
CAAM 453 · NUMERICAL ANALYSIS I

Lecture 39: Root Finding via Newton’s Method

We have studied two bracketing methods for finding zeros of a function, bisection and regula falsi.
These methods have certain virtues (most importantly, they always converge), but it may be difficult
to find an initial interval that brackets a root. Though they exhibit steady linear convergence, rather
many evaluations of f may be required to attain sufficient accuracy. In this lecture, we will swap
these reliable methods for a famous algorithm that often converges with amazing speed, but is more
temperamental. Versions of this algorithm spring up everywhere.†

7.2. Newton’s Method.

The idea behind the method is similar to regula falsi : model f with a line, and estimate the root
of f by the root of that line. In regula falsi, this line interpolated the function values at either end
of the root bracket. Newton’s method is based purely on local information at the current solution
estimate, xk. Whereas the bracketing methods only required that f be continuous, we will now
require that f ∈ C2(R), that is, f and its first two derivatives should be continuous. This will
allow us to expand f in a Taylor series around some approximate root xk,

f(x∗) = f(xk) + f ′(xk)(x∗ − xk) + 1
2f
′′(ξ)(x∗ − xk)2, (39.1)

where x∗ is the exact solution, f(x∗) = 0, and ξ is between xk and x∗. Ignore the error term in
this series, and you have a linear model for f ; i.e., f ′(xk) is the slope of the line secant to f at the
point xk. Specifically,

0 = f(x∗) ≈ f(xk) + f ′(xk)(x∗ − xk), which implies x∗ ≈ xk −
f(xk)
f ′(xk)

,

so we get an iterative method by replacing x∗ in the above formulas with xk+1,

xk+1 := xk −
f(xk)
f ′(xk)

. (39.2)

This celebrated iteration is Newton’s method, implemented in the MATLAB code below.

function xstar = newton(f,fprime,x0)
% Compute a root of the function f using Newton’s method
% f: a function name
% fprime: a derivative function name
% x0: the starting guess
% Example: newton(’sin’,’cos’,3), or newton(’my_f’,’my_fprime’,1)
maxit = 60;
fx = feval(f,x0); x=x0; k=0; % initialize
fprintf(’ %3d %20.14f %10.7e\n’, k, x, fx);
while (abs(fx) > 1e-15) & (k < maxit)

x = x - fx/feval(fprime,x); % Newton’s method
k = k+1;
fx = feval(f,x);
fprintf(’ %3d %20.14f %10.7e\n’, k, x, fx);

end
xstar = x;

†Richard Tapia gives a lecture titled ‘If It Is Fast and Effective, It Must be Newton’s Method.’

29 November 2009 39-1 M. Embree, Rice University

CAAM 453 · NUMERICAL ANALYSIS I

What distinguishes this iteration? For a bad starting guess x0, it can diverge entirely. When it
converges, the root it finds can, in some circumstances, depend sensitively on the initial guess: this
is a famous source of beautiful fractal illustrations. However, for a good x0, the convergence is
usually lightning quick. Let ek = xk − x∗ be the error at the kth step. Subtract x∗ from both sides
of the iteration (39.2) to obtain a recurrence for the error,

ek+1 = ek −
f(xk)
f ′(xk)

.

The Taylor expansion of f(x∗) about the point xk given in (39.1) gives

0 = f(xk)− f ′(xk)ek + 1
2f
′′(ξ)e2k.

Solving this equation for f(xk) and substituting that formula into the expression for ek+1 we just
derived, we obtain

ek+1 = ek −
f ′(xk)ek + 1

2f
′′(ξ)e2k

f ′(xk)
= −

f ′′(ξ)e2k
2f ′(xk)

.

Supposing that x∗ is a simple root, so that f ′(x∗) 6= 0, the above analysis suggests that when xk is
near x∗,

|ek+1| ≤ C|ek|2

for some constant C independent of k. This is quadratic convergence, and it roughly means that
you double the number of correct digits at each iteration. Compare this to bisection, where

|ek+1| ≤ 1
2 |ek|,

meaning that the error was halved at each step. Significantly, Newton’s method will often exhibit
a transient period of linear convergence while it gets sufficiently close to the answer, but once in a
region of quadratic convergence, full machine precision is attained in just a couple more iterations.

The following example approximates the zero of f(x) = x2 − 2, i.e., x∗ =
√

2. As initial guesses,
we choose x0 = 1.25 (left), which gives us very rapid convergence, and x0 = 1000 (right), which
is a ridiculous estimate of

√
2, but illustrates the linear phase of convergence that can precede

superlinear convergence when x0 is far from x∗.

0 1 2 3 4 5 6
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

0 2 4 6 8 10 12 14 16
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

k

|f(xk)|

k

|f(xk)|

x0 = 1.25 x0 = 1000

linear
�
���

quadratic

��
��
�*

29 November 2009 39-2 M. Embree, Rice University

CAAM 453 · NUMERICAL ANALYSIS I

The table below shows the iterates for x0 = 1000, computed exact arithmetic in Mathematica, and
displayed here to more than eighty digits. This is a bit excessive: in the floating point arithmetic
we have used all semester, we can only expect to get 15 or 16 digits of accuracy in the best case. It
is worth looking at all these digits to get a better appreciation of the quadratic convergence. Once
we are in the quadratic regime, notice the characteristic doubling of the number of correct digits
(underlined) at each iteration.

k x_k

0 1000.000

1 500.00100

2 250.00249999600000799998400003199993600012799974400051199897600204799590400819198361603

3 125.00524995800046799458406305526512856598014823595622393441695800477446685799463896484

4 62.51062464301703314888691358403320464529759944325744566631164600631017391478309761341

5 31.27130960206219455596422358771700548374565801842332086536365236578278080406153827364

6 15.66763299486836640030755527100281652065100159710324459452581543767403479921834012248

7 7.89764234785635806719051360934236238116968365174167025116461034160777628217364960111

8 4.07544124051949892088798573387067133352991149961309267159333980191548308075360961862

9 2.28309282439255383986306690358177946144339233634377781606055538481637200759555376236

10 1.57954875240601536527547001727498935127463981776389016188975791363939586265860323251

11 1.42286657957866825091209683856309818309310929428763928162890934673847036238184992693

12 1.41423987359153062319364616441120035182529489347860126716395746896392690040774558375

13 1.41421356261784851265589000359174396632207628548968908242398944391615436335625360056

14 1.41421356237309504882286807775717118221418114729423116637254804377031332440406155716

15 1.41421356237309504880168872420969807856983046705949994860439640079460765093858305190

16 1.41421356237309504880168872420969807856967187537694807317667973799073247846210704774

exact: 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753...

7.2.1. Convergence analysis.

We have already performed a simple analysis of Newton’s method to gain an appreciation for the
quadratic convergence rate. For a broader perspective, we shall now put Newton’s method into a
more general framework, so that the accompanying analysis will allow us to understand simpler
iterations like the ‘constant slope method:’

xk+1 = xk − αf(xk)

for some constant α (which could approximate 1/f ′(x∗), for example). We begin by formalizing
our notion of the rate of convergence.

Definition. A root-finding algorithm is pth-order convergent if

|ek+1| ≤ C |ek|p

for some p ≥ 1 and positive constant C. If p = 1, then C < 1 is necessary for convergence, and C
is called the linear convergence rate.

Newton’s method is second-order convergent (i.e., it converges quadratically) for f ∈ C2(R) when
f ′(x∗) 6= 0 and x0 is sufficiently close to x∗. Bisection is linearly convergent for f ∈ C[a0, b0] with
rate C = 1/2.

29 November 2009 39-3 M. Embree, Rice University

CAAM 453 · NUMERICAL ANALYSIS I

Functional iteration. One can analyze Newton’s method and its variants through the following
general framework.‡ Consider iterations of the form

xk+1 = Φ(xk),

for some iteration function Φ. For example, for Newton’s method

Φ(x) = x− f(x)
f ′(x)

.

If the starting guess is an exact root, x0 = x∗, the method should be smart enough to return
x1 = x∗. Thus the root x∗ is a fixed point of Φ, i.e.,

x∗ = Φ(x∗).

We seek an expression for the error ek+1 = xk+1 − x∗ in terms of ek and properties of Φ. Assume,
for example, that Φ(x) ∈ C2(R), so that we can write the Taylor series for Φ expanded about x∗:

xk+1 = Φ(xk) = Φ(x∗) + (xk − x∗)Φ′(x∗) + 1
2(xk − x∗)2Φ′′(ξ)

= x∗ + (xk − x∗)Φ′(x∗) + 1
2(xk − x∗)2Φ′′(ξ)

for some ξ between xk and x∗. From this we obtain an expression for the errors:

ek+1 = ekΦ′(x∗) + 1
2e

2
kΦ′′(ξ).

Convergence analysis is reduced to the study of Φ′(x∗), Φ′′(x∗), etc.

Example: Newton’s method. For Newton’s method

Φ(x) = x− f(x)
f ′(x)

,

so the quotient rule gives

Φ′(x) = 1− f ′(x)2 − f(x)f ′′(x)
f ′(x)2

=
f(x)f ′′(x)
f ′(x)2

.

Provided x∗ is a simple root so that f ′(x∗) 6= 0 (and supposing f ∈ C2(R)), we have Φ′(x∗) = 0,
and thus

ek+1 = 1
2 e

2
kΦ′′(ξ),

and hence we again see quadratic convergence provided xk is sufficiently close to x∗.

What happens when f ′(x∗) = 0? If x∗ is a multiple root, we might worry that Newton’s method
might have trouble converging, since we are dividing f(xk) by f ′(xk), and both quantities are
nearing zero as xk → x∗. This general convergence framework allows us to investigate this situation
more precisely. We wish to understand

lim
x→x∗

Φ′(x) = lim
x→x∗

f(x)f ′′(x)
f ′(x)2

.

‡For further details on this standard approach, see G. W. Stewart, Afternotes on Numerical Analysis, §§2–4;
J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., §5.2; L. W. Johnson and R. D. Riess, Numerical
Analysis, second ed., §4.3.

29 November 2009 39-4 M. Embree, Rice University

CAAM 453 · NUMERICAL ANALYSIS I

This limit has the indeterminate form 0/0. Assuming sufficient differentiability, we can invoke
l’Hôpital’s rule:

lim
x→x∗

f(x)f ′′(x)
f ′(x)2

= lim
x→x∗

f ′(x)f ′′(x) + f(x)f ′′′(x)
2f ′(x)f ′′(x)

,

but this is also of the indeterminate form 0/0 when f ′(x∗) = 0. Again using l’Hôpital’s rule and
now assuming f ′′(x∗) 6= 0,

lim
x→x∗

f(x)f ′′(x)
f ′(x)2

= lim
x→x∗

f ′′(x)2 + 2f ′(x)f ′′′(x) + f(x)f (iv)(x)
2(f ′(x)f ′′′(x) + f ′′(x)2)

= lim
x→x∗

f ′′(x)2

2f ′′(x)2
=

1
2
.

Thus, Newton’s method converges locally to a double root according to

ek+1 = 1
2ek +O(e2k).

Note that this is linear convergence at the same rate as bisection! If x∗ has multiplicity exceeding
two, then f ′′(x∗) = 0 and further analysis is required. One would find that the rate remains linear,
and gets even slower. The slow convergence of Newton’s method for multiple roots is exacerbated
by the chronic ill-conditioning of such roots. Let us summarize what might seem to be a paradoxical
situation: the more ‘copies’ of root there are present, the more difficult that root is to find!

29 November 2009 39-5 M. Embree, Rice University

