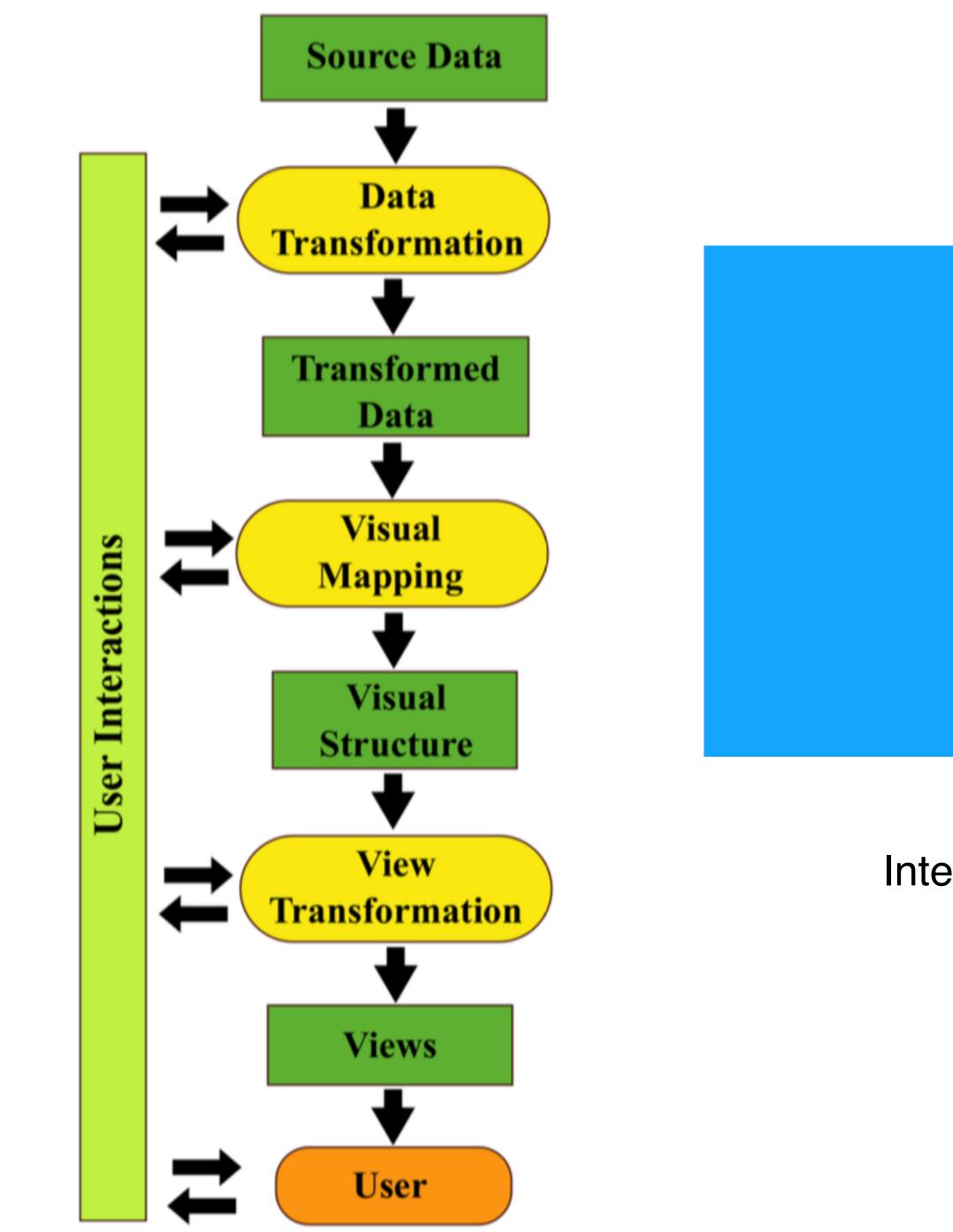


Figure 4: Information content (IG) of different gray level images. From an analyst's point of view, interesting images should have an Information content in a certain range c between 0 and IG_{max}

SchneidewindSipsKeim2006



User Interactions



Visualization pipeline for highdim data

Interactions are integrated into each processing stage

[LiuMaljovecWang2017]

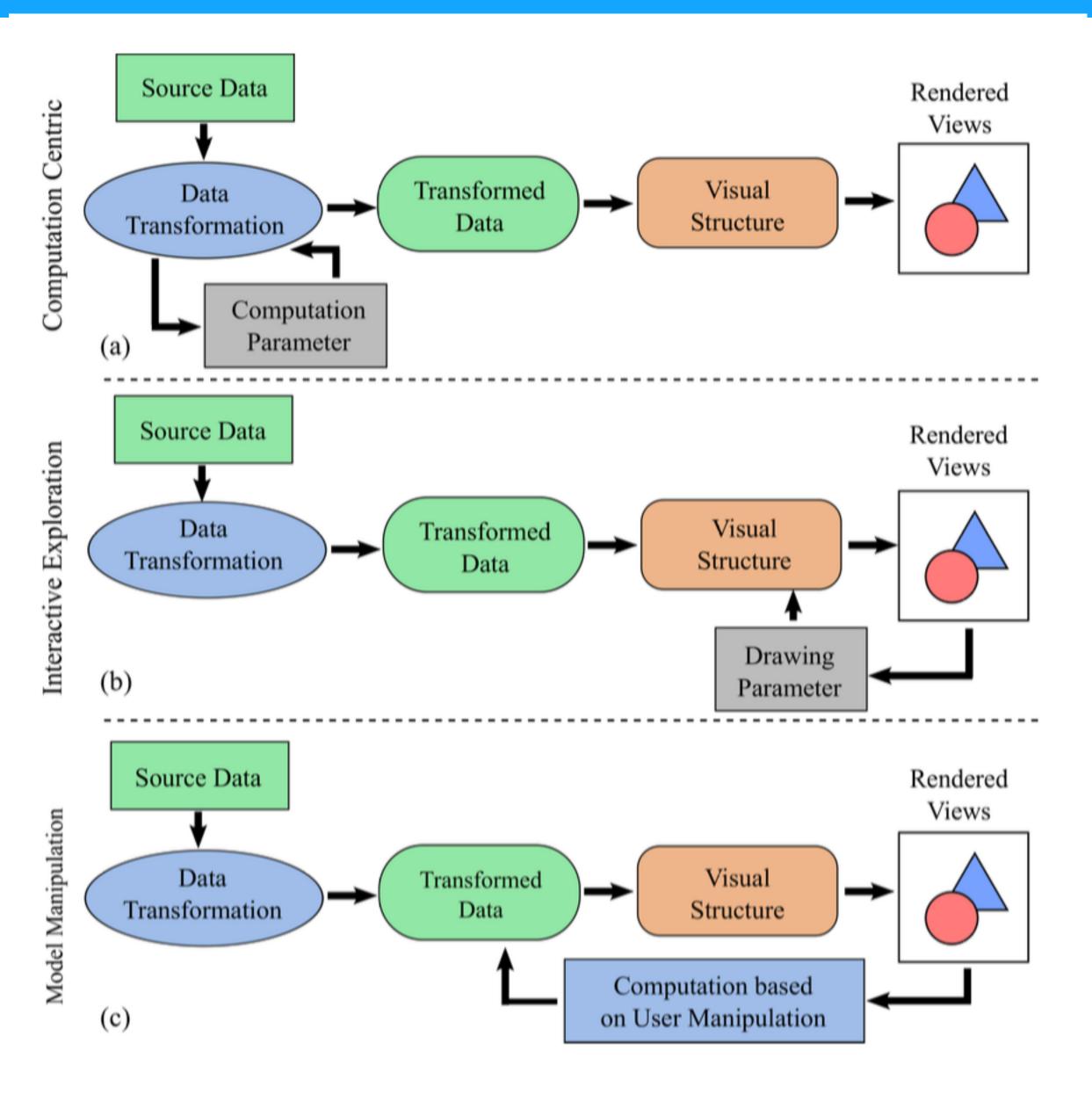
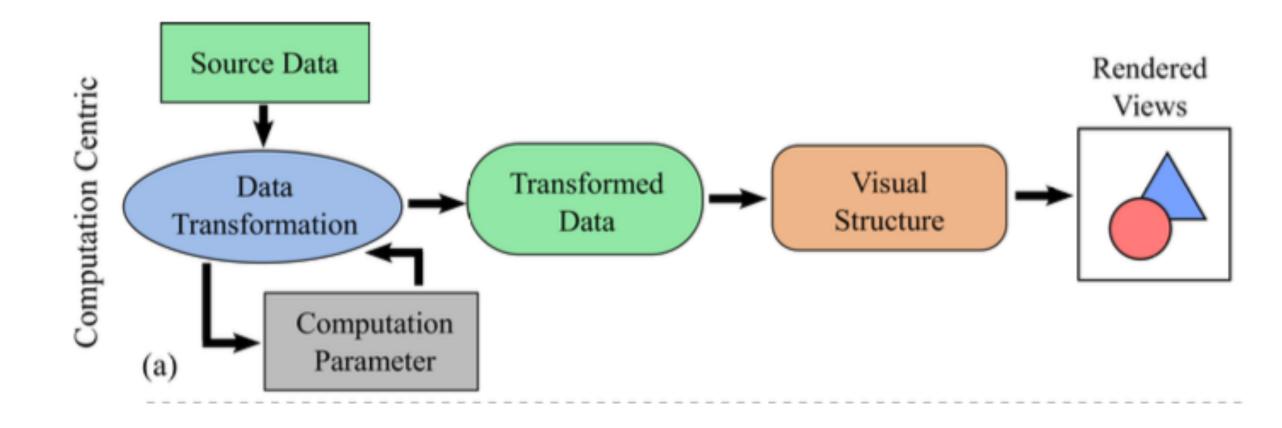


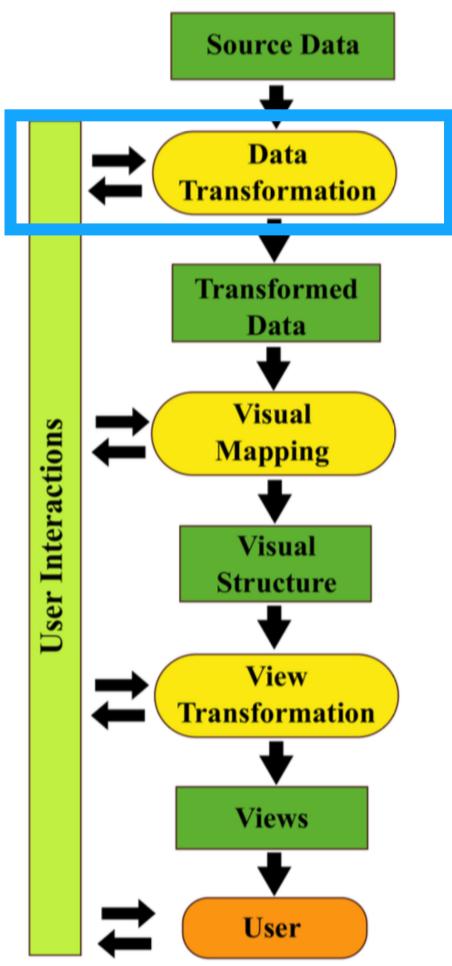
Fig. 7. The three types of user interaction paradigms with varying degrees of user involvement. Since each paradigm can interact with each processing stage in the visualization pipeline, the diagram highlights the most general patterns.

Computation-centric approaches Interactive exploration Model manipulation

Computation-Centric approaches

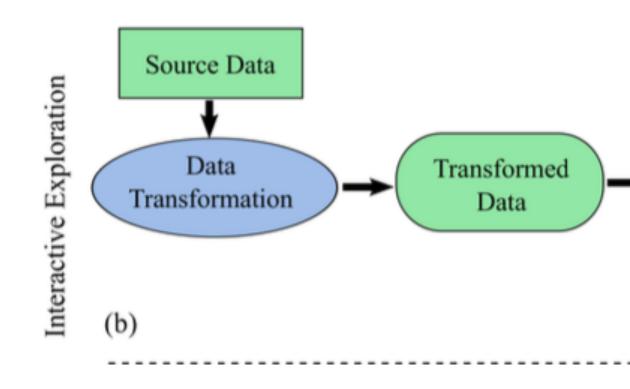
- Require only limited user input: e.g., setting initial parameters
- Center around algorithms designed for well-defined computational problems:
- OR, subspace clustering, regression, quality metric Concentrated in data transformation

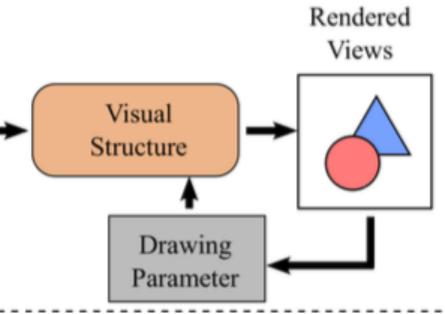


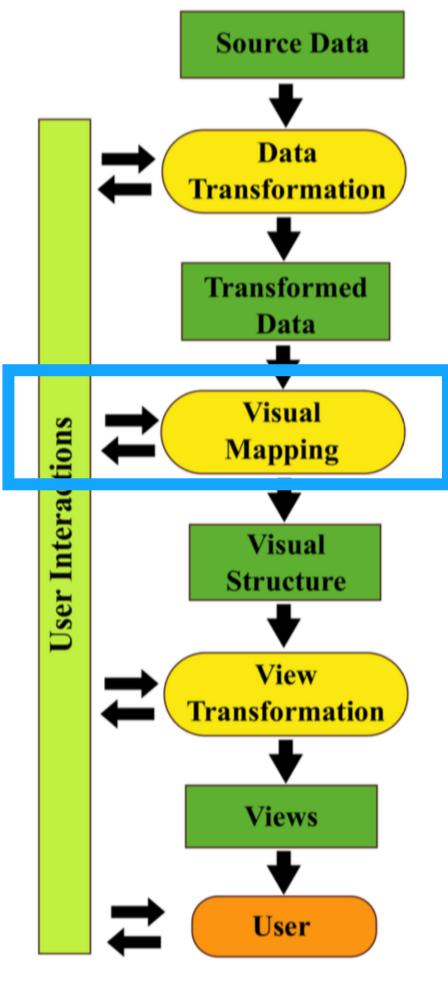


Interactive Exploration

- Navigate, query, and filter the existing model interactively for more effective visual communication.
- Mostly in visual mapping stage: interactively modify visual structure
- User do not alter the underlying computation model in the interactive exploration.
- "Visual data mining"







Interactive Exploration: MDSteer

- Progressive layout of points
- Hierarchical binning
- process.
- The algorithm alternates layout with binning computation:
 - iterations.
 - Every k layout steps, we re-bin all of the points.
- data as the target of the available computational resources

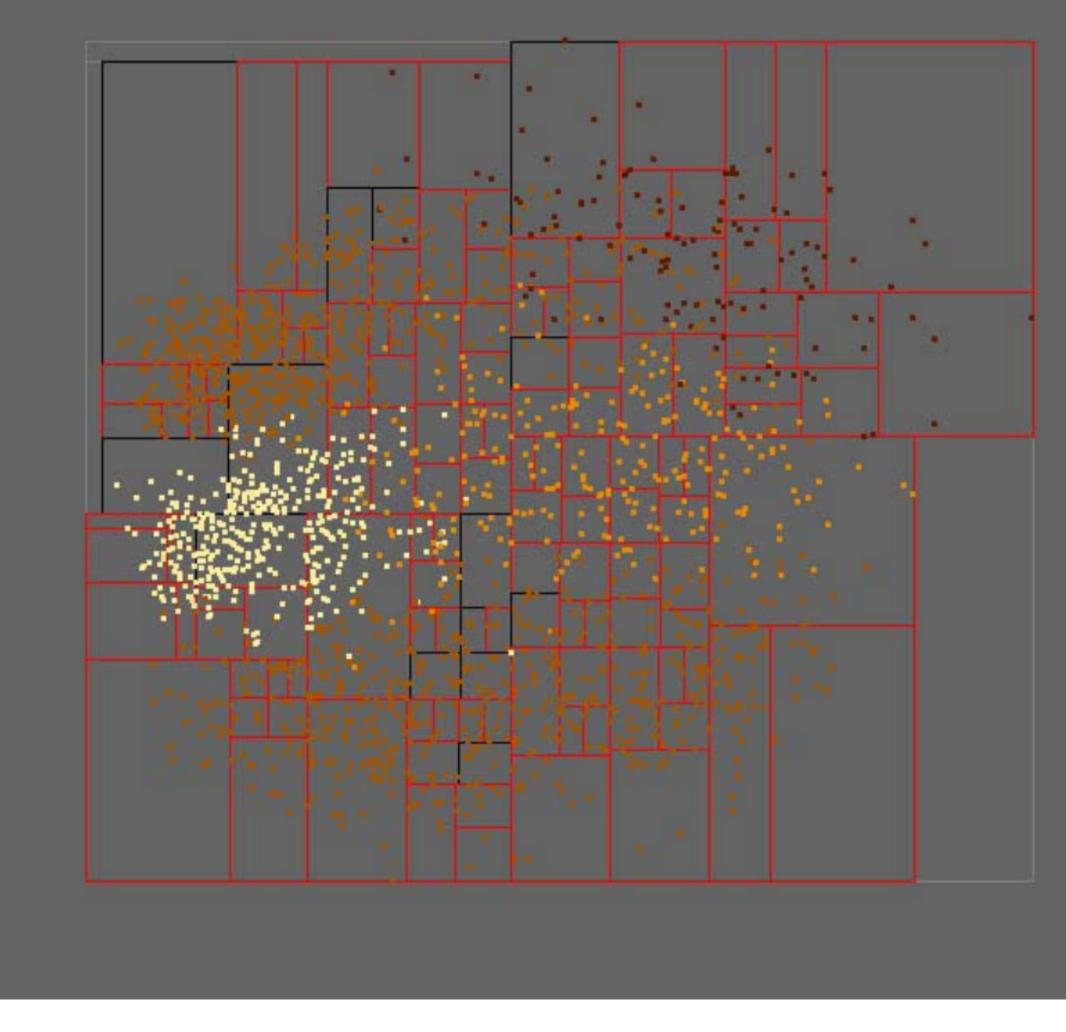
Steering allows computational power to be focused where it is needed to support exploration in parallel with continuing the layout

• At each layout step, we add $\sqrt{n/k}$ new points to the computation, find an initial position for each of these new points, and run MDS

Bins serve as a mechanism for the user to select a subset of the



Figure 2: Visual Quality: Environmental Dataset. Left: We show the 40,000 point real environmental dataset laid out with the Morrison [12] algorithm, taken after a full layout computation that takes 16 minutes. Right: We show a partially placed version of the same environmental dataset after steering with MDSteer for roughly 2 minutes. Again, we see the same large-scale structure.

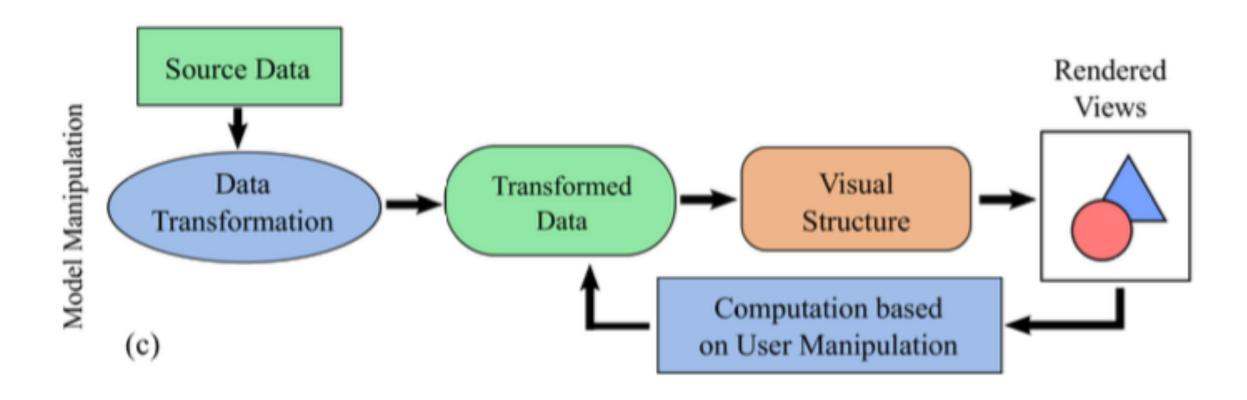


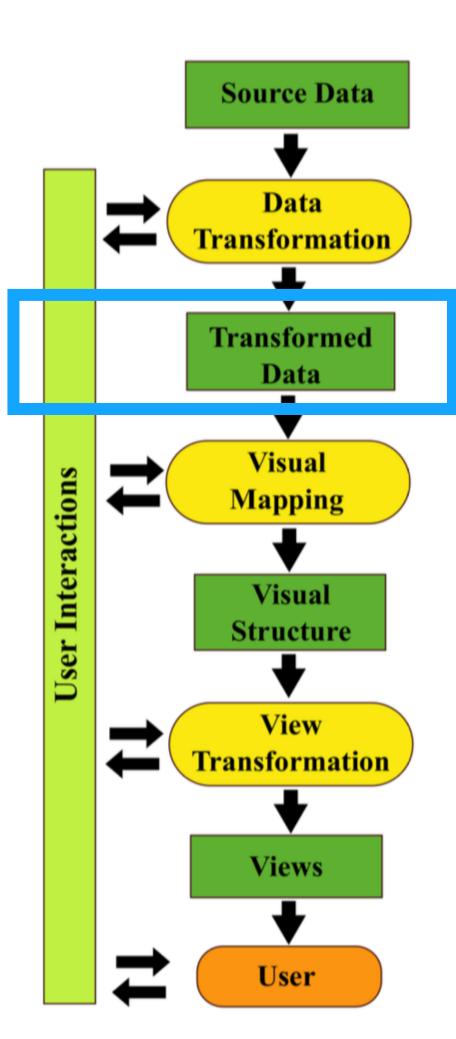
WilliamsMunzner2004

Model Manipulation

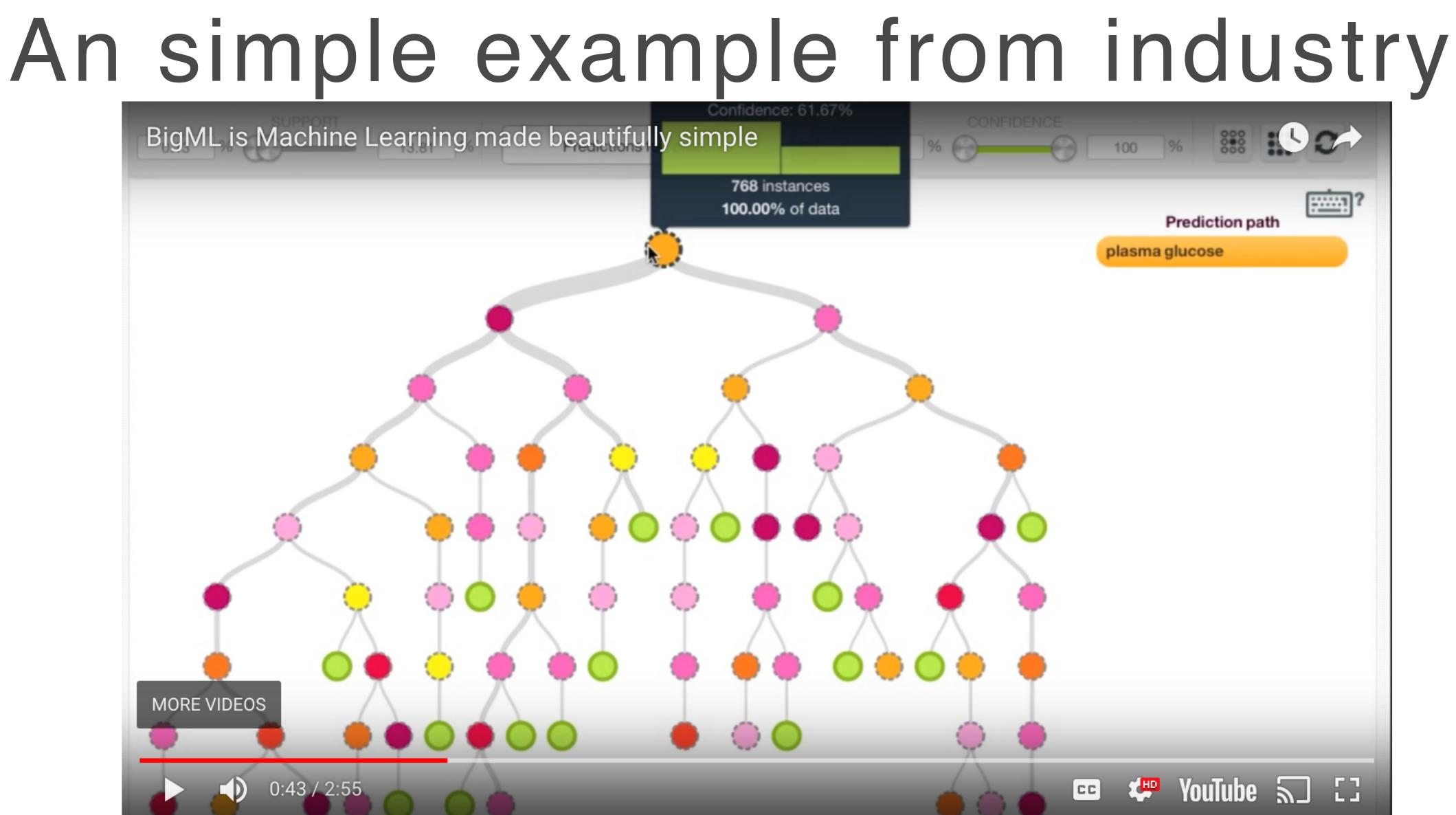
Integrate user manipulation as part of the algorithm and update the underlying model to reflect the user input to obtain new insights.

For example, control point based projection methods using user manipulation





Decision Tree and Vis



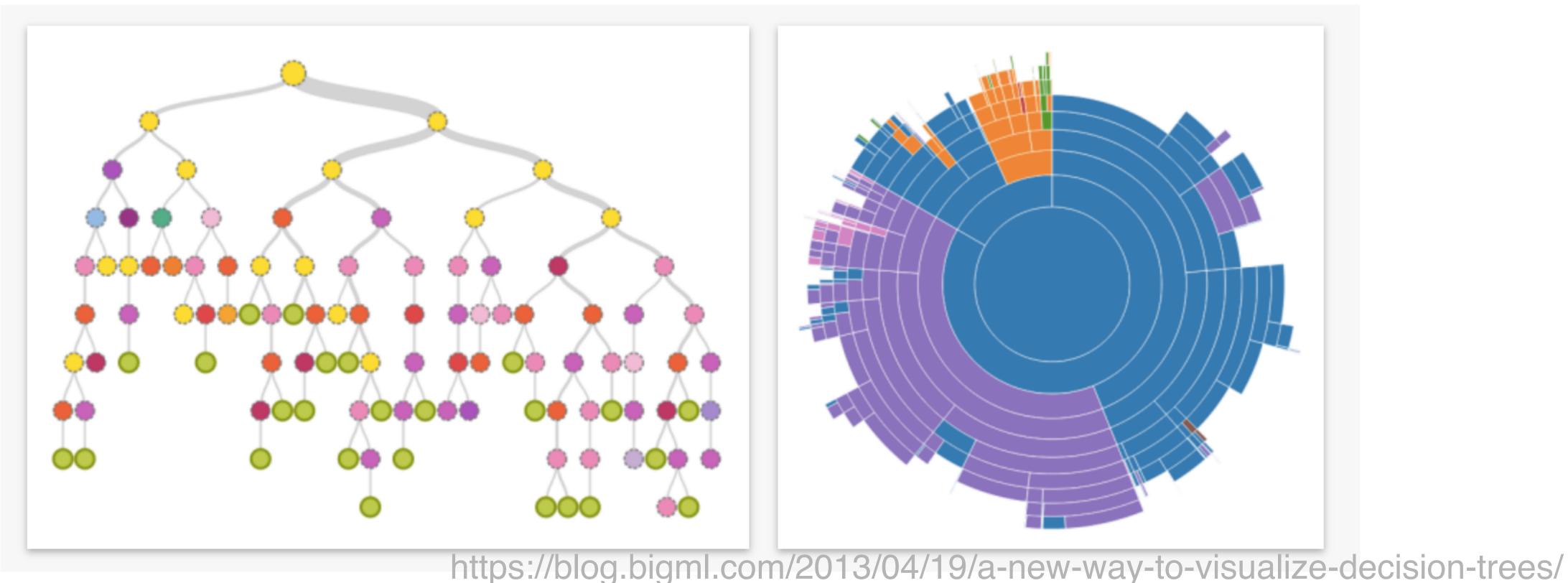
BigML: https://bigml.com/about

Visualizing Decision Trees

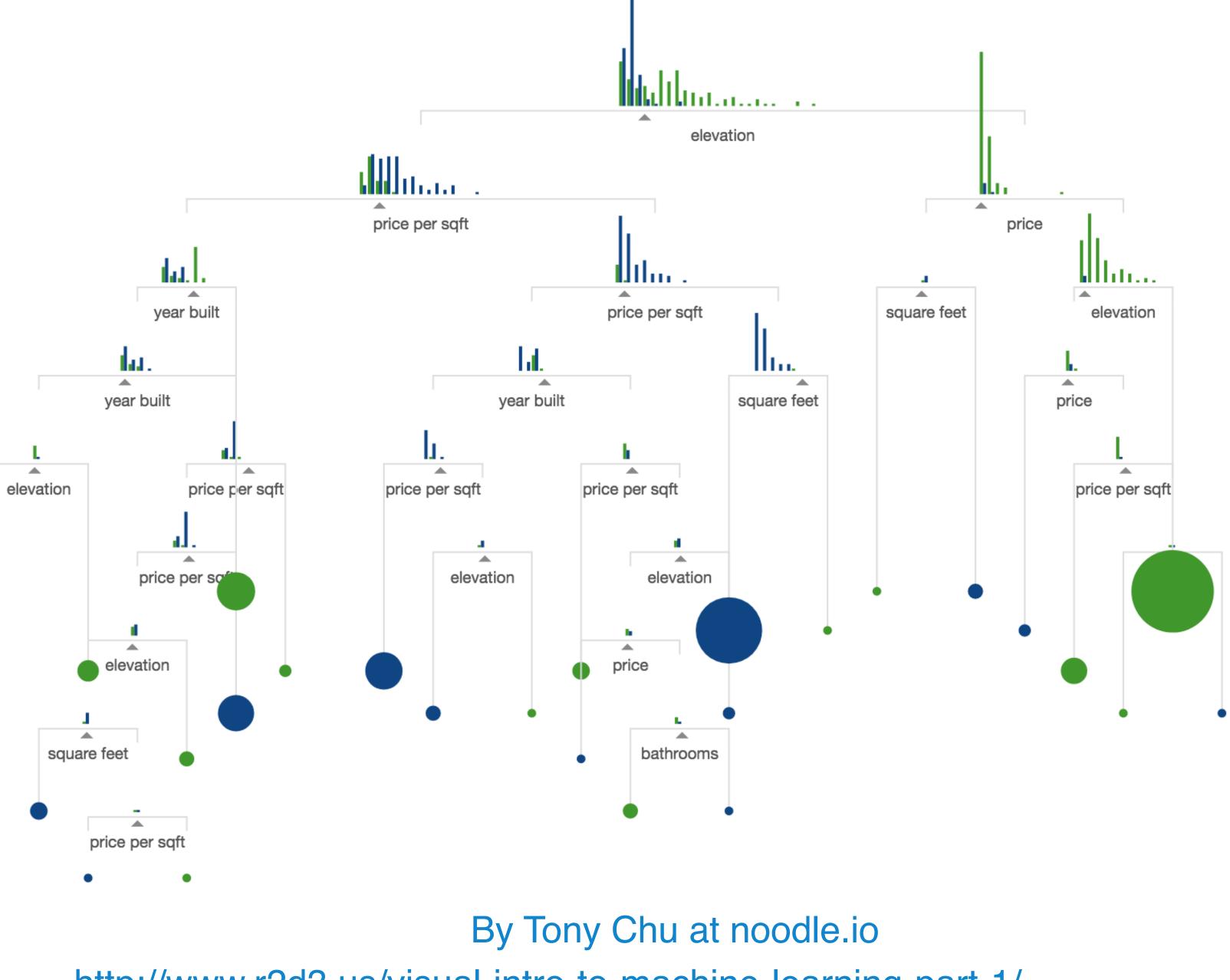
Typical, tree Visualization.

Orawback: too wide to fit the display area. Collapsing, picking specific branches to drill down. Other visual design: e.g. SunBurst technique (for hierarchical structure,

- similar to nested pie charts) https://www.cc.gatech.edu/gvu/ii/sunburst/

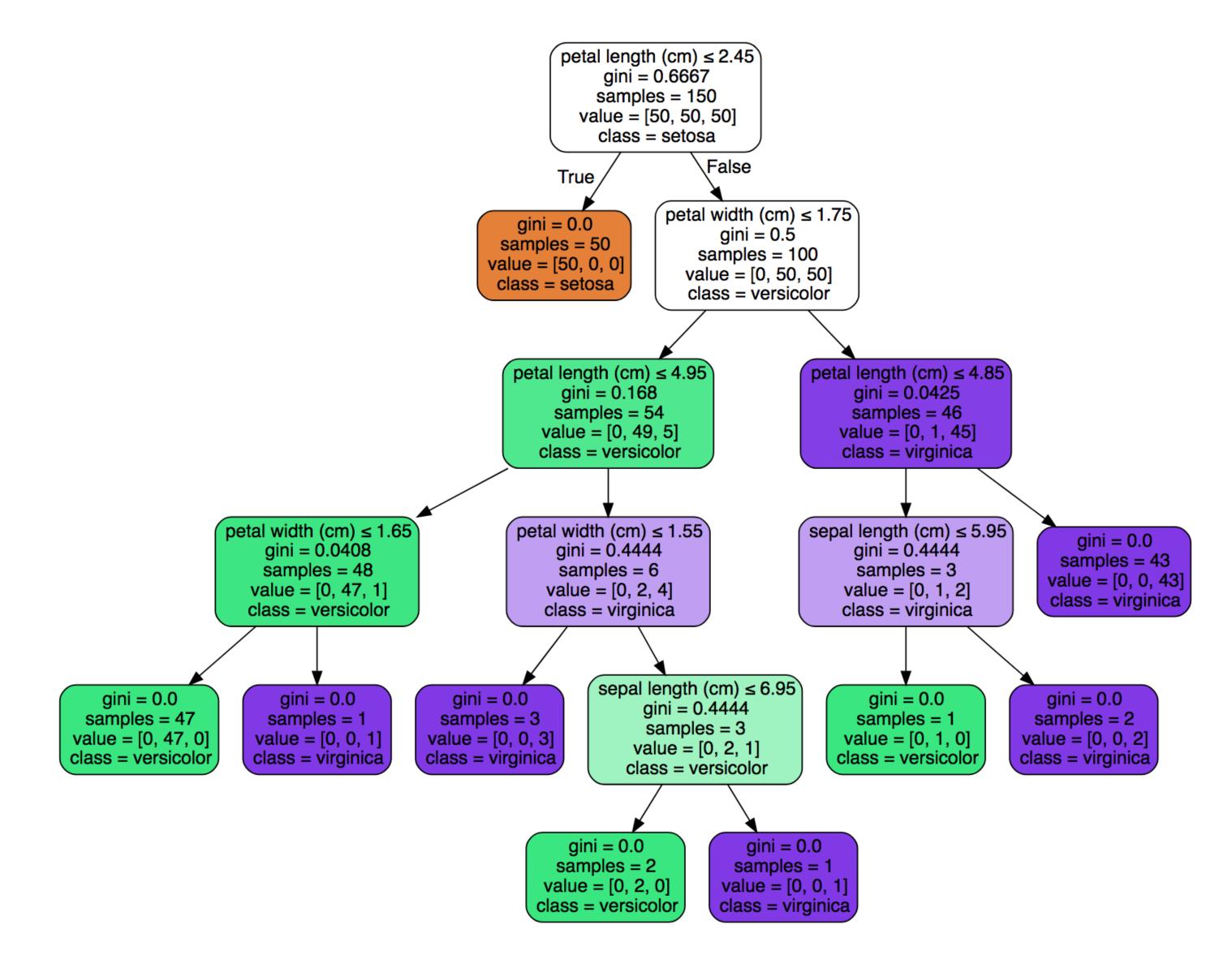


Decision Tree in a nutshell



http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Scikit-learn's decision tree vis



http://scikit-learn.org/stable/modules/tree.html

Decision tree on a high-level The notion of a contingency table: like 1D, 2D and 3D histograms

age	employme	education	edun	marital		job	relation	race	gender	hour	country	wealth
39	State_gov	Bachelors	13	Never_mar		Adm_cleric	Not_in_fam	White	Male	40	United_S	Stapoor
				Married		Exec_man	Husband	White	Male	13	United_S	Stapoor
39	Private	HS_grad	9	Divorced		Handlers_c	Not_in_farr	White	Male	40	United_S	Stapoor
54	Private	11th	7	Married		Handlers_c	Husband	Black	Male	40	United_S	Sta poor
28	Private	Bachelors	13	Married		Prof_speci	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married		Exec_man	Wife	White	Female	40	United_S	Sta poor
50	Private	9th	5	Married_sp		Other_serv	Not_in_farr	Black	Female	16	Jamaica	poor
52	Self_emp_	HS_grad	9	Married		Exec_man	Husband	White	Male	45	United_S	Ste rich
31	Private	Masters	14	Never_mar		Prof_speci	Not_in_farr	White	Female	50	United_S	Ste rich
42	Private	Bachelors	13	Married		Exec_man	Husband	White	Male	40	United_S	Ste rich
37	Private	Some_coll	10	Married		Exec_man	Husband	Black	Male	80	United_S	Ste rich
30	State_gov	Bachelors	13	Married		Prof_speci	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar		Adm_cleric	Own_child	White	Female	30	United_S	Sta poor
33	Private	Assoc_acc	12	Never_mar		Sales	Not_in_farr	Black	Male	50	United_S	Sta poor
41	Private	Assoc_voo	11	Married		Craft_repai	Husband	Asian	Male	40	*Missing	Varich
34	Private	7th_8th	4	Married		Transport_	Husband	Amer_India	Male	45	Mexico	poor
26	Self_emp_	HS_grad	9	Never_mar		Farming_fi	Own_child	White	Male	35	United_S	Sta poor
33	Private	HS_grad	9	Never_mar		Machine_c	Unmarried	White	Male	40	United_S	Sta poor
38	Private	11th	7	Married		Sales	Husband	White	Male	50	United_S	Stapoor
44	Self_emp_	Masters	14	Divorced		Exec_man	Unmarried	White	Female	45	United_S	Starich
41	Private	Doctorate	16	Married		Prof_speci	Husband	White	Male	60	United_S	Starich
	:	:	:	:	:	:	:	:	:	:	:	:

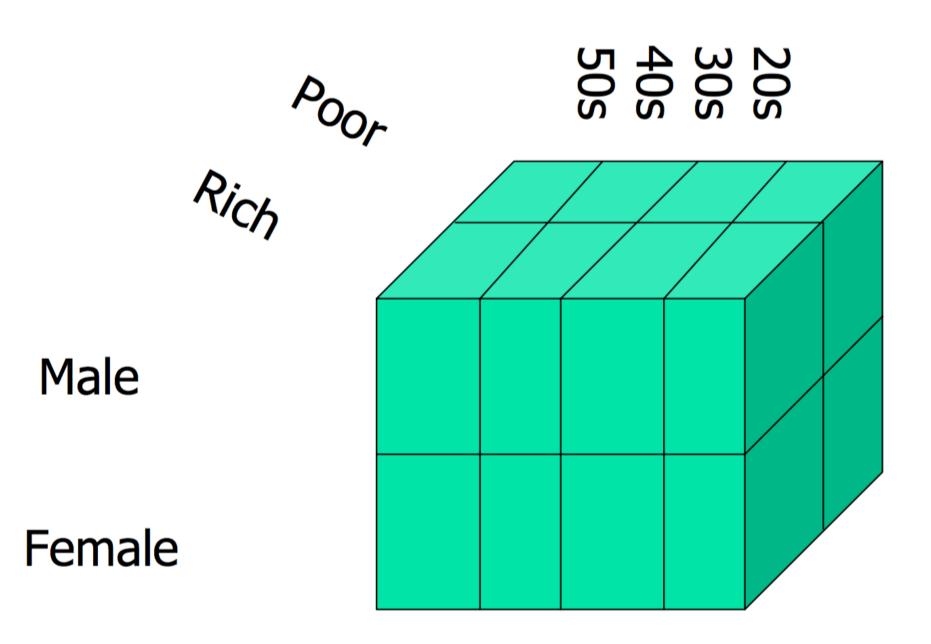
(agegroup, wealth)

wealth valu	ues:	poor rie	ch	
agegroup	10s	2507	3	
	20s	11262	743	
	30s	9468	3461	
	40s	6738	3986	
	50s	4110	2509	
	60s	2245	809	
	70s	668	147	
	80s	115	16	
	90s	42	13	

2D contingency table

3D contingency table

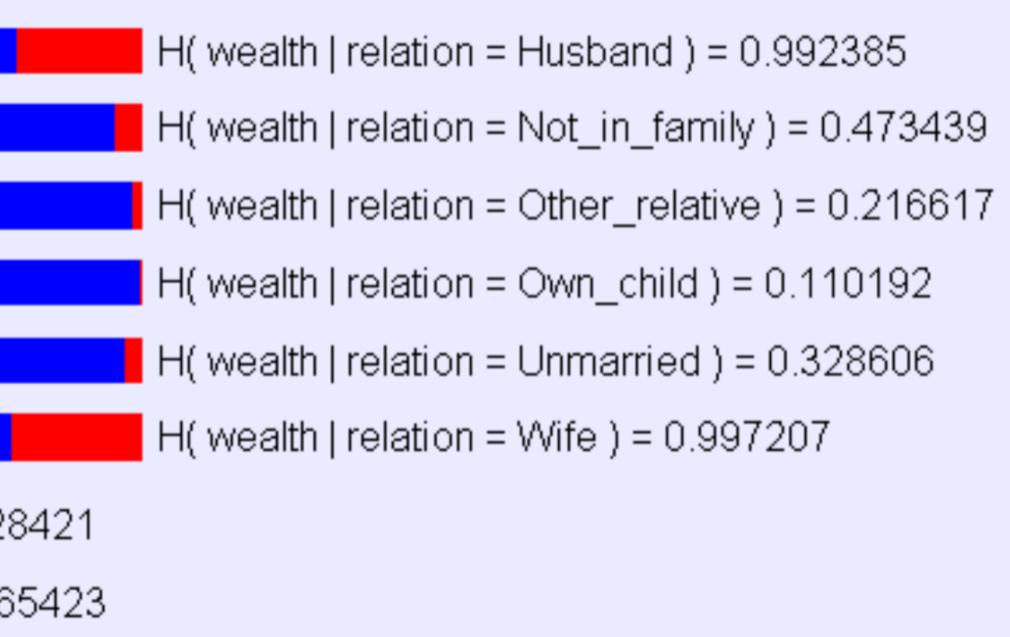
Goal: avoid manually looking at contingency tables
For example, 100 variables, 161700 tables...
Instead, using information theory to decide whether a pattern is interesting, such as entropy or information gain



Is a pattern interesting?

Finding the attribute with the highest information gain

wealth va	alues: <mark>poor r</mark>	ich		
relation	Husband	10870	8846	
	Not_in_family	11307	1276	
	Other_relative	1454	52	
	Own_child	7470	111	
	Unmarried	4816	309	
	Wife	1238	1093	
H(wealth	n) = 0.793844	H(wealth	relatior	n) = 0.628
		IG(wealth	relatio	n) = 0.16



Information Gain

What is Information Gain used for?

Suppose you are trying to predict whether someone is going live past 80 years. From historical data you might find...

- •IG(LongLife | HairColor) = 0.01
- •IG(LongLife | Smoker) = 0.2
- •IG(LongLife | Gender) = 0.25
- •IG(LongLife | LastDigitOfSSN) = 0.00001

IG tells you how interesting a 2-d contingency table is going to be.

Copyright © 2001, 2003, Andrew W. Moore

Information Gain: Slide 20

http://www.cs.cmu.edu/~./awm/tutorials/infogain11.pdf

General Case

Suppose X can have one of *m* values... V_{1} , V_{2} , ... V_{m}

$$P(X=V_1) = p_1 | P(X=V_2) = p_2 | | P(X=V_m) = p_m$$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

 $H(X) = -p_1 \log_2 p_1 - p_2$ $= -\sum_{j=1}^{m} p_j \log_2 p_j$

H(X) = The entropy of X

- "High Entropy" means X is from a uniform (boring) distribution

Copyright © 2001, 2003, Andrew W. Moore

http://www.cs.cmu.edu/~./awm/tutorials/infogain11.pdf

Entropy

$$\log_2 p_2 - \ldots - p_m \log_2 p_m$$

"Low Entropy" means X is from varied (peaks and valleys) distribution

Information Gain: Slide 6

Conditional entropy

Specific Conditional Entropy H(Y|X=v)

- X = College Major
- Y = Likes "Gladiator"

Х	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
History	No	
Math	Yes	

Definition of Specific Conditional Entropy:

H(Y | X=v) = The entropy of *Y* among only those records in which *X* has value *v*

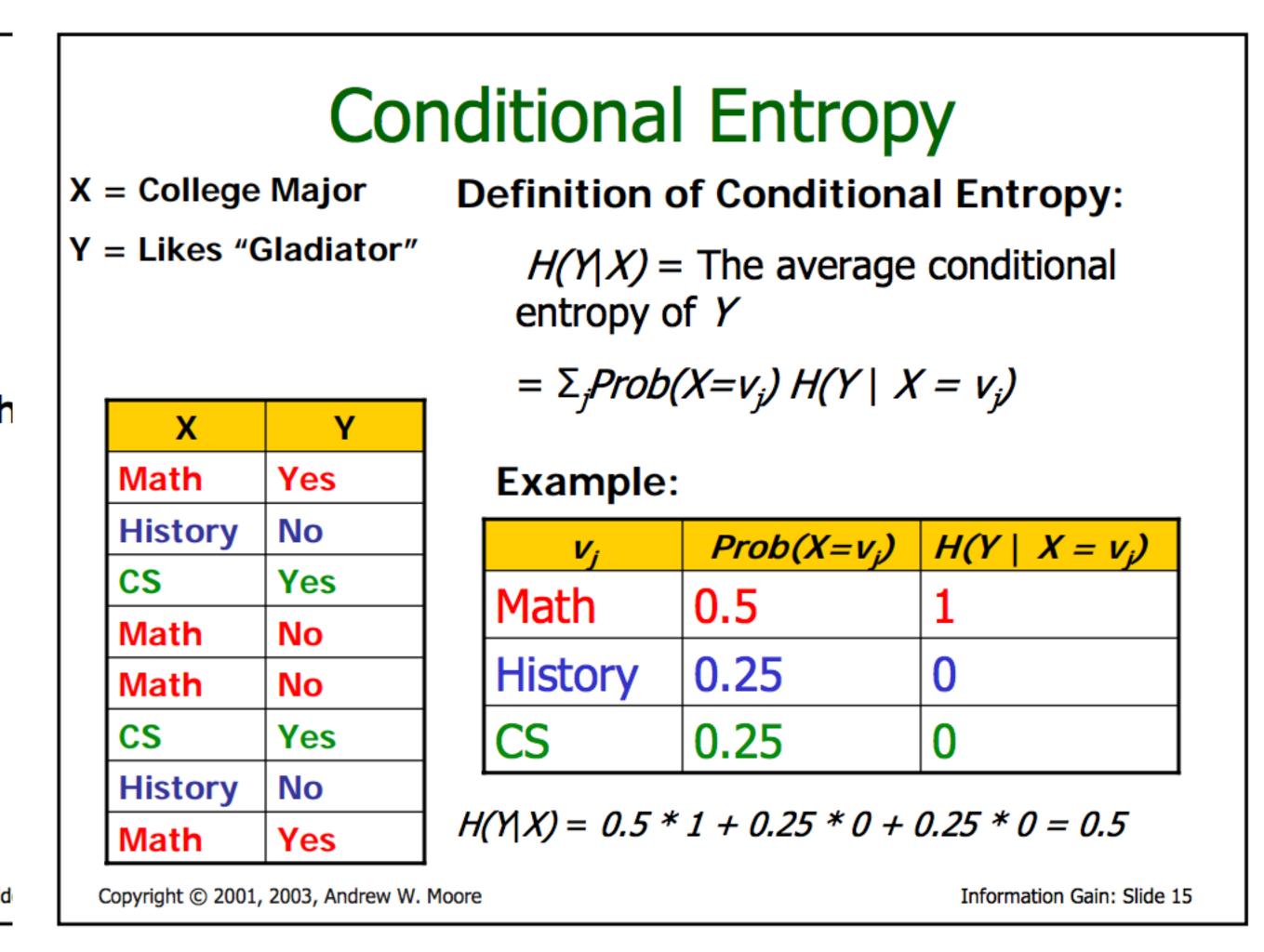
Example:

- H(Y|X=Math) = 1
- H(Y|X=History) = 0
- H(Y|X=CS) = 0

Information Gain: Slid

Copyright © 2001, 2003, Andrew W. Moore

http://www.cs.cmu.edu/~./awm/tutorials/infogain11.pdf



Information Gain

Information Gain

Χ	=	Col	lege	Major
---	---	-----	------	-------

Y = Likes "Gladiator"

	•	-
Т	r	e
		· · ·

IG(

Х	Y	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
History	No	
Math	Yes	

Copyright © 2001, 2003, Andrew W. Moore

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of line knew X?

$$Y|X) = H(Y) - H(Y | X)$$

Example:

• H(Y) = 1

• H(Y | X) = 0.5

• Thus IG(Y|X) = 1 - 0.5 = 0.5

Information Gain: Slide 16

http://www.cs.cmu.edu/~./awm/tutorials/infogain11.pdf

- the output.
- information gain.
- Then recurse...

Learning a decision tree

 A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict

 To decide which attribute should be tested first, simply find the one with the highest

Decision tree on a high-level

- Tree structure
- Using the notion of entropy dimension to split
- Recurse

http://www.cs.cmu.edu/~./awm/tutorials/dtree.html

• Using the notion of entropy or information gain to choose which

Learn more on decision tree

Youtube, e.g. https://www.youtube.com/watch?v=eKD5gxPPeY0
 Decision tree tutorials

- By Avinash Kak: https://e DecisionTreeClassifiers.pdf
- By Andrew Moore:
 - http://www.cs.cmu.edu/~./awm/tutorials/dtree.html
 - http://www.cs.cmu.edu/~./awm/tutorials/infogain11.pdf

By Avinash Kak: https://engineering.purdue.edu/kak/Tutorials/

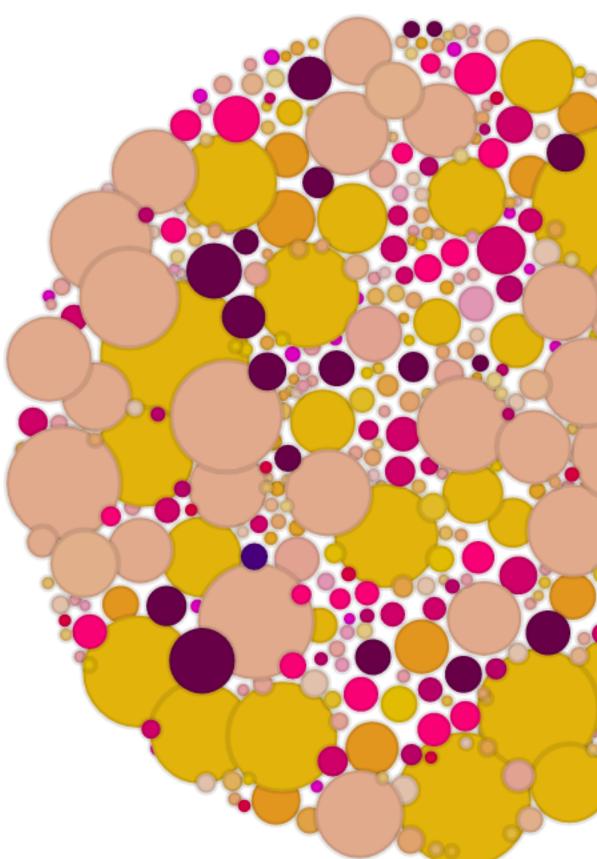
wm/tutorials/dtree.html wm/tutorials/infogain11.pdf

Personal Vis Project...

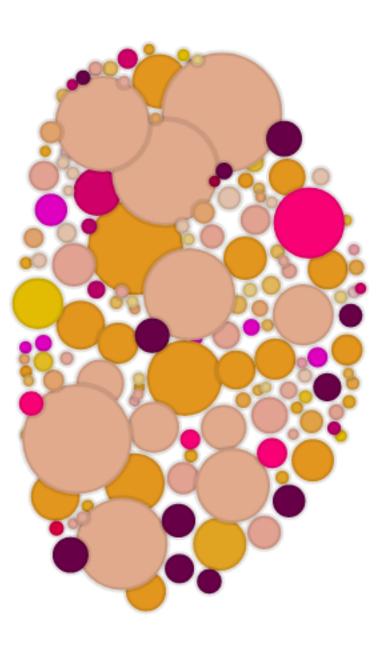
Getting ready for Project 2

- Project 4 is due April 5th... know it seems like a long time away • However, project 4 has a flavor of personal visualization Start thinking about the following question:
 - What personal data of your own (or someone you know) would you like to visualize?
 - How do you get hold of the data?
 - Why is this important to you?

Example of personal vis



Visualize Gmail data http://luk3thomas.com/labs/gmail-archive-for-2013-20140224.html



You can find me at: beiwang@sci.utah.edu

Thanks!

Any questions?

CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Vector Icons by Matthew Skiles

Presentation template designed by <u>Slidesmash</u>

Photographs by <u>unsplash.com</u> and <u>pexels.com</u>

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www.1001fonts.com/oswald-font.html

https://www.fontsquirrel.com/fonts/open-sans

Colors used