Advanced Data Visualization

 CS 6965Fall 2019
Prof. Bei Wang Phillips University of Utah

Visualization

 is the secret weapon for Machine learning
Roles of ML in HD data visualization

From Black Box to Glass Box:

- ML as part of data transformation in the visualization pipeline
- Visualization increase the interpretability of the algorithmic results (visualizing algorithm output)
- Visualization increases the interpretability of ML algorithms (visualizing algorithmic processes)
- (Interactive) visualization becomes part of the ML algorithm

ML algorithms in a nutshell

Not a full-blown ML class, but

How to best incorporate vis into ML algorithms?

- A simple approach is to treat the ML algorithm as a black box, and build vis surrounding its input/output
- Not knowing the interworking of the algorithm (e.g. a glass box) may lead to misinterpretation of the algorithm output
- We need to have a good understanding of the core of some ML algorithms
- We will review some ML algorithms with a focus on their innerworkings so as to think about how visualization can be incorporated
- You are encouraged to read about ML in general (see recommended reading, and talk to the instructor)
- Keep in mind, our focus is ML+Vis

ML algorithm by learning styles

Supervised
Learning
Problems: Classification
Regression

Unsupervised
Learning
Problems: Clustering
Dimensionality Reduction

Semi-supervised Learning

Problems: Classification
Regression

ML algorithm by similarity (how they work)

Regression Algorithms

Dimensional Reduction Algorithms

Instance-based Algorithms

Ensemble Algorithms

Regularization Algorithms

Artificial Neural Network Algorithms

Decision Tree Algorithms

Deep Learning Algorithms

Bayesian Algorithms

Association Rule Learning Algorithms

Clustering Algorithms

Advances in HD Vis

Visualizing High-Dimensional Data: Advances in the Past Decade

Digital library for publication Visualizing High-Dimensional Data: Advances in the Past Decad

Selectors $\square \square \square \square \square \square$ diear

Tags
pipeline stage: ? $?_{6}$ data transformation n_{137} view transformation n_{17} visual mapping ${ }_{62}$ user involvement: ? computation centric ${ }_{61}$ interactive exploration ${ }_{144}$
model manipulation ${ }_{6}$
paper type: ? ${ }_{40}$ application a $_{7}$ survey $_{11}$ system $_{11}$ technical 147 theory ${ }_{3}$
data type: ? $?_{86}$ high-dimensional function ${ }_{7}$ high-dimensional point cloud ${ }_{1}$
high-dimensional points ${ }_{100}$ nominal data ${ }_{14} \quad$ spatial data $_{6} \quad$ time series ${ }_{4}$
analysis method: $?_{55} \quad$ clustering $_{83} \quad$ data abstraction ${ }_{5}$ data subset ${ }_{1}$ dimension relationship ${ }_{9}$ dimension similarity dimensionality reduction $_{25} \quad$ distance metric dic $_{6}$ feature extraction 2 histogram $_{2} \quad$ optimization $_{1} \quad$ precision measure ${ }_{5}$ projection $_{12}$ quality measure ${ }_{1}$ regression ${ }_{8}$ regression? $_{1} \quad$ scagnostics $_{1} \quad$ segmentation $_{1} \quad$ statistic $_{2} \quad$ subspace $_{14} \quad$ topological analysis ${ }_{9}$ visual method: ? $?_{21}$ animation ${ }_{6}$ bar charts focus $_{7}$ context $_{6} \quad$ glyphs $_{10}$ heat map ${ }_{1}$ hierarchy $_{13} \quad$ isosurface $_{4} \quad$ magic lens $_{4} \quad$ node-link $_{3} \quad$ novel visual encoding ${ }_{31}$ parallel coordinates $_{96} \quad$ pixel-based ${ }_{5}$ progressive update ${ }_{3}$ radviz ${ }_{4}$ rendering enhancement $_{4}$ scatterplot $_{59} \quad$ star coordinates $_{2} \quad$ surfaces $_{7} \quad$ treemap $_{3}$ volume visualization ${ }_{5}$
other: ${ }_{5}$ clustering $_{1}$ clutter reduction 1_{15} comparison 1 $_{1}$ high-dimensional points ${ }_{1}$ data transformation filtering $_{2}$ histogram $_{1}$ information machine learning $_{5}$ matching ${ }_{1}$ parameter exploration ${ }_{8}$ perception $_{4} \quad$ query $_{8} \quad$ ranking $_{17} \quad$ reordering $_{4} \quad$ segmentation $_{1} \quad$ sensitivity analysis $_{4} \quad$ uncertainty $_{3}$

Tidownload BibTeX

Visualization pipeline for highdim data

Visualization pipeline for HD data

Visualization pipeline for HD data

ML in data transformation

Dimension Reduction	Subspace Clustering	Regression Analysis	Topological Data Analysis
Linear Projection [23], [25],	Dimension Space Exploration	Optimization \&	Morse-Smale Complex
Nonlinear DR [26], [30],	$[47],[48],[49]$,	Design Steering	$[166],[168],[169],[170]$,
Control Points Projection [34], [37]	Subset of Dimension [51], [53],	$[61],[62],[63]$,	Reeb Graph [174], [175], [181]
Distance Metric [38, 39],	Non-Axis-Parallel Subspace	Structural Summaries	Contour Tree [179, 180],
Precision Measures [42], [44]	$[56],[57],[58]$	$[67],[68]$	Topological Features [191], [192]

Dimensionality Reduction (DR)

Vis+DR can be a semester worth of material...

- Seek and explore the inherent structure in data
- Unsupervised
- Data compression, summarization
- Pre-processing for vis and supervised learning
- Can be adapted for classification and regression
- Well-known DR algorithms:
- Principal Component Analysis (PCA)
- Principal Component Regression (PCR)
- Partial Least Squares Regression (PLSR)
- Multidimensional Scaling (MDS)
- Projection Pursuit
- Linear Discriminant Analysis (LDA)
- Mixture Discriminant Analysis (MDA)

Linear vs nonlinear DR

- Linear: Principal Component Analysis (PCA)
- Nonlinear DR, Manifold learning:
- Isomap
- Locally Linear Embedding (LLE)
- Hessian Eigenmapping
- Spectral Embedding
- Multi-dimensional Scaling (MDS)
t-distributed Stochastic Neighbor Embedding (t-SNE)

Manifold learning

Interpretability trade off

DR and Vis Overview

How do we proceed from here

- Give two case studies involving DR + Vis
- Case 1: PCA + Vis (simple)
- Case 2: SNE and t-SNE + Vis (more involved)
- We do not go through all (but some of) the mathematical details of these algorithms, but instead give a high-level overview of what the algorithm is trying to do
- You are encouraged to follow references and recommended readings to obtain in-depth understanding of these algorithms
- You can use these case studies to think about what might be a good final project

Vis + DR: PCA

A case study with a linear DR method

Three interpretation of PCA

PCA can be interpreted in 2 different ways:

- Maximize the variance of projection along each component (dimension).
- Minimize the reconstruction error, that is, the squared distance between the original data and its projected coordinates.

PCA at a glance

Data after normalization

A projection with small variance

PCA at a glance

A projection with large variance

- PCA automatically choose project direction that maximizes the variance
- The direction of maximum variance in the input space happens to be the same as the principal eigenvector of the covariance matrix of the data
- PCA algorithm: finding the eigenvalues and eigenvectors of the covariance matrix.
- The eigenvectors with the largest eigenvalues correspond to the dimensions that have the strongest correlation in the dataset; this is the principle component.

Eigenvalues and eigenvectors

For a given matrix \mathbf{A}, what are the vectors \mathbf{x} for which the product $\mathbf{A x}$ is a scalar multiple of \mathbf{x} ? That is, what vectors \mathbf{x} satisfy the equation

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ ?

Eigen decomposition theorem

Let P be a matrix of eigenvectors of a given square matrix A and D be a diagonal matrix with the corresponding eigenvalues on the diagonal. Then, as long as P is a square matrix, A can be written as an eigen decomposition

$$
\mathrm{A}=\mathrm{PDP}^{-1}
$$

where D is a diagonal matrix. Furthermore, if A is symmetric, then the columns of P are orthogonal vectors.

Covariance matrix

$$
Q=X X^{T}=\left[\begin{array}{llll}
\mathbf{x}_{1}-\overline{\mathbf{x}} & \mathbf{x}_{2}-\overline{\mathbf{x}} & \cdots & \mathbf{x}_{n}-\overline{\mathbf{x}}
\end{array}\right]\left[\begin{array}{c}
\left(\mathrm{x}_{1}-\overline{\mathbf{x}}\right)^{T} \\
\left(\mathbf{x}_{2}-\overline{\mathbf{x}}\right)^{T} \\
\vdots \\
\left(\mathrm{x}_{n}-\overline{\mathbf{x}}\right)^{T}
\end{array}\right]
$$

X : data; each col is a data point; each row is a dim. Don't want to explicitly compute Q: can be huge! Instead, using SVD, singular value decomposition.

Singular value decomposition (SVD)

Any $m \times n$ matrix X can be decomposed into three matrices:

$$
X=U \Sigma V^{T}
$$

$\bigcirc \mathrm{U}$ is mx m and its columns are orthonormal vectors (i.e. perpendicular)
$\bigcirc \Sigma$ is $\mathrm{n} \times \mathrm{n}$ and its columns are orthonormal vectors
$\bigcirc D$ is $m \times n$ diagonal and its diagonal elements are called the singular values of X

Relation between PCA and SVD

Simply put, the PCA viewpoint requires that one compute the eigenvalues and eigenvectors of the covariance matrix, which is the product $\mathbf{X X}{ }^{\top}$, where \mathbf{X} is the data matrix. Since the covariance matrix is symmetric, the matrix is diagonalizable, and the eigenvectors can be normalized such that they are orthonormal:
$\mathbf{X X}^{\boldsymbol{\top}}=\mathbf{W D W}^{\boldsymbol{\top}}$
On the other hand, applying SVD to the data matrix \mathbf{X} as follows:
$\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$
and attempting to construct the covariance matrix from this decomposition gives
$\mathbf{X} \mathbf{X}^{\boldsymbol{\top}}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)^{\top}$
$\mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}\right)\left(\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}\right)$
and since \mathbf{V} is an orthogonal matrix $\left(\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}\right)$,
$\mathbf{X X}^{\top}=\mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{\top}$
and the correspondence is easily seen (the square roots of the eigenvalues of $\mathbf{X X}{ }^{\top}$ are the singular values of \mathbf{X}, etc.)

Performing SVD on data matrix

X is the (normalized) data matrix, perform SVD on X :

$$
X=U D V^{T}
$$

- The columns of U are the eigenvectors of covariance matrix: $\mathrm{XX}^{\wedge} \top$
- The columns of V are the eigenvectors of $\mathrm{X}^{\wedge} \mathrm{T} X$
- The squares of the diagonal elements of D are the eigenvalues of $X X^{\wedge} \top$ and $X^{\wedge} \top X$

PCA related readings

- Many PCA lectures are available on the web
- Reading materials
- http://www.cse.psu.edu/~rtc12/CSE586Spring2010/lectures/ pcaLectureShort.pdf
- http://cs229.stanford.edu/notes/cs229-notes10.pdf
- Things you should pay attention when using PCA

Make sure the data is centered: normalize mean and variance

Using PCA with scikit-learn

```
import numpy as np
from sklearn.decomposition import PCA
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA(n_components=2)
pca.fit(X)
print(pca.explained_variance_ratio_)
print(pca.singular_values_)
```


iPCA: interactive PCA

iPCA: An Interactive System for PCA-based Visual Analytics

UNC Charlotte

Dong Hyun Jeong Caroline Ziemkiewicz William Ribarsky Remco Chang

Simon Fraser University Brian Fisher

iPCA extension: collaborative sys

Button	Meaning	Button	Meaning
	Go back to the initial state	$[\square$	Delete the selected item(s)
	Individual item selection	$\frac{\operatorname{LL}}{2}$	Partition the selected item(s) into a new workspace
	Range item(s) selection		Close the application
	Manipulation	[1]	Create a new application
	Trail enable - on/ off	负	Rotate the application
	Cancel the selected item(s)		Make the sliderbar panel appear disappear

Vis + DR: t-SNE

> A case study with a nonlinear DR method

The material from this section is heavily drawn from Jaakko Peltonen

DR: preserving distances

$$
C=\frac{1}{a} \sum_{i j} w_{i j}\left(d_{X}\left(x_{i}, x_{j}\right)-d_{Y}\left(y_{i}, y_{j}\right)\right)^{2}
$$

- Many DR methods focus on preserving distances, e.g. the above is the cost function for a particular DR method called metric MDS
\bullet An alternative idea is preserving neighborhoods.

DR: preserving neighborhoods

- Neighbors are an important notion in data analysis, e.g.social networks, friends, twitter followers...
- Object nearby (in a metric space) are considered neighbors
- Consider hard neighborhood and soft neighborhood
- Hard: each point is a neighbor (green) or a non-neighbor (red)
- Soft: each point is a neighbor (green) or a non-neighbor (red) with some weight

Probabilistic neighborhood

- Derive a probability of point j to be picked as a neighbor of i in the input space

$$
p_{i j}=\frac{\exp \left(-d_{i j}^{2}\right)}{\sum_{k \neq i} \exp \left(-d_{i k}^{2}\right)}
$$

Preserving nbhds before \& after DR

$$
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2}\right)}
$$

Probabilistic input neighborhood:
Probability to be picked as a neighbor in space X (input coordinates)

$$
q_{i j}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|y_{i}-y_{k}\right\|^{2}\right)}
$$

Probabilistic output neighborhood:
Probability to be picked as a neighbor in space Y (display coordinates)

Stochastic neighbor embedding

- Compare neighborhoods between the input and output!
- Using Kullback-Leibler (KL) divergence
- KL divergence: relative entropy (amount of surprise when encounter items from 1st distribution when they are expected to come from the 2nd)
- KL divergence is nonnegative and 0 iff the distributions are equal
- SNE: minimizes the KL divergence using gradient descent

$$
C=\sum_{i} \sum_{j} p_{i j} l o g \frac{p_{i j}}{q_{i j}}
$$

SNE: choose the size of a nbhd

- How to set the size of a neighborhood? Using a scale parameter: σ_{i}

$$
d_{i j}^{2}=\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma_{i}^{2}}
$$

- The scale parameter can be chosen without knowing much about the data, but...
\rightarrow It is better to choose the parameter based on local neighborhood properties, and for each point
- E.g., in sparse region, distance drops more gradually

SNE: choose a scale parameter

Choose an effective number of neighbors:

- In a uniform distribution over k neighbors, the entropy is $\log (k)$
- Find the scale parameter using binary search so that the entropy of $p_{i j}$ becomes $\log (k)$ for a desired value of k.

SNE: gradient descent

- Adjusting the output coordinates using gradient descent
- Gradient descent: iterative process to find the minimal of a function
- Start from a random initial output configuration, then iteratively take steps along the gradient
- Intuition: using forces to pull and push pairs of points to make input and output probabilities more similar

$$
\frac{\partial C}{\partial y_{i}}=2 \sum_{j}\left(y_{i}-y_{j}\right)\left(p_{i j}-q_{i j}+p_{j i}-q_{j i}\right)
$$

SNE: the crowding problem

- When embedding neighbors from a high-dim space into a low- dim space, there is too little space near a point for all of its close-by neighbors.
- Some points end up too far-away from each other
- Some points that are neighbors of many far-away points end up crowded near the center of the display.
- In other words, these points end up crowded in the center to stay close to all of the far-away points.
ot-SNE: using heavy-tailed distributions (i.e., t-distributions) to define neighbors on the display, to resolve the crowding problem

t-distributed SNE

- Avoids crowding problem by using a more heavy-tailed neighborhood distribution in the low-dim output space than in the input space.
- Neighborhood probability falls off less rapidly; less need to push some points far off and crowd remaining points close together in the center.
- Use student-t distribution with 1 degree of freedom in the output space t-SNE (joint prob.); SNE (conditional prob.)

Blue: normal dist.
Red: student-t dist. with 1 deg. of freedom

t-SNE: preserving nbhds

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

$$
p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n}
$$

Probabilistic input neighborhood:
Probability to be picked as a neighbor in space X (input coordinates)

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

Probabilistic output neighborhood:
Probability to be picked as a neighbor in space Y (display coordinates)

Classic t-SNE result

t-SNE vs PCA

t-SNE

ot-SNE: minimize KL divergence.

- Nonlinear DR.
- Perform diff. transformation on diff. regions: main source of confusing.
- Parameter: perplexity, how to balance attention between local and global aspects of your data; guess the \# of close neighbor each point has.
- "The performance of t-SNE is fairly robust under different settings of the perplexity. The most appropriate value depends on the density of your data. Loosely speaking, one could say that a larger / denser dataset requires a larger perplexity. Typical values for the perplexity range between 5 and 50." (Laurens van der Maaten)

What is perplexity anyway?

- "Perplexity is a measure for information that is defined as 2 to the power of the Shannon entropy. The perplexity of a fair die with k sides is equal to k . In t -SNE, the perplexity may be viewed as a knob that sets the number of effective nearest neighbors. It is comparable with the number of nearest neighbors k that is employed in many manifold learners."

How not to misread t－SNE

	婁 综	＊＊	显	，	\％
\square		.	\％	\％	3
00		Wesunt	\％＂	－	
oints Per	de 20	$\begin{aligned} & \text { Step } \\ & 420 \end{aligned}$	A square grid with equal spacing between points． Try convergence at different sizes．		

Perplexity 10

Epsilon 5

Playing with t-SNE

○http://scikit-learn.org/stable/auto_examples/manifold/ plot_t_sne_perplexity.html

- https://Ivdmaaten.github.io/tsne/

Weakness of t-SNE

- Not clear how it performs on general DR tasks
- Local nature of t-SNE makes it sensitive to intrinsic dim of the data - Not guaranteed to converge to global minimum

Take home message

- Even a simple DR method like PCA can have interesting visualization aspects to it
- Using visualization to manipulate the input to the ML algorithm, and at the same time understanding the interworking of the algorithm
- Cooperative analysis, mobile devices, virtue reality?
- t-SNE is useful, but only when you know how to interpret it
- Those hyper-parameters, such as perplexity, really matter
- Use visualization to interpret the ML algorithm
- Educational purposes to distill algorithms as glass boxes

Getting ready for Project 1

- Scikit-learn tutorial:

○ http://scikit-learn.org/stable/tutorial/basic/tutorial.html

- UMAP:
- https://umap-learn.readthedocs.io/en/latest/
- Install and read the documentation of kepler-mapper:
- https://github.com/MLWave/kepler-mapper
- Interactive Data Visualization for the Web, 2nd Ed.
o http://alignedleft.com/work/d3-book-2e

Potential Final Projects

- Inspired by:
- http://setosa.io/ev/principal-component-analysis/
o https://distill.pub/2016/misread-tsne/
- ExtendingEmbedding Projector: Interactive Visualization and Interpretation of Embeddings
o https://opensource.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html
- http://projector.tensorflow.org/
ohttps://www.tensorflow.org/versions/r1.2/get_started/ embedding_viz
Can you create a web-based tools that give good visual interpretation of two linear DR and two nonlinear DR techniques?

Thanks!
\qquad

CREDITS

Special thanks to all people who made and share these awesome resources for free:
\square Presentation template designed by Slidesmash
\square Photographs by unsplash.com and pexels.com
\square Vector Icons by Matthew Skiles

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www. 1001 fonts.com/oswald-font.html
https://www.fontsquirrel.com/fonts/open-sans
Colors used

