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Preface

The Lecture Notes 1 are primarily based on a sequence of lectures given by the author
while been a Fulbright scholar at “St. Kliment Ohridski” University of Sofia, Sofia,
Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat
expanded version of the actual one semester class he taught there. The material covered is
slightly modified and adapted version of similar topics covered in the author’s monograph
“Multilevel Block–Factorization Preconditioners” published in 2008 by Springer.

The author tried to keep the notes as self-contained as possible. That is why the
lecture notes begin with some basic introductory matrix-vector linear algebra, numer-
ical PDEs (finite element) facts emphasizing the relations between functions in finite
dimensional spaces and their coefficient vectors and respective norms.

Then, some additional facts on the implementation of finite elements based on relation
tables using the popular compressed sparse row (CSR) format are given. Also, typical
condition number estimates of stiffness and mass matrices, the global matrix assembly
from local element matrices are given as well.

Finally, some basic introductory facts about stationary iterative methods, such as
Gauss–Seidel and its symmetrized version are presented.

The introductory material ends up with the smoothing property of the classical iter-
ative methods and the main definition of two–grid iterative methods.

From here on, the second part of the notes begins which deals with the various aspects
of the principal TG and the numerous versions of the MG cycles. At the end, in part III,
we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of
AMG specialized for finite element matrices.

Sofia, Bulgaria
January 30, 2010

1This work was in part performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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CHAPTER 1

Matrix-vector linear algebra and some basic finite elements
facts

This lecture contains a brief summary of results about matrix-vector notation, elliptic
boundary value problems, their weak formulation, Galerkin method and some preliminary
facts about finite element Galerkin discretization.

1. Notation

Vectors and matrices. Vector quantities are denoted in boldface, i.e., u, v, . . . .
We use vector-columns, i.e.,

v =




v1

v2
...
vn


 ∈ R

n.

The transpose of v denoted vT is the vector-row (v1, . . . , vn). Given a m× n matrix

A =



a11 a12 . . . a1,n

...
. . .

...
am1 am2 . . . amn




the product Av equals the vector




n∑
j=1

a1jvj

...
n∑

j=1

aijvj

...
n∑

j=1

amjvj




∈ R
m. Sometimes we write for short

A = (aij).
More generally, given two matrices, an m× n matrix A = (aik) and an n× ℓ matrix

B = (bkl) the product C = AB is them×ℓmatrix with entries cil given by the expressions
n∑

k=1

aikbkl. In short, matrices are multiplied “row-times-column”.

Symmetric and positive definite matrices. A n × n (square) matrix A = (aij)
is called symmetric if vTAw = wTAv for any two vectors v and w. It is clear that this
is equivalent to aij = aji.

A square matrix A is called positive definite if vTAv > 0 for any non-zero vector v.

3
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For symmetric matrices the following extreme values of the Rayleigh quotient

max
v

vTAv

vTv
and min

v

vTAv

vTv

characterize the minimal and maximal eigenvalues of A. Note that symmetric matrices
have real eigenvalues.

By definition, for an n × n matrix A, λ is an eigenvalue of A if there is a non-zero
vector q such that

Aq = λq.

For symmetric matrices both λ and q are real.
More over, for symmetric matrices the following spectral decomposition of A holds.

There is an orthogonal n × n matrix Q, that is, QT = Q−1 and a diagonal matrix

Λ =




λ1 0 . . . 0 0
0 λ2 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 λn−1 0
0 0 . . . 0 λn




such that

A = QΛQT .

Equivalently, AQ = QΛ, that is

A[q1, . . . , qn] = [q1, . . . , qn]Λ = [q1λ1, . . . , qnλn].

The latter written componentwise read:

Aqk = λkqk, k = 1, . . . , n.

That is, qk and λk are an eigenvector and a corresponding eigenvalue of A.
Based on the spectral decomposition for positive definite matrices (in that case all

λk > 0), we can define functions of A, for example, we can define square root of A by

letting A
1
2 = QΛ

1
2QT . The Λ

1
2 is the diagonal matrix with entries on the main diagonal

equal to
√
λk. It is clear that A

1
2A

1
2 = A.

Scalar and vector–functions. We consider scalar functions u = u(x) where x ∈
Ω ⊂ R

d. For the most part, we consider d = 2, however the results are general and hold
for d = 3 as well. Also, the domain Ω is a bounded planar polygon (d = 2).

Also, we consider vector functions, for example,

u = u(x) =




u1(x)
u2(x)

...
un(x)


 .

Dot–product of vector-functions. Let u = (ui) and v = (vi) be two vector
functions. The following dot product is often used

u · v = u1v1 + · · · + unvn.

For any fixed x this is simply the inner (scalar) product of the vectors u(x), v(x) ∈ R
n.
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Gradient of scalar function. The gradient of a scalar function is a vector-function,
i.e., we have

∇u =




∂u
∂x1
...

∂u
∂xd


 .

Divergence of vector–function. For a vector-function u = (ui)
d
i=1 we can define

divergence

divu =
∂u1

∂x1

+ · · · + ∂ud

∂xd

.

Laplace operator. The Laplace operator is defined by

∆u = div∇u =
∂2u

∂x2
1

+ · · · + ∂2u

∂x2
d

.

Normal vector to a domain boundary. For a given polygonal domain Ω, we can
define unit outward normal vector n that is piecewise constant (and not defined at the
corners (vertices) of Ω).

2. Boundary–value problems

Let Ω ⊂ R
d (d = 2) be a planar polygon. Also, let Γ = ∂Ω be the boundary of Ω and

n its unit normal pointing outward Ω.

Integration by-parts formula. For any sufficiently smooth scalar function ϕ and
vector function v the following formula for integration by parts holds:∫

Ω

ϕdivv dx = −
∫

Ω

v · ∇ϕ dx +

∫

∂Ω

ϕv · n dσ.

It is a simple consequence from the following formula of Gauss∫

Ω

∂w

∂xi

dx =

∫

∂Ω

w cos(n, ei) dσ.

Simply, for a given v = (vi)
d
i=1 and ϕ, apply the above formula for w := viϕ using

∂(viϕ)
∂xi

= vi
∂ϕ

∂xi
+ ϕ ∂vi

∂xi
. We arrive at the desired result after summing up the formulas

∫

Ω

ϕ
∂vi

∂xi

dx = −
∫

Ω

vi

∂ϕ

∂xi

dx +

∫

∂Ω

ϕvi cos(n, ei) dσ.

for i = 1, 2, . . . , d, using the decomposition

n =
d∑

i=1

cos(n, ei)ei,

which implies

v · n =
d∑

i=1

d∑

i=1

vi cos(n, ei).
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Poincaré–Steklov operators and traces of functions. Let ∆F be the d − 1-
dimensional Laplace operator and consider its L2–orthogonal system of eigen-functions

−∆Fψk = λk ψk.

The functions ψk vanish on ∂F and satisfy
∫
F

ψkψl dy = δk,l. For each ψk = ψk(y) solve

the following 1–d boundary value problem

λkϕk − ϕ“
k = 0,

subject to ϕk(−1) = 0 and ϕk(0) = 1. The solution reads

ϕk(x) =
e
√

λk(x+1) − e−
√

λk(x+1)

e
√

λk − e−
√

λk
.

It is clear then that uk = ϕk(x)ψk(y) solves the homogeneous PDE −∆uk = 0.
Given now a g = g(y) expanded in terms of the basis of the eigenfunctions {ψk}

g =
∑

k

ckψk,

the following function

u(x, y) =
∑

k

ckϕk(x)ψk(y),

solves the Dirichlet boundary value problem

−∆u = 0 in Ω = (−1, 0) × F,

subject to u(0, y) = g(y), y ∈ F and u = 0 on ∂Ω \ {(0, F )}.
The latter boundary value problem defines the so-called Poincaré–Steklov operator

via the relation

g ∈ L2(F ) 7→ Sg =
∂u

∂x

∣∣∣∣
x=0

.

We have

Sg =
∑

k

√
λk ck coth (

√
λk) ψk.

The latter expression imposes some restrictions on the growth rate of the Fourier coeffi-
cients {ck} of g. Namely, we assume that g = g(y) is such that

‖g‖2

H
1
2
0 (F )

≡ (Sg, g) =
∑

k

√
λk c

2
k coth (

√
λk) ≃

∑

k

√
λk c

2
k <∞.

Remark 2.1. It can be shown that λk ≃ k2 where the equivalence constants depend
on the diameter of F .

Hence above and in what follows, we can replace
√
λk with k.

The integration by parts formula (valid for sufficiently smooth functions) can be
extended by continuity to give the following variational definition of S

(Sg, ϕ)F =

∫

Ω

∇u · ∇ϕ d x.
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Therefore

‖g‖2

H
1
2
0 (F )

= (Sg, g)F = |u|21.

More generally, we can define for any s ∈ R the fractional order Sobolev spaces on domain
boundary F ⊂ ∂Ω,

‖g‖s, F ≡ ‖g‖2
Hs

0(F ) =
∑

k

λs
kc

2
k,

as long as the above series is convergent.

Proposition 2.1. Let u ∈ H1(Ω), Ω = (−1, 0)×F and let u vanish on ∂Ω\{0}×F .

Then g = u|x=0 ∈ H
1
2
0 (F ) and Sg ∈ H

− 1
2

0 (F ) and the following trace inequalities hold:

‖g‖
H

1
2
0 (F )

≃ ‖Sg‖
H

− 1
2

0 (F )
≤ |u|1.

Proof. For any given harmonic function ϕ (i.e., ∆ϕ = 0) vanishing on ∂Ω \ ({x =
0} × F )we denote ϕF its trace on F . Next, we use the fact that S is symmetric, i.e.,
(Sg, ϕF )F = (g, SϕF )F . Indeed, let for two functions g and g

′
defined on F with Fourier

expansions g =
∑
k

ckψk and g
′
=
∑
k

c
′

kψk, we have

(Sg, g
′
)F =

∑

k

√
λk coth(

√
λk) ckc

′

k = (g, Sg
′
)F .

The rest follows from the formula (Sg, ϕ) =
∫
Ω

∇u · ∇ϕ dx (where now g = u|F ) and

the definition of fractional order Sobolev norms. More specifically, using the duality
definition, for any harmonic function ϕ vanishing on ∂Ω \ {0} × F , we obtain

‖g‖ 1
2
, F ≃ ‖Sg‖− 1

2
≃ sup

ϕ

(Sg, ϕF )F

‖ϕF‖ 1
2
, F

= sup
ϕ

(g, SϕF )F

‖ϕF‖ 1
2
, F

= sup
ϕ

∫
Ω

∇u · ∇ϕ

‖∇ϕ‖0

≤ ‖∇u‖0.

�

As a corollary of the above proof, we obtain the following characterization result for
S.

Corollary 2.1. We have the following minimization property of S:

(Sg, g)F = inf
{u∈H1(Ω), u|F =g and u=0 on ∂Ω\F}

∫

Ω

|∇u|2 dx.

Remark 2.2. The results in this sub-section hold for general polyhedral domains Ω
not necessarily being of the tensor product form (−1, 0) × F assumed here using more
general definitions of Sobolev spaces on (parts of) the boundary ∂Ω.
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Boundary value problems. Let part of Γ be ΓD and the remainder be ΓN =
Γ \ ΓD. We consider ΓD to be non–empty. For a given function f = f(x) ∈ L2(Ω),
i.e.,

∫
Ω

f 2(x) dx < ∞, and a function gN ∈ L2(ΓN), we are interested in the following

boundary–value problem:
Find a sufficiently smooth function u = u(x) such that

(1.1) −∆u = f(x) in Ω,

such that

(1.2) u = 0 on ΓD and ∇u · n = gN on ΓN .

If ΓN is empty, i.e., ΓD = Γ = ∂Ω, the above problem is referred to as the Dirichlet
boundary value problem. Note that if ΓD is empty set, then we have a Neumann boundary
value problem that may not have a solution for any f and gN . Also, for the Neumann
problem if u is a solution, then u + const is also a solution, that is, the solution is
determined up to a constant.

Weak formulation of boundary value problems. Introduce the Sobolev space
H1(Ω) of functions u ∈ L2(Ω) such that their first partial derivatives ∂u

∂xi
also belong to

L2(Ω). If the functions vanish on ∂Ω the corresponding subspace is denoted by H1
0 (Ω).

Let u solve the Laplace equation −∆u = f for a given f ∈ L2(Ω). Introduce the
vector function v = −∇u. For any smooth function ϕ using the integration by part
formula, we have

∫
Ω

fϕ dx = −
∫
Ω

ϕ∆u dx =
∫
Ω

ϕ divv dx = −
∫
Ω

v · ∇ϕ dx +
∫

∂Ω

ϕv · n dσ

=
∫
Ω

∇ϕ · ∇u dx −
∫

∂Ω

ϕ∇u · n dσ.

Assume now that u = u(x) satisfies the boundary conditions (1.2). Choosing then ϕ
vanishing on ΓD (the same as u), the following identity is obtained

(1.3)

∫

Ω

∇u · ∇ϕ dx =

∫

Ω

fϕ dx +

∫

∂ΩN

ϕgN dσ.

The above identity is referred as the weak formulation of the boundary value problem
(1.1)-(1.2). In this form the minimal requirement on u is to have only first partial
derivatives in L2–sense, that is, u ∈ H1(Ω) and vanishing on ΓD. Similarly, it is sufficient
to choose ϕ ∈ H1(Ω) also vanishing on ΓD.

Bilinear form and solution of boundary value problem. Introduce the bilinear
form

a(u, v) =

∫

Ω

∇u · ∇v dx,

defined for functions in H1(Ω) vanishing on ΓD ⊂ ∂Ω.
The bilinear form is symmetric and positive definite for the above class of functions

further denoted as V . Namely, if a(u, u) = 0 it follows that ∇u = 0, hence u = const.
However u vanishes on ΓD hence u = 0. In short, a(. .) defines an inner product on V .
By definition, V is a Hilbert space in that inner product.
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Consider gN ∈ H− 1
2 (ΓN) and f ∈ L2(Ω). The following expression

ℓ(ϕ) ≡
∫

Ω

fϕ dx +

∫

ΓN

gN ϕ dσ,

defines a linear functional for ϕ ∈ V . Based on the trace estimates in Proposition 2.1
and Friedrich’s inequality, we have that ℓ(ϕ) is bounded, i.e.,

|ℓ(ϕ)| ≤ ‖f‖0‖ϕ‖0 + ‖gN‖− 1
2
, ΓN

‖ϕ‖ 1
2
, ΓN

≤ C
(
‖f‖0 + ‖gN‖− 1

2
, ΓN

)
‖∇ϕ‖0.

Using the Riesz representation theorem for bounded linear functionals in Hilbert spaces,
it follows that the above linear functional ℓ(ϕ) defined for ϕ ∈ V , can be represented
based on the inner product of the Hilbert space, in our case the one given by the bilinear
form a(., .). That is, there is an unique element u = uℓ ∈ V such that for all ϕ ∈ V

a(u, ϕ) = ℓ(ϕ).

This shows that the weak formulation (1.3) of the boundary value problem (1.1)-(1.2)
has a (unique) solution.

3. The Galerkin method

Let {ϕi}n
i=1 be a finite set of linearly independent functions in V . The Galerkin

method constructs the best approximation to a function u ∈ V from the finite dimensional
space spanned by the functions {ϕi}n

i=1. That is, we are looking for the coefficients {ui}n
i=1

such that

‖u−
n∑

i=1

uiϕi‖ 7→ min .

Here, ‖v‖ =
√
a(v, v) is the norm induced by the inner product in V , that is, by our

bilinear form a(., .). If u = u(x) is the (unknown) solution for the weak form of the
boundary value problem (or b.v.p.) (1.3), it turns out that even though u is not actu-
ally known, the coefficients {ui} are computationally feasible and uniquely determined.
Indeed, we get the following quadratic functional to minimize

J(u1, . . . , un) ≡ a(u−
∑

i

uiϕi, u−
∑

i

uiϕi).

By looking at ∂J
∂uj

= 0, we obtain

0 = a(u−
∑

i

uiϕi, ϕj).

Therefore,
n∑

i=1

uia(ϕi, ϕj) = a(u, ϕj).
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Figure 1. Piecewise linear basis function on triangular elements.

Since a(u, ϕj) =
∫
Ω

f, ϕj dx +
∫

ΓN

ϕj gN dσ, we obtain at the end the linear system of n

equations for n unknowns
n∑

i

a(ϕi, ϕj)ui =

∫

Ω

f ϕj dx +

∫

ΓN

ϕj gN dσ, for all j = 1, 2, . . . , n.

This system has a unique solution since the functions ϕi are linearly independent which
implies that the n × n “Gram “ matrix A with (i, j)th entry a(ϕj, ϕi) is invertible. If
we form the right-hand side vector f = (fj)

n
j=1 with fj =

∫
Ω

f ϕj dx +
∫

ΓN

ϕj gN dσ, the

Galerkin system for the vector of unknown coefficients u = (ui)
n
i=1 can be written in the

matrix-vector form

Au = f .

Again, since A is a Gram matrix, it is symmetric and positive definite. In general, it
inherits in our case the properties of the bilinear form a(., .) (such as symmetry and
positive definiteness).

The finite element method. The finite element method is a special case of the
Galerkin method corresponding to a specific choice of the linearly independent test func-
tions {ϕi}n

i=1.
A typical local basis function in 2D is illustrated in Fig. 1.
A partition of the given polygonal domain Ω into simple elements τ (typically trian-

gles, or quadrilaterals such as rectangles)such that any pair of elements share a common
edge or a common vertex or are non-intersecting is referred to as a triangulation T . The
elements are assumed to have diameter of order h which is meant to tend to zero. We
sometimes write T = Th.
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Consider the case of triangular elements. The set of vertices, called nodes {xi}, is
denoted by N = Nh. For each vertex xi we associate a basis function ϕi that is linear
function of two variables when restricted to an individual element τ . The function ϕi is
such that it is locally supported in the neighborhood of elements sharing the vertex xi.

This implies that ϕi(xj) = δi,j =

{
1, i = j,
0, i 6= j.

.

Consider an element τ with its vertices

τ = (xi1 , xi2 , xi3).

One of the vertices xis equals xi. Let xis have coordinates (xis , yis). Then the following
equation can be used to define ϕi(x) for x = (x, y) ∈ τ

0 =

∣∣∣∣∣∣∣∣

x y ϕi 1
xi1 yi1 δi, i1 1
xi2 yi2 δi, i2 1
xi3 yi3 δi, i3 1

∣∣∣∣∣∣∣∣

The derivatives of ϕi are similarly computed. For example, ∂ϕi

∂x
is computed from the

equation

0 =

∣∣∣∣∣∣∣∣

1 0 ∂ϕi

∂x
0

xi1 yi1 δi, i1 1
xi2 yi2 δi, i2 1
xi3 yi3 δi, i3 1

∣∣∣∣∣∣∣∣
·

Similarly, ∂ϕi

∂y
satisfies

0 =

∣∣∣∣∣∣∣∣

0 1 ∂ϕi

∂y
0

xi1 yi1 δi, i1 1
xi2 yi2 δi, i2 1
xi3 yi3 δi, i3 1

∣∣∣∣∣∣∣∣
·

The Galerkin Gram matrix A in the case of finite elements is referred to as the stiffness
matrix. Due to the choice of locally supported basis functions ϕi, the entries a(ϕi, ϕj) of
A are zero if the supports of ϕi and ϕj do not overlap. In the case of triangular elements
described above an entry aij = a(ϕj, ϕi) is nonzero if the nodes xi and xj belong to
a same element τ . Thus, the number of nonzero entries in a row i of the matrix A is
bounded by κi + 1, where κi is the number of elements τ that share the vertex xi. If the
angles of the triangles is kept bounded away from zero when h 7→ 0, then we have that
κ = max

xi∈Nh

κi <∞.

This shows that the total number of nonzero entries of A is O(n), where n is the
number of basis functions or equivalently the number of nodes Nh.

Since the basis functions ϕi are Lagrangian (nodal), we have that the finite element
Galerkin approximation

uh =
n∑

i=1

uiϕi,

satisfies

uh(xi) = ui.
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That is, the coefficients ui are actually nodal values of the finite element approximation
function uh.

Finally, since ϕi restricted to any element is a polynomial function (linear in the
above setting), it follows that the finite element Galerkin approximation uh has some
approximation properties. More specifically, let Vh stand for the finite element space
spanned by the basis functions {ϕi}n

i=1, then the following error estimate holds (see next
Chapter) √

a(u− uh, u− uh) = min
vh∈Vh

√
a(u− vh, u− vh) ≤ Ch |u|2.

Here, we assume that the solution of the b.v.p. u is sufficiently smooth, that is, u has
all partial derivatives up to order two in L2(Ω). The term |u|2 stands for the semi–norm
defined by

|u|22 =

∫

Ω

((
∂2u

∂x2

)2

+

(
∂2u

∂x∂y

)2

+

(
∂2u

∂y2

)2
)
dx.
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CHAPTER 2

Further results on finite elements and stationary iterative
methods

This lecture contains a brief summary of further results on the finite element method,
its computational aspects, element matrices, sparsity of assembled matrices, condition
number estimates and some preliminary results about preconditioned stationary iterative
methods.

1. The finite element method: further results

Computational aspects. The finite element method is a special case of the Galerkin
method with specific choice of the basis (test) functions {ϕi}n

i=1. A finite element method
is characterized with a set of elements τ ∈ Th and the set of nodes xi ∈ Nh. Typically,
for piecewise linear basis functions ϕi and triangular elements τ , Nh is the set of vertices.
In general, the indices i run over so called degrees of freedom (or dofs) that specify the
basis of the finite element space Vh.

Relation tables. One way to specify the topology of a finite element mesh is via the
so–called relation tables implemented as Boolean sparse matrices. For example, the
incidence element i has a vertex j can be represented by the rectangular matrix where
in row i we have nonzero entry at column j if the node xj is a vertex of element i. It
is clear that for triangular elements such a relation table will have exactly three non–
zero entries per row. We denote this Boolean matrix as “element vertex”. Similarly, we
can form the Boolean matrices “element edge”, “edge vertex” etc. Utilizing operation
between Boolean sparse matrices we can form transposed relation or transient relations.
For example, the transposed matrix

“vertex element”=“(element vertex)T ”
has a non-zero entry at position (i, j) which represents the relation “node i is a vertex of
element j”.

The product of the Boolean sparse matrices
“vertex vertex” = “vertex element” × ”element vertex”

has non-zero entry at position (i, j) which represents the fact that node i and node j are
vertices of a same element. If the degrees of freedom are associated with the vertices of
the elements, the latter “vertex vertex” relation shows exactly the sparsity (non–zero)
pattern of the finite element stiffness matrix A.

Sparse matrices. From a finite element prospective a matrix M = Mh is called sparse
if it has bounded number of non–zero entries both per row and per column. “Bounded”
means with respect to h 7→ 0.

A characteristic feature of the finite element method (as we demonstrated earlier in
Lecture # 1) is that the stiffness matrix A has at most κ + 1 nonzero entries per row

13
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(and due to symmetry, per column) where κ stands for the maximum number of elements
that share a common vertex. This is the case of finite element space Vh with degrees of
freedom the vertices (nodes) Nh of elements τ ∈ Th.

The same sparsity property holds for the finite element mass (Gram) matrix G with
entries gij =

∫
Ω

ϕiϕj dx, i, j = 1, . . . , n.

This fact shows that in order to store A (and G), we need O(n) memory.
Sparse matrix storage in CSR format. CSR stands for “compressed sparse row”. The

CSR format is a popular way to store finite element sparse matrices. For an n×m sparse
matrix A, the CSR format exploits two one-dimensional integer arrays I and J and if the
matrix is not Boolean (as the relation tables discussed previously) a real array “Data” is
needed in addition to store the actual entries of A.

Let A have at row i, mi ≥ 1 non–zero entries at positions (i, j
(i)
1 ), . . . , (i, j

(i)
mi).

The one-dimensional array I has length n+ 1. With I[0] = 0, we set

I[i] = I[i− 1] +mi for i ≥ 1.

The array J has length I[n]. Similarly the data array has the same length I[n].
For each row i = 1, . . . , n of A, we list consecutively in the one–dimensional array

J the indices j
(i)
s , s = 1, . . . , mi starting at position I[i− 1] till position I[i]− 1, that is

J [I[i− 1] + s− 1] = j(i)
s , for s = 1, . . . , mi.

The data array is filled-in similarly, i.e., we let

Data[I[i− 1] + s− 1] = a
i, j

(i)
s

for s = 1, . . . , mi.

Having sparse matrices stored in CSR format in practice it is useful to have algorithms
that implement matrix operations such as AT , matrix–matrix multiply C = AB. I.e., if A
is stored in CSR format we need to store AT in CSR format using only O(n) operations.
Similarly, if the sparse matrices A and B are represented in CSR format with O(n) non–
zero entries, we want to find an algorithm that computes and stores C in CSR format
for O(n) storage and operations. All this is feasible for finite element sparse matrices.

Element matrices and matrix assembly. Since the entries of A (and G) are evaluation
of certain integrals, these integrals can be split over the individual elements. In this way,
we define element matrices. For example, let τ ∈ Th then for basis functions ϕi and ϕj

such that their support and τ have non–empty intersection, we can compute the integrals

a
(τ)
ij =

∫

τ

∇ϕj · ∇ϕi dx and g
(τ)
ij =

∫

τ

ϕiϕj dx.

It is clear that for triangular elements τ and linear basis functions the respective (i, j)
entries form 3 × 3 symmetric element stiffness and element mass matrices Aτ and Gτ ,
respectively.

The fact that the entries aij of A (the global stiffness matrix) can be computed from
the respective entries of the element stiffness matrices Aτ using the formula

aij =
∑

τ : xi, xj∈τ

a
(τ)
ij ,

is referred to as matrix assembly.
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A useful observation is that the diagonal entries of A, aii, can be assembled from the

diagonal entries a
(τ)
ii of the respective element matrices Aτ .

Local and global quadratic forms. Denote by vτ the restriction of a given vector v to
τ . More specifically, let xi1 , xi2 , xi3 be the dofs (in our case vertices) associated with τ .
Then, vτ = (vis)

3
s=1 if v = (vi)

n
i=1.

By construction, the following identities hold

(1.4) wTAv =
∑

τ∈Th

wT
τ Aτvτ .

Similarly,

(1.5) wTGv =
∑

τ∈Th

wT
τ Gτvτ .

Given a vector v = (vi)
n
i=1 we can identify it with the finite element function v =

n∑
i=1

viϕi ∈ Vh. It is clear then that

wTAv = a(v, w) and wTGv = (v, w) ≡
∫

Ω

vw dx.

Similarly, for every element τ , we have

wT
τ Aτvτ =

∫

τ

∇v · ∇w dx and wT
τ Gτvτ =

∫

τ

vw dx.

The latter two representations and the fact that the integrals over Ω are sums of integrals
over all τ ∈ Th show the relations (1.4)-(1.5).

2. Condition number estimates

The main result of this section is the estimates (spectral relations) between A = (aij)
and the diagonal matrix D with non-zero entries aii, i = 1, . . . , n. Also, we show that
the mass matrix G is spectrally equivalent to the identity matrix scaled by the factor hd.
More specifically, the following main result holds.

Theorem 2.1. The following estimates hold for the stiffness matrix A and mass
matrix G computed by a finite element space Vh on a polygonal domain Ω ⊂ R

d (d = 2):

γ0 h
2 vTDv ≤ vTAv ≤ max

τ∈Th

κτ vTDv.

Here, κτ stands for the number of dofs in an element τ . For triangular elements and
linear functions, we have κτ = 3. The constant γ0 > 0 is independent of h 7→ 0.

For the mass matrix G, we have for two positive mesh–independent constants c0 and
c1, the equivalence relations

c0 h
dvTv ≤ vTGv ≤ c1 h

d vTv.
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This theorem implies that the symmetrically scaled stiffness matrix D− 1
2AD− 1

2 based
on the Rayleigh quotient estimates

γ0h
2 ≤ vTD− 1

2AD− 1
2v

vTv
≤ max

τ∈Th

κτ = O(1),

has minimal eigenvalue of order O(h2) and a maximal eigenvalue of order O(1). That

is, the condition number of D− 1
2AD− 1

2 is O(h−2). This shows that A becomes very
ill-conditioned when h 7→ 0.

The result in Theorem 2.1 is general. However, in what follows, we consider our
model case of triangular elements and linear basis functions.

For a triangle τ with vertices xi1 ,xi2 , xi3 let the angles associated with vertices xis

be θs. Then the following formulas hold for Aτ and Gτ :

Aτ =
1

2




cot θ2 + cot θ3 − cot θ3 − cot θ2

− cot θ3 cot θ3 + cot θ1 − cot θ1

− cot θ2 − cot θ1 cot θ1 + cot θ2


 and Gτ =

|τ |
12




2 1 1
1 2 1
1 1 2


 .

Here cot θ = cos θ
sin θ

and |τ | = O(hd) (d = 2) stands for the area of τ . If the angles of τ
stay bounded away from zero when h 7→ 0, it is clear that the diagonal entries of Aτ

are uniformly bounded from above and below for h 7→ 0. Thus, we have for two h– and
τ–independent positive constants γ1 and γ2

(1.6) γ1 vT
τ vτ ≤ vT

τ Dτvτ ≤ γ2 vT
τ vτ .

Next, we compute the eigenvalues λ of the matrix




2 1 1
1 2 1
1 1 2


 coming from the element

mass matrix Gτ . We have

0 =

∣∣∣∣∣∣

2 − λ 1 1
1 2 − λ 1
1 1 2 − λ

∣∣∣∣∣∣
= −(λ− 1)2(λ− 4).

Therefore, λmin(Gτ ) = |τ |
12

and λmax(Gτ ) = |τ |
3

, which implies based on the bounds for the
Rayleigh quotient for Gτ ,

(1.7)
|τ |
12

vT
τ vτ ≤ vT

τ Gτvτ ≤ |τ |
3

vT
τ vτ .

As a corollary, by comparing (1.6) and (1.7), we have

(1.8) γ0h
2 vT

τ Dτvτ ≤ vT
τ Gτvτ ,

for some h– and τ–independent positive constant γ0.
The desired estimates for G follow from the local estimates (1.7) after summation

over τ ∈ Th, the fact that vTGv =
∑
τ

vT
τ Gτvτ and the estimate

vTv ≤
∑

τ

vT
τ vτ ≤ κ vTv,

where κ stands for the maximal number of elements that share any given vertex xi.
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The uniform upper estimate for A is seen as follows. We have, using Cauchy–Schwarz
inequality

(1.9) vT
τ Aτvτ =

∫

τ

∣∣∣∣∣∣

∑

xis∈τ

vis∇ϕis

∣∣∣∣∣∣

2

dx ≤ κτ

∑

xis∈τ

v2
is

∫

τ

|∇ϕis |2 dx = κτ vT
τ Dτvτ .

By summation over τ ∈ Th, we obtain the desired upper bound

vTAv =
∑

τ∈Th

vT
τ Aτvτ ≤ max

τ∈Th

κτ

∑

τ∈Th

vT
τ Dτvτ = max

τ∈Th

κτ vTDv.

Inverse inequality. The inequalities (1.9) and (1.8) imply the so-called local inverse
inequalities

vT
τ Aτvτ ≤ κτ

γ0

h−2 vT
τ Gτvτ .

The latter, after summation over τ ∈ Th, lead to the global “inverse inequality”

vTAv ≤ max
τ

κτ γ
−1
0 h−2vTGv.

The same result, rewritten in terms of functions and norms, reads

(1.10) a(v, v) ≤ CI h
−2 ‖v‖2

0,

where CI = max
τ

κτ γ
−1
0 .

Friedrich’s inequality. For functions v ∈ H1(Ω) vanishing on ΓD a subset of ∂Ω with
positive measure, the following Friedrich’s inequality holds:

‖v‖2
0 ≡

∫

Ω

v2(x) dx ≤ CF |v|21, |v|21 ≡
∫

Ω

|∇v|2 dx.

For the proof of the desired lower bound for A formulated in Theorem 2.1, we first
use the Friedrich’s inequality for the finite element function v corresponding to the vector
v. We have,

CF vTAv = CF |v|21 ≥ ‖v‖2
0 = vTGv =

∑

τ∈Th

vT
τ Gτvτ .

The remainder of the result follows from inequality (1.8) with γ0 = γ0

CF
. I.e., we have

vTAv ≥ h2 γ0

CF

∑

τ∈Th

vT
τ Dτvτ = h2γ0 vTDv.

The Poincaré inequality. For any polygonal domain, the following Poincaré in-
equality holds for any v ∈ H1(Ω) and its average value v = 1

|Ω|
∫
Ω

v(x) dx, where

|Ω| =
∫
Ω

1 dx,

‖v − v‖0 ≤ CΩ ‖∇v‖0.
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3. Stationary preconditioned iterative methods

Our ultimate goal is to solve the system of equations

Ax = b,

where A is the n× n ill-conditioned sparse finite element stiffness matrix obtained after
discretizing the b.v.p. of interest using finite element space Vh corresponding to a trian-
gulation Th, for O(n) operations where the constant in the O-symbol is h–independent.

We first remark that direct methods cannot achieve this goal asymptotically for h 7→ 0.
That is why we focus our attention on iterative methods.

We begin with some standard iterative methods (like Gauss–Seidel).
Let M be an n×n matrix such that systems with M , My = g, are easy to solve (i.e.,

in O(n) operations). Examples of such matrices are diagonal, lower (or upper) triangular
sparse matrices, banded matrices etc. An example that we will be frequently using is
M = D + L, where D is the diagonal of A = (aij) and L is the strictly lower triangular
part of A. That is L = (ℓij) where

ℓij =

{
0, if i ≤ j,
aij, if i > j.

We have the decomposition
A = D + L+ LT .

For a given M , let x0 be a given initial approximation (guess), for example, x0 = 0,
and consider the iteration process

(1.11) M(xk+1 − xk) = b − Axk, for k = 0, 1, . . .

The matrix M is called preconditioner and the above iteration process (or method)
preconditioned iteration process (or method). The term xk+1 − xk is called correction
whereas the right hand-side (or r.h.s.) rk = b − Axk is called residual (or defect).

We are interested in the convergence of the error ek = x − xk to zero in some norm
‖.‖. We note that

rk = Aek.

We have the following relation between two consecutive errors:

M(−ek+1 + ek) = M(xk+1 − x + x − xk) = b − Axk = Aek.

That is,

(1.12) ek+1 = (I −M−1A)ek.

The matrix E = I −M−1A is called iteration matrix.
Thus the method is convergent if for some norm ‖.‖, ‖E‖ < 1, that is

‖I −M−1A‖ < 1.

We are interested in the convergence of the above stationary iterative method in
energy norm ‖v‖A =

√
vTAv. Since A is symmetric positive definite (or s.p.d.) A

defines an inner–product, hence ‖.‖A is indeed a norm. Also, for s.p.d. A, we can define

A
1
2 which is also s.p.d.. Then,

‖v‖2
A = vTAv = vTA

1
2A

1
2v = (A

1
2v)TA

1
2v = ‖A 1

2v‖2.
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From (1.12), we have

A
1
2ek+1 = A

1
2

(
I −M−1A

)
A− 1

2

(
A

1
2ek

)
=
(
I − A

1
2M−1A

1
2

)(
A

1
2ek

)
.

Thus

‖ek+1‖A ≤ ‖I − A
1
2M−1A

1
2‖‖ek‖A.

That is, we need to estimate the norm of the transformed iteration matrix

E = I − A
1
2M−1A

1
2 .

For this purpose, we consider ETE . We have,

ETE = (I − A
1
2M−TA

1
2 )(I − A

1
2M−1A

1
2 )

= I − A
1
2M−TA

1
2 − A

1
2M−1A

1
2 + A

1
2M−TAM−1A

1
2

= I −
(
A

1
2M−T

) (
M +MT − A

) (
M−1A

1
2

)

= I − Y T
(
M +MT − A

)
Y.

.

The matrix Y is invertible (it equals M−1A
1
2 ). Hence, Y T

(
M +MT − A

)
Y is s.p.d. if

and only if M + MT − A is s.p.d. We need to investigate when ‖E‖ = max
w

‖Ew‖
‖w‖ < 1,

that is, when for any non–zero w,

‖Ew‖2 = wTETEw = wTw − wTY T (M +MT − A)Yw < wTw.

Equivalently, we need to establish when for any non–zero vector z = Yw,

zT (M +MT − A)z > 0.

Thus, we showed that to have ‖E‖ < 1 it is equivalent to have Y T
(
M +MT − A

)
Y and

hence M +MT − A s.p.d. In conclusion, we proved the following main result.

Theorem 3.1. A necessary and sufficient condition for the iteration process (1.11)
to be A–convergent, i.e. convergent in A–norm, is

M +MT − A

to be s.p.d.

Applying this result to the forward Gauss–Seidel iteration matrix M = D + L, we
find

M +MT − A = D + L+D + LT − (D + L+ LT ) = D,

which is s.p.d. Thus, we have the following result.

Corollary 3.1. The (forward or backward) Gauss–Seidel iteration method is con-
vergent in energy norm.

In some cases it is useful to have iteration process with s.p.d. preconditioner. If M
is not symmetric, we can run the following composite iteration using both M and MT .
Given x0, for k ≥ 0 compute

M(xk+ 1
2
− xk) = b − Axk,

MT (xk+1 − xk+ 1
2
) = b − Axk+ 1

2
,
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To implement this composite method we need to solve systems with both M and MT .
If M +MT −A is s.p.d. it is easy to see that the composite iteration is also convergent.
We have

M(xk+1 − xk) = b − Axk,

where
M = M(M +MT − A)−1MT .

Indeed, xk+ 1
2

= xk +M−1rk and

xk+1 = xk+ 1
2

+M−T rk+ 1
2

= xk +M−1rk +M−T (b − Axk − AM−1rk).

Hence,

xk+1 = xk +
(
M−1 +M−T −M−TAM−1

)
rk = xk +M−T

(
M +MT − A

)
M−1rk.

Therefore, we showed that the composite iteration with M and MT reduces to a standard
iteration with the symmetric preconditioner M ,

M (xk+1 − xk) = rk = b − Axk.

We have,

I −M
−1
A = I −

(
M−1 +M−T −M−TAM−1

)
A

= (I −M−TA)(I −M−1A).

Hence, A
1
2 (I −M

−1
A)A− 1

2 = ETE . Thus, the composite iteration is A–convergent if and
only if the original iteration with M is A–convergent.

Convergence factor. The norm of the iteration matrix is called iteration (or conver-
gence) factor. We proved above that the convergence factor of the composite iteration
with M and MT is the square of the convergence factor of the iteration method with M
(and MT ).
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CHAPTER 3

Stationary iterative methods as smoothers and the TG method

This lecture introduces some facts about matrix inequalities, convergence of station-
ary preconditioned methods and comparison between two preconditioners. It also gives
an illustration of the smoothing property of iteration methods such as Gauss–Seidel that
leads to the multigrid idea to continue the iteration on a coarser version of the problem.
The lecture ends up with a formal definition of a two–grid iteration method.

1. Matrix norms

Unless otherwise specified, we use the standard Euclidean vector-norm ‖v‖ =
√

vTv.

Definition 1.1 (Symmetric definition of matrix norm).
For any n×m (rectangular) matrix B, the symmetric expression

max
v∈Rn, w∈Rm

wTBv

‖v‖‖w‖ ,

defines a matrix norm ‖B‖.
From the identities,

max
v∈Rn, w∈Rm

wTBv

‖v‖‖w‖ = max
v∈Rn

1

‖v‖

(
max
w∈Rm

wTBv

‖w‖

)
= max

v∈Rn

1

‖v‖ ‖Bv‖ = ‖B‖,

we conclude that Definition 1.1 is equivalent to the more traditional one

‖B‖ = max
v∈Rn

‖Bv‖
‖v‖ .

Since wTBv = vTBTw, from Definition 1.1 it immediately follows that

(1.13) ‖B‖ = ‖BT‖.

2. Inequalities between s.p.d. matrices

We will very often use the following result.

Proposition 2.1. Let A and B be two s.p.d. matrices. Then the inequality

vTAv ≤ vTBv for all v,

implies that

vTB−1v ≤ vTA−1v for all v.

.

21
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Proof. Since A and B are s.p.d. then the s.p.d. square root of A and B is well-
defined. The given inequality used for v := B− 1

2v implies

vTB− 1
2AB− 1

2v ≤ vTv for all v.

That is, for X = A
1
2B− 1

2 we have vTXTXv ≤ vTv, or equivalently ‖X‖ ≤ 1. Since
‖X‖ = ‖XT‖, we also have

vTv ≥ vTXXTv = vTA
1
2B−1A

1
2v.

Using this inequality for v := A− 1
2v the desired result follows. �

Some conditions for spectral equivalence. In what follows we will need the
following result.

Lemma 2.1. Let M and the s.p.d. matrix D satisfy the estimates

(1.14) vT (M +MT − A)v ≥ δ0 vTDv for all v,

and

(1.15) wTMv ≤ δ1
√

wTDw
√

vTDv for all v, w.

Then, for M = M
(
M +MT − A

)−1
MT , we have

δ0
4

vTDv ≤ vTMv ≤ δ2
1

δ0
vTDv.

Proof. Consider X = D− 1
2MD− 1

2 . Condition (1.14) implies the following coercivity
of X,

2vTXv = vT (X +XT )v ≥ vT (X +XT −D− 1
2AD− 1

2 )v ≥ δ0v
Tv.

That is, vTXv ≥ δ0
2
vTv. Using this inequality for v := X−1v we obtain ‖X−1v‖2 ≤

2
δ0

vTX−Tv = 2
δ0

vTX−1v ≤ 2
δ0

‖v‖‖X−1v‖. That is, we showed that ‖X−1v‖ ≤ 2
δ0

‖v‖
or equivalently,

(1.16) ‖X−1‖ ≤ 2

δ0
.

Estimate (1.15) on the other hand is equivalent to ‖X‖ ≤ δ1. Thus, as an intermediate
result we showed that the symmetrically scaled matrix M (that is, X) is well-conditioned
(‖X‖‖X−1‖ ≤ 2δ1

δ0
).

To bound M form above in terms of D we proceed as follows. Estimate (1.14) implies

wT (M +MT − A)−1w ≤ 1

δ0
wTD−1w for all w.

Hence

vTMv ≤ 1

δ0
vTMD−1MTv =

1

δ0
(D

1
2v)TXXT (D

1
2v) ≤ 1

δ0
‖XT‖2 vTDv.

From (1.13) we have ‖XT‖ = ‖X‖ ≤ δ1, hence the upper bound

vTMv ≤ δ2
1

δ0
vTDv,
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follows. For the estimate from below, we obtain

vTD
1
2M

−1
D

1
2v = vTD

1
2M−T (M +MT − A)M−1D

1
2v

= vTD
1
2 (M−T +M−1 −M−TAM−1)D

1
2v

≤ vT (X−T +X−1)v
= 2 vTX−1v
≤ 2 ‖X−1‖‖v‖2.

Using estimate (1.16), we obtain vTD
1
2M

−1
D

1
2v ≤ 4

δ0
‖v‖2, or equivalently vTM

−1
v ≤

4
δ0

vTD−1v. The latter estimate, based on Proposition 2.1, implies the desired lower
bound

δ0
4

vTDv ≤ vTMv.

�

3. Convergence of classical (relaxation) iterative methods

We showed that a necessary and sufficient condition for the A-convergence of the
stationary preconditioned iterative method

M(xk − xk−1) = b − Axk−1, k = 1, 2, . . . ,

for solving Ax = b and any given initial iterate x0, is the positive definiteness of the
matrixM+MT −A. This result implies that the forward Gauss–Seidel matrixM = D+L
coming from A decomposed as D+L+LT provides an A–convergent iteration. A simpler
method is the scaled Jacobi iteration matrix M = ω D. We also showed that

κ vTDv ≥ vTAv,

where κ = 3 for triangular elements (and linear basis functions). Hence, if we choose
ω > κ

2
, then we ensure that M +MT − A is s.p.d. (for M = ωD).

It turns out that Gauss–Seidel method is not much faster than the weighted Jacobi
method asymptotically with respect to h 7→ 0. In the case of D being the diagonal of A
and M = D + L the forward Gauss–Seidel, we can apply Lemma 2.1 with δ0 = 1 and
δ1 ≤ κ (with κ = 3 for linear triangular elements). This shows that the spectral relations
between A and M and between A and D are of the same quality with respect to (or
w.r.t.) h 7→ 0. That is, we have

vTAv

vTMv
≃ vTAv

vTDv
,

if
vTMv

vTDv
= O(1) for h 7→ 0.

Recall that we proved the estimates

γ0 h
2 ≤ vTAv

vTDv
≤ κ.
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Figure 1. Initial non–smooth function

Smoothing property of classical iteration methods. It is clear then that the it-
eration matrix I−(ωD)−1A will reduce different components of the error differently. More
precisely, error components spanned by eigenvector of D−1A corresponding to eigenvalues
close to the upper part of the spectrum, i.e., eigenvectors corresponding to eigenvalues
that are O(1) will be reduced with factors uniformly less than one (for h 7→ 0), whereas
components of the error that are spanned by eigenvectors corresponding to the lower part
of the spectrum, i.e., eigenvalues that are of order O(h2), will hardly change. A distinct
feature of the finite element stiffness matrices A (scaled symmetrically with their diago-
nal D) coming from b.v.p. is that their eigenvectors corresponding to the lower part of
the spectrum are geometrically smooth and global. Thus the classical iterative methods
like weighted Jacobi or Gauss–Seidel damp the geometrically oscillatory components of
the error very efficiently. This phenomenon is referred to in the literature as smoothing.

To illustrate the smoothing process, we start with a e0 chosen to be a linear combi-
nation of a smooth and a oscillatory component, and then run successively, one, two and
three symmetric Gauss–Seidel iterations applied to Ae = 0. That is, we compute the

iterates ek = (I −M
−1
A)ek−1 for k = 1, 2, 3. The resulting smoothing phenomenon is

illustrated in Figs. 1, 2, 3 and 4.
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Figure 2. Result after one step of symmetric Gauss–Seidel smoothing

4. Coarse–grid approximation

Thus a natural idea is after one or few smoothing iterations to approximate the
resulting problem on a coarse grid and continue the iteration with a coarse version of
the problem. This was the breakthrough observation in the original paper by Fedorenko
[Fe64], later extended and popularized by Achi Brandt [AB77], Hackbusch and others.

The fact that smooth functions can accurately be represented on coarse grids is in-
herent to any approximation method, in particular, it is inherent to the f.e. method.
The latter is illustrated in Figs. 5, 6, 7, and 8.

We summarize the following basic finite element error estimate result (cf., for example,
Ciarlet [Ci02], Brenner and Scott [BS02], Braess [Br01])

Since a(u− uh, ϕ) = 0 for all ϕ ∈ Vh (a main property of the Galerkin method), we
also have the following estimate,

|∇(u− uh)|2 = a(u− uh, u− uh) = a(u− uh, u− ϕ) ≤ |∇(u− uh)||∇(u− ϕ)|.

That is,

|∇(u− uh)| = inf
ϕ∈Vh

|∇(u− ϕ)|.
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Figure 3. Result after two steps of symmetric Gauss–Seidel smoothing

Assuming now that u has two derivatives in L2(Ω), we immediately get the first order
error estimate

|∇(u− uh)| ≤ Ch‖u‖2.

To be more precise, we first form a nodal interpolant Ihu =
∑
i

u(xi)ϕi and then on every

triangle τ the following estimate holds

‖∇(u− Ihu)‖2 =
∑

τ∈Th

∫

τ

|∇(u− Ihu)|2 dx ≤
∑

τ∈Th

Cτ h
2‖u‖2

2, τ ≤ Ch2‖u‖2
2.

Here, we use the Taylor expansion on every triangle τ and the fact that the triangles are
geometrically similar to a fixed number of an initial set of triangles. Hence, Cτ will take be
a fixed number of mesh–independent values. The latter estimate shows that for smooth
functions u (for example having two derivatives) the finite element approximations on
grids TH will give approximations uH such that the error u−uH in energy norm behaves
likeH ‖u‖2. There is one problem with the above argument if we start with a f.e. function
uh and want to measure uh − uH in energy norm. This is not immediately possible since
the finite element function uh does not have two derivatives. To overcome this difficulty,
we can measure the error in L2.
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Figure 4. Result after three steps of symmetric Gauss–Seidel smoothing

L2–error estimates; Aubin–Nitsche’s argument. Consider two finite element
spaces VH and Vh where Vh corresponds to a triangulation Th obtained by possibly several
steps of refinement from a coarser triangulation TH . This implies that

VH ⊂ Vh.

Let uh ∈ Vh and uH ∈ VH be the Galerkin projection (approximation) of uh from VH .
This means that

a(uh − uH , ϕH) = 0 for all ϕH ∈ VH .

Consider the error e = uh − uH ∈ Vh ⊂ L2(Ω) and solve the b.v.p. for the Laplace
equation

−∆w = e(x) for x ∈ Ω,

with w = 0 on ∂Ω. For convex polygonal domains Ω ⊂ R
d, d = 2, 3, the following

regularity result is known
‖w‖2 ≤ C ‖e‖0.

That is, w has derivatives up to second order all in L2(Ω) and the above a priori estimate
holds. By construction, for the bilinear form a(., .) coming from the Laplace operator,
since 0 = a(e, wH) = a(wH , e) for any wH ∈ VH , we have

‖e‖2
0 = a(w, e) = a(w − wH , e) ≤ |w − wH |1 |e|1 ≤ CH‖w‖2|e|1 ≤ CH‖e‖0|e|1.
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Figure 5. Solution to −∆u = 1

In conclusion,

‖uh − uH‖0 ≤ CH
√
a(uh − uH , uh − uH) ≤ CH

√
a(uh, uh).

Finite element refinement and the interpolation matrix. Consider now two

nested finite element spaces VH ⊂ Vh. Let VH = Span (ϕ
(H)
ic

)nc

ic=1 and Vh = Span (ϕ
(h)
i )n

i=1

with their respective nodal (Lagrangian) bases. Since each ϕ
(H)
ic

∈ VH ⊂ Vh we have the
expansion

ϕ
(H)
ic

=
n∑

i=1

ϕ
(H)
ic

(xi) ϕ
(h)
i .

Consider the coefficient vector ϕic
= (ϕ

(H)
ic

(xi))
n
i=1. The matrix P = (ϕic

)nc

ic=1 is referred
to as the interpolation matrix. It relates the coefficient vector vc ∈ R

nc of any function

vc ∈ VH expanded in terms of the coarse basis {ϕ(H)
ic

} to the coefficient vector Pvc of

vc ∈ Vh expanded in terms of the fine–grid basis {ϕ(h)
i }. Since the finite element bases

are local, we see that the n×nc rectangular matrix P is sparse. The number of non–zero

entries of P per column depends on the support of each ϕ
(H)
ic

, namely, depends on the

number of fine-grid basis functions ϕ
(h)
i that intersect that support. That is, the sparsity

pattern of P is controlled by the topology of the triangulations TH and Th.
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Figure 6. Finite element approximate solution to −∆u = 1 on a coarse mesh

Matrix–vector form of the L2-approximation of the Galerkin projection

For a given uh ∈ Vh and a subspace VH of Vh, by definition the Galerkin projection
uH ∈ VH of uh satisfies

a(uh − uH , vH) = 0 for all vH ∈ VH .

That is, uH ∈ VH solves

a(uH , vH) = a(uh, vH) for all vH ∈ VH .

In terms of coefficient vectors uc, u, vc and Pvc of uH , uh, vH and vH as an element of
Vh, we have

vT
c Acuc = a(uH , vH) = a(uh, vH) = (Pvc)

TAu = vT
c P

TAu.

That is, Acuc = P TAu, or uc = A−1
c P TAu. Hence the coefficient vector of uH as an

element of Vh equals
Puc = PA−1

c P TAu.

Another important property is the variational (Galerkin) relation between the coarse
matrix Ac and A

(1.17) Ac = P TAP.
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Figure 7. Finite element approximate solution to −∆u = 1 on a refined mesh

This is seen by construction, since the (ic, jc) entry of Ac equals a(ϕ
(H)
jc
, ϕ

(H)
ic

) =

ϕic
TAϕjc

= (P TAP )ic, jc
.

In conclusion, we have the following result.

Proposition 4.1. The Galerkin projection uH ∈ VH of uh ∈ Vh, i.e. the coarse finite
element function uH that solves

a(uh − uH , vH) = 0 for all vH ∈ VH ,

has a fine–grid coefficient vector πAu ≡ PA−1
c P TAu with Ac = P TAP .

It is easily checked that π2
A = πA. We have

(1.18) π2
A = PA−1

c (P TAP )A−1
c P TA = PA−1

c AcA
−1
c P TA = PA−1

c P TA = πA.

5. The two–grid algorithm: definition

We conclude this lecture with the

Algorithm 5.1 (Two-grid (or TG) algorithm).
Consider the system of equations

Ax = b,
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Figure 8. Finite element approximate solution to −∆u = 1 on a more
refined mesh

and let M be a given smoother, P an interpolation matrix, and Ac = P TAP the respective
coarse matrix. The (symmetrized) two–grid iteration method computes for any given
initial iterate x0 a two–grid iterate xTG in the following steps:

• “pre–smoothing step”:
Compute y from

M(y − x0) = b − Ax0.

• “coarse–grid correction:
Compute xc from

Acxc = P T (b − Ay).

The next intermediate iterate is z = y + Pxc.
• “post–smoothing” step:

Compute xTG from

MT (xTG − z) = b − Az.
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In summary, the TG algorithm involves solutions with M , MT and Ac, matrix–vector
multiplications with sparse matrices A, P T and P : with A to compute residuals, with
P T to restrict the fine–grid residual and with P to interpolate the coarse–grid correction.
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CHAPTER 4

Two-by-two block matrices

This lecture provides some basic facts for two–by-two block matrices, their Schur
complements. It also analyzes angles between spaces by introducing an abstract lemma
of Kato.

1. Two-by-two block matrices

Let A be a s.p.d. matrix partitioned into a two-by-two blocks (Aij)
2
i,j=1 with square

blocks Aii, i = 1, 2, which hence, as is easily seen, are s.p.d. as well. Then the following
factorization holds

A =

[
I 0

A21A
−1
11 I

] [
A11 0
0 S

] [
I A−1

11 A12

0 I

]
.

The block S = A22 − A21A
−1
11 A12 is called Schur complement. From the representation

A = Ldiag(A11, S)LT with L being invertible (L is unit triangular), it is clear that S is
also s.p.d. The following identity is seen for any vector v = (vi)

2
i=1,

vTAv = (A11v1 + A12v2)
T A−1

11 (A11v1 + A12v2) + vT
2 Sv2,

which shows the following minimization property of S

vT
2 Sv2 = min

v1

vTAv.

The above minimum is attained for v in the subspace

A11v1 + A12v2 = 0.

Such vector v is called “minimal energy” extensions of v2 and it also satisfies the equation

Av =

[
0
Sv2

]
.

The latter formula offers a way to evaluate the actions of S. That is, given v2, we
compute v1 from A11v1 + A12v2 = 0 and form the product Av. Its second component
gives Sv2. Thus, without explicitly forming S its actions can be computed by solving
systems with A11. Note that S is in general a dense matrix (even if A is sparse).

S is better conditioned than A. We have the following inequalities valid for the
extreme eigenvalues of A and S (which are real and positive):

(1.19) λmin(A) ≤ λmin(S) ≤ λmax(S) ≤ λmax(A).

33
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From the minimization property of S, we have for any v =

[
v1

v2

]
, (using also the trivial

inequality vT
2 v2 ≤ vT

1 v1 + vT
2 v2 = vTv)

vT
2 Sv2

vT
2 v2

=
1

vT
2 v2

min
v1

vTAv ≥ min
v1

vTAv

vTv
≥ min

v

vTAv

vTv
= λmin(A).

Hence, λmin(S) ≥ λmin(A).
We also have vT

2 Sv2 ≤ vT
2A22v2, hence

vT
2 Sv2

vT
2 v2

≤ vT
2A22v2

vT
2 v2

=

[
0
v2

]T

A

[
0
v2

]

[
0
v2

]T [
0
v2

] ≤ max
v

vTAv

vTv
= λmax(A).

This shows that λmax(S) ≤ λmax(A).

2. Abstract angles between vector spaces

Let A be a n×n s.p.d. matrix Let J and P be two rectangular matrices with n rows
each, such that when put together they form a square invertible matrix [J, P ]. Equiva-
lently, we may say that any vector v ∈ R

n allows for the unique (direct) decomposition

v = Jvf + Pvc.

Then, the inner product vTAv admits the form

vTAv = vTAv,

where v =

[
vf

vc

]
and

A =

[
A11 A12

A21 A22

]
=

[
JTAJ JTAP
P TAJ P TAP

]
.

A trivial example of J and P is

J =

[
I
0

]
and P =

[
0
I

]
.

A more interesting example is the so-called “hierarchical” one:

(1.20) J =

[
I
0

]
and P =

[
W
I

]

for a non-zero W .
Since the vector spaces Range(J) and Range(P ) have non–trivial angle (any two

vectors in this pair of spaces are linearly independent) there is a constant γ ∈ [0, 1)
(strictly less than one) such that the following strengthened Cauchy-Schwarz inequality
holds:

(1.21) vT
f J

TAPvc ≤ γ
(
vT

f J
TAJvf

) 1
2
(
vT

c P
TAPvc

) 1
2 .
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Then, for the Schur complement S = A22 − A21A
−1

11 A12 of A the following inequality
holds

(1 − γ2) vT
c A22vc ≤ vT

c Svc ≤ vT
c A22vc.

We prove this inequality using the minimization property of the Schur complement S
and the strengthened Cauchy–Schwarz inequality for the blocks of A. We have

vT
c Svc = min

vf

[
vf

vc

]T

A

[
vf

vc

]

= min
vf

[
vT

f A11vf + 2 vT
f A12vc + vT

c A22vc

]

≥ min
vf

[
vT

f A11vf − 2γ
(
vT

f A11vf

) 1
2
(
vT

c A22vc

) 1
2 + vT

c A22vc

]

= min
vf

[((
vT

f A11vf

) 1
2 − γ

(
vT

c A22vc

) 1
2

)2

+ (1 − γ2)vT
c A22vc

]

≥ (1 − γ2)vT
c A22vc,

which is the desired result.
Another result for the special case of hierarchical decomposition (1.20) is that the

Schur complements S and S of A and A, respectively, are the same, i.e.,

S = A22 − A21A
−1
11 A12 = A22 − A21A

−1

11 A12 = S.

We have, with v1 = v1 +Wv2 and v2 = v2,

vT
2 Sv2 = min

v1

vTAv = min
v1=v1+Wv2

(Jv1 + Pv2)
T A (Jv1 + Pv2) = min

v1

vTAv = vT
2 Sv2.

That is, S = S. This is seen from the identity for any v2 and w2,

0 = (v2+w2)
T (S−S)(v2+w2) = vT

2 (S−S)v2+wT
2 (S−S)w2+2 vT

2 (S−S)w2 = 2 vT
2 (S−S)w2.

That is, since v2 and w2 are arbitrary, we have S − S = 0.

3. Kato’s lemma

Let π be a projection, i.e., π2 = π and (.., .) be an inner product and ‖.‖ =
√

(., .) the
associated norm. Kato’s lemma relates the cosine of the abstract angle, γ, between the
complementary spaces Range(π) and Range(I − π) measured in the inner product (., .).
We assume that these spaces are non–trivial, i.e., that π 6= I and π 6= 0. The following
result holds

‖π‖ = ‖I − π‖ =
1√

1 − γ2
.

The characterization is seen as follows. For any pair of vectors v, w and number t ∈ R

consider the vector vt = πv + t(I − π)w. We have πv = πvt. Hence

‖πv‖ = ‖πvt‖ ≤ ‖π‖‖vt‖ = ‖π‖
(
‖πv‖2 + 2t(πv, (I − π)w) + t2 ‖(I − π)w‖2

) 1
2 .

Therefore, the quadratic formQ(t) =
(
1 − 1

‖π‖2

)
‖πv‖2+2t(πv, (I−π)w)+t2 ‖(I−π)w‖2

is non-negative. Hence, its discriminant must be non-positive. That is,

(πv, (I − π)w)2 −
(

1 − 1

‖π‖2

)
‖(I − π)w‖2‖πv‖2 ≤ 0.
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This shows that the best constant (γ) satisfies the inequality γ2 ≤ 1− 1
‖π‖2 , or equivalently

‖π‖ ≥ 1√
1 − γ2

.

The fact the we actually have equality is seen by proceeding in a reverse order. From

(πv, (I − π)w)2 − γ2 ‖(I − π)w‖2‖πv‖2 ≤ 0,

it follows that the quadratic form Q(t) = γ2 ‖πv‖2 + 2t(πv, (I − π)w) + t2 ‖(I − π)w‖2

is non-negative. Hence,

‖πv + t(I − π)w‖2 ≥ (1 − γ2) ‖πv‖2.

Letting t = 1 and w = v, we get ‖v‖2 ≥ (1 − γ2) ‖πv‖2, that is ‖πv‖ ≤ 1√
1−γ2

‖v‖
which shows that 1√

1−γ2
is an upper bound for ‖π‖. Thus, we showed ‖π‖ = 1√

1−γ2
.

Using the same arguments (replacing π with I − π), we show that ‖I − π‖ = 1√
1−γ2

.
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CHAPTER 5

The TG (two-grid) method

This lecture studies the two-grid (or TG) iteration method. Its relation to a basic
two-by-two block factorization preconditioner is described and analyzed.

We also derive one more characteristic identity for the inexact TG operator. The
lecture ends up with a number of assumptions on the coarse-grid projection operator πA

combined with the smoother that are useful in the analysis of the method in a multilevel
setting.

1. The two–grid algorithm and two–grid operator BTG

The TG iteration matrix. Let x be the exact solution of Ax = b, x0 the initial
approximation and xTG the approximation produced by applying one iteration of the TG
algorithm described in the previous lecture.

We want to find a representation of the error xTG − x in terms of the initial error
x − x0, i.e., to find a formula for the iteration matrix ETG from the relation

x − xTG = ETG(x − x0).

The following result holds:

Proposition 1.1. The TG iteration matrix ETG admits the following product form:

ETG = (I −M−TA)(I − πA)(I −M−1A).

Proof. In the TG algorithm, we compute consecutively y, xc, z and xTG in the
following steps:

M(y − x0) = b − Ax0,
Acxc = P T (b − Ay),

z = y + Pxc,
MT (xTG − z) = b − Az.

Starting from the bottom, we have x − xTG = (I −M−TA)(x − z). Similarly, x − y =
(I−M−1A)(x−x0). On the other hand, x−z = x−y−Pxc = x−y−PA−1

c P TA(x−y) =
(I − πA)(I −M−1A)(x − x0). Therefore the desired result follows. �

Block–factorization definition of TG.

Definition 1.1 (TG preconditioner). Let A be a given s.p.d. matrix, P a full–rank
rectangular matrix, Ac = P TAP the s.p.d. coarse matrix, and M , MT the A-convergent
smoothers. The latter is equivalent to the fact that M +MT −A be s.p.d. Consider also

the symmetrized smoother M = M
(
M +MT − A

)−1
MT .

39
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Define first the block–factored s.p.d. matrix

B̂TG =

[
I 0

P TAM−1 I

] [
M 0
0 Ac

] [
I M−TAP
0 I

]
.

Then, the two–grid (TG) preconditioner, BTG is defined from the formula

B−1
TG = [I, P ] B̂−1

TG

[
I
P T

]
.

Since

B̂−1
TG =

[
I −M−TAP
0 I

] [
M

−1
0

0 A−1
c

] [
I 0

−P TAM−1 I

]
,

and

[I, P ]

[
I −M−TAP
0 I

]
= [I, (I −M−TA)P ],

[
I 0

−P TAM−1 I

] [
I
P T

]
=

[
I

P T (I − AM−1)

]
,

the following explicit formula is easily seen

B−1
TG = M

−1
+(I−M−TA)PA−1

c P T (I−AM−1) = M
−1

+(I−M−TA)πA(I−M−1A)A−1.

This shows also the relation

I −B−1
TGA = I −M

−1
A− (I −M−TA)πA(I −M−1A).

Finally, recalling that I −M
−1
A = (I −M−TA)(I −M−1A), the following result can be

formulated.

Proposition 1.2. The TG preconditioner has the explicit form

(2.1) B−1
TG = M

−1
+ (I −M−TA)PA−1

c P T (I − AM−1).

It is s.p.d. and provides a matrix representation of the TG algorithm since it relates to
the TG iteration matrix ETG. More specifically, we have

I −B−1
TGA = ETG = (I −M−TA)(I − πA)(I −M−1A).

Finally, the following spectral inequality holds

vTAv ≤ vTBTGv for all v,

which implies that the TG method is A–convergent, i.e. we have

(2.2) 0 ≤ vTAETGv ≤ vTAv − vTAB−1
TGAv ≤

(
1 − 1

KTG

)
vTAv.

Here, KTG is an upper bound of the largest eigenvalue of A−1BTG, or equivalently an
upper bound in the spectral equivalence estimate

(2.3) vTBTGv ≤ KTGvTAv for all v.
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Proof. We need only show the left hand side of (2.2). For this, it is sufficient to

show that vTAπAv ≤ vTAv. Equivalently, we need to show that πA ≡ A
1
2πAA

− 1
2 =

A
1
2PA−1

c P TA
1
2 has norm one. First, we notice that the symmetric matrix πA is also a

projection (using the fact that Ac = P TAP ). We also have that vTπAv ≥ 0. The desired
norm estimate then follows from the identity

I = πA + (I − πA) = π2
A + (I − πA)2.

That is,

0 ≤ vTπAv = vTπ2
Av ≤ vTv.

The latter shows that I − πA is non-negative matrix, hence

(2.4) A
1
2ETGA

− 1
2 = XT (I − πA)X, (with X = I − A

1
2M−1A

1
2 )

is also non–negative, which is equivalent to AETG = A−AB−1
TGA being non–negative as

well, that is, we have the desired result. �

2. Characterization of KTG

From formula (2.4) and the fact that (I − πA) is a symmetric projection, we have

‖A 1
2ETGA

− 1
2‖ = ‖(I − πA)X‖2 = ‖XT (I − πA)‖2.

Since

(I − πA)XXT (I − πA) = (I − πA)2 − (I − πA)A
1
2 M̃−1A

1
2 (I − πA),

where M̃ = MT (M +MT − A)−1M , we have the following formula

‖A 1
2ETGA

− 1
2‖ = 1 − 1

KTG

,

with

(2.5) KTG = max
v=(I−πA)w

vTv

vTA
1
2M̃−1A

1
2v
.

To simplify the above expression introduce a basis in the space A
1
2 (I−πA)V . That is,

for some full–rank matrix S, we have that for any vector A
1
2 (I − πA)v there is a unique

vector vs such that A
1
2 (I − πA)v = Svs. We can assume that S

T
S = I. Then for any

vector v we can form the orthogonal decomposition (noting that P TA(I − πA) = 0),

v = Svs + Pvc, P = A
1
2P.

Define πA = A
1
2πAA

− 1
2 = A

1
2PA−1

c P TA
1
2 . Note first that (I−πA)A

1
2P = A

1
2 (I−πA)P =

0. We then have

(I − πA)v = (I − πA)
(
Svs + A

1
2Pvc

)

= (I − πA)Svs

= (I − πA)A
1
2 (I − πA)w

= A
1
2 (I − πA)2w

= A
1
2 (I − πA)w

= Svs.
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That is,

(2.6) (I − πA)v = Svs.

Using the decomposition v = Svs + Pvc and the identity (2.6), the formula (2.5) takes

the form (since S
T
S = I)

(2.7) KTG = max
vs

vT
s vs

vT
s S

T
A

1
2M̃−1A

1
2Svs

.

Consider now the matrix

W =
[
S, P

]T
A− 1

2M̃A− 1
2

[
S, P

]
.

Since
[
S, P

]
is invertible, we get

A
1
2M̃−1A

1
2 =

[
S, P

]
W−1

[
S, P

]T
.

Therefore, since S
T
P = 0, and S

T
S = I,

S
T
A

1
2M̃−1A

1
2S = [I, 0]W−1 [I, 0] .

That is, S
T
A

1
2M̃−1A

1
2S is the inverse of a Schur complement of W . We write

S
T
A

1
2M̃−1A

1
2S = (WSchur)

−1.

The Schur complement WSchur has the following characterization (since W is symmetric
positive definite),

vT
s WSchurvs = inf

vc

[
vs

vc

]T

W

[
vs

vc

]
= inf

vc

(
Svs + Pvc

)T
A− 1

2M̃A− 1
2

(
Svs + Pvc

)
.

Finally, from (2.7) based on the above characterization of WSchur, we get

KTG = sup
vs

v
T
s vs

vT
s (WSchur)−1vs

= sup
vs

v
T
s (WSchur)vs

vT
s vs

= sup
vs

inf
vc

(Svs+Pvc)T A− 1
2 fMA− 1

2 (Svs+Pvc)

(A− 1
2 Svs)T A(A− 1

2 Svs)

= sup
vs

inf
vc

(A− 1
2 Svs+Pvc)T

fM(A− 1
2 Svs+Pvc)

(A− 1
2 Svs)T A(A− 1

2 Svs)
.

Noting now that A− 1
2Svs = (I − πA)v, we end up with the desired formula

(2.8) KTG = sup
v

inf
vc

((I − πA)v + Pvc)
T M̃ ((I − πA)v + Pvc)

((I − πA)v)T A ((I − πA)v)
.

Replacing πAv−Pvc = P (A−1
c P TAv−vc) with another Pvc, we end up with the following

characterization formula

(2.9) KTG = sup
v

minvc
(v − Pvc)

TM̃(v − Pvc)

(v − πAv)TA(v − πAv)
= sup

v

(v − π
fM
v)TM̃(v − π

fM
v)

(v − πAv)TA(v − πAv)
.

Here, π
fM

= PM̃−1
c P TM̃ where M̃c = P TM̃P .
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Now, since (I − π
fM

)(I − πA) = I − π
fM

, (I − π
fM

)TM̃(I − π
fM

) = M̃(I − π
fM

) and
((I − πA)v)TA(I − πA)v = vTA(I − πA)v ≤ vTAv, the following identities are seen

KTG = max
v=(I−πA)v

v
T
fM(I−πfM

)v

vT Av

= max
v=(I−πA)v

((I−πfM
)v)

T
fM(I−πfM

)v

vT Av

= max
v

((I−πfM
)(I−πA)v)

T
fM(I−πfM

)(I−πA)v

vT A(I−πA)v

= max
v

((I−πfM
)v)

T
fM(I−πfM

)v

vT A(I−πA)v

≥ max
v

((I−πfM
)v)

T
fM(I−πfM

)v

vT Av

≥ max
v=(I−πA)v

((I−πfM
)v)

T
fM(I−πfM

)v

vT Av

= KTG.

That is, the following main result holds.

Theorem 2.1. We have that the TG operator BTG and A satisfy the spectral equiv-
alence relations

vTAv ≤ vTBTGv ≤ KTG vTAv,

where the best constant KTG is characterized as follows:

(2.10) KTG = max
v

vTM̃(I − π
fM

)v

vTAv
.

The following corollary is easily seen.

Corollary 2.1. Let the A-convergent smoother M and the s.p.d. matrix D be related
so that

(2.11) c1 vTDv ≤ vTM̃v ≤ c2 vTDv for all v.

Define the D based coarse–grid projection πD = PD−1
c P TD, where Dc = P TDP . Then

the following two–sided estimates for KTG hold:

c1 max
v

vTD(I − πD)v

vTAv
≤ KTG ≤ c2 max

v

vTD(I − πD)v

vTAv
.

Proof. The proof follows from the characterization

vTM̃(I − π
fM

)v = min
wc

‖v − Pwc‖2
fM
,

and similarly

vTD(I − πD)v = min
wc

‖v − Pwc‖2
D,

based on the spectral equivalence relations between M̃ and D. �

As a an application of the last corollary, we get the following main result.
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Theorem 2.2. Assume that the TG method based on a smoother M is convergent
with a bound KTG. Then the smoother M , or a s.p.d. D, that is spectrally equivalent to

the symmetrized smoother M̃ , is efficient for A restricted to a subspace complementary
to the coarse space. Equivalently, a necessary condition for the TG convergence is the
following “weak approximation property” of the coarse space:

For any v there is a coarse–grid interpolant Pvc such that in the D-norm, where D

is spectrally equivalent to the symmetrized smoother M̃ , we have the estimate

‖v − Pvc‖2
D ≤ ηw vTAv.

Proof. The space complementary to the coarse space where the smoother M is

efficient, or its symmetrized version M̃ is efficient, or for that matter, any spectrally
equivalent s.p.d. matrix D (as in (2.11)) is efficient, can be chosen as Range (I − πD).
In the latter case, from (2.11) we have the spectral equivalence relations

vTAv ≤ c2 vTDv for any v,

and from below

c1 ((I − πD)v)T D(I − πD)v ≤ KTG ((I − πD)v)TA(I − πD)v.

This shows that D and A are spectrally equivalent on the subspace Range (I−πD) (which
is complementary to the coarse space). Also, we have the weak approximation property
with ηw = KTG

c1
, seen from the estimate

c1 min
vc

‖v − Pvc‖2
D = c1 ((I − πD)v)T D(I − πD)v ≤ KTG vTAv.

�

3. Necessary and sufficient conditions for TG convergence

Here, we summarize the role of the “weak approximation property” corresponding to
the smoother M , as a necessary and sufficient condition for TG convergence.

The weak approximation property as a necessary condition. It is immediate
to see that the main characterization estimate

KTG = max
v

min
vc

‖v − Pvc‖2
fM

‖v‖2
A

,

implies the following “weak approximation property”

‖v − Pvc‖fM ≤
√
KTG ‖v‖A.

In practice, we may replace M̃ with any spectrally equivalent s.p.d. matrix D, such that

c1 vTDv ≤ vTM̃v ≤ c2 vTDv.

Then from the inequalities

(2.12) c1 ‖v − Pvc‖2
D ≤ ‖v − Pvc‖2

fM
≤ c2 ‖v − Pvc‖2

D,

it follows, that we equivalently have the following “weak approximation property”

‖v − Pvc‖D ≤
√
KTG

c1
‖v‖A.
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In some applications, we may choose D = ‖A‖ I, then we end up with the more familiar
“weak approximation property”

‖A‖ 1
2 ‖v − Pvc‖ ≤ ηw ‖v‖A,

where ηw =
√
KTG/c1.

The weak approximation property as a sufficient condition. Finally, it is clear
that we can prove a two–grid convergence estimate if we have a “weak approximation
property”

‖v − Pvc‖D ≤ ηw ‖v‖A,

for a s.p.d. D that is spectrally equivalent to M̃ as in (2.12). More specifically, the
following estimate holds

KTG = sup
v

min
vc

‖v − Pvc‖2
fM

vTAv
≤ c2 sup

v

min
vc

‖v − Pvc‖2
D

vTAv
≤ c2η

2
w.

At the end, we recall a result (proven in Lecture # 3), that provides conditions for a

s.p.d. matrix D to be spectrally equivalent to the symmetrized smoother M̃ .

Lemma 3.1. Let M and the s.p.d. matrix D satisfy the estimates

(2.13) vT (M +MT − A)v ≥ δ0 vTDv for all v,

and

(2.14) wTMv ≤ δ1
√

wTDw
√

vTDv for all v, w.

Then, for M̃ = MT
(
M +MT − A

)−1
M , we have

δ0
4

vTDv ≤ vTM̃v ≤ δ2
1

δ0
vTDv.

4. A main identity for BTG

We showed that B−1
TG admits an explicit representation by formula (2.1) in Proposition

1.2. In this section, we will derive an identity characterizing BTG. We consider here a
BTG where Ac taking part in its definition is replaced by an inexact solver Bc. We assume
that

(2.15) vT
c Acvc ≤ vT

c Bcvc for all vc.

This inequality implies that the inexact BTG also satisfies the lower bound

vTBTGv ≥ vTAv.

Our goal is the following identity.

Theorem 4.1. For any v = vf + Pvc, the following identity holds

vTBTGv = min
v=vf+Pvc

(
vT

c Bcvc + (vf +M−TAPvc)
TM(vf +M−TAPvc)

)
.
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Proof. From the definition of BTG, we have

B−1
TG = [I, P ] B̂−1

TG

[
I
P T

]
.

This shows that for X = B
1
2
TG [I, P ] B̂

− 1
2

TG , we have ‖X‖ = ‖XT‖ = 1, which implies the
inequality

vT B̂
− 1

2
TG [I, P ]T BTG [I, P ] B̂

− 1
2

TGv ≤ vTv.

Equivalently,

vT [I, P ]T BTG [I, P ]v ≤ vT B̂TGv,

for any v =

[
vf

vc

]
. This shows that for v = [I, P ]v = vf + Pvc, we have

vTBTGv ≤ vT B̂TGv = vT
c Bcvc + (vf +M−TAPvc)

TM(vf +M−TAPvc).

That is, since the decomposition v = vf + Pvc is arbitrary, we have

vTBTGv ≤ min
v=vf+Pvc

(
vT

c Bcvc + (vf +M−TAPvc)
TM(vf +M−TAPvc)

)
.

The fact that we actually have equality is seen for the choice of v = [I, P ]v where v
solves the equation

B̂TGv = [I, P ]TBTGv.

Indeed, we have then

vT B̂TGv =
(
B̂TGv

)T

B̂−1
TGB̂TGv

= vTBTG[I, P ]B̂−1
TG[I, P ]TBTGv

= vTBTGv.

�

5. The MG (multigrid) method: definition

The MG method is simply a recursive application of the inexact TG one. Assume,
that we have a number of levels k = 0, . . . , ℓ each coming with its nk ×nk s.p.d. matrix
Ak, respective smoothers Mk and MT

k that are Ak–convergent. To be specific, for the
time being, assume that n0 > n1 > · · · > nℓ, that is, level 0 is the finest and hence level
ℓ is the coarsest. Then, letting P k

k+1 be the nk × nk+1 interpolation matrix from coarse

level k + 1 to the next finer level k, we assume that Ak+1 =
(
P k

k+1

)T
AkP

k
k+1.

To define the MG preconditioner B = BMG, we use induction as follows:
At the coarsest level k = ℓ, we set Bk = Ak. Assuming that at level k + 1, Bk+1 has

been defined, the kth level one, B = Bk, is simply the TG preconditioner with inexact
coarse-grid solver Bc = Bk+1 given by the expression

B−1 = M
−1

+ (I −M−TA)PB−1
c P T (I − AM−1),

where the tools involved in its definition are the respective interpolation matrix P = P k
k+1

and smoother M = Mk. We recall that M = M
(
M +MT − A

)−1
MT .

Then by definition B = BMG ≡ B0 and it is commonly referred to as the V (1, 1)–cycle
MG operator.
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It is clear that B can be implement as in Algorithm 5.1 where the “coarse–grid”
correction step uses inexact solve with Ac replaced with Bc involving recursive call to
the coarser levels. The MG method will be considered again in a somewhat more general
situation (involving more smoothing steps) in Algorithm 2.1.

Remark 5.1. In some cases, it is more convenient to use index 0 for the coarsest
level and ℓ for the finest one. Then, the interpolation matrix is denoted by P k+1

k and the
respective Galerkin relation between the coarse and fine-grid matrices Ak and Ak+1 reads
Ak = (P k+1

k )TAk+1P
k+1
k .

In either case, even when we have many levels, when we consider only two consecutive
levels, we omit the fine–grid index and use “c” for the coarse-level index. Also, then P
stands for the interpolation matrix from the coarse level to the given fine–grid level. In
particular, we have then the Galerkin relation Ac = P TAP .

6. Some classical MG convergence results

We recall the symmetrized smoothers

M = M
(
M +MT − A

)−1
MT and M̃ = MT

(
M +MT − A

)−1
M.

They satisfy the relations

I −M
−1
A = (I −M−TA)(I −M−1A) and I − M̃−1A = (I −M−1A)(I −M−TA).

Letting E = I − A
1
2M−1A

1
2 , we also have

A
1
2 (I −M

−1
A)A− 1

2 = E
T
E and A

1
2 (I − M̃−1A)A− 1

2 = EE
T
.

By definition, we have

B−1 = M
−1

+ (I −M−TA)PB−1
c BT (I − AM−1).

Using the identity A
1
2M

−1
A

1
2 = I − E

T
E, we obtain

A
1
2B−1A

1
2 = I − E

T
E + E

T
A

1
2PB−1

c P TA
1
2E.

Assume now that
0 ≤ vT

c (Bc − Ac)vc ≤ ηc vT
c Acvc for all vc.

Recalling the projection πA = A
1
2PA−1

c P TA
1
2 , we get the following upper bound

(2.16)

v
T Bv

vT Av
≤ max

v

v
T A− 1

2 BA− 1
2 v

vT v

≤ max
v

v
T
“

I−E
T

E+ 1
1+ηc

E
T

πAE
”−1

v

vT v

= max
v

v
T
v

vT
“

I−E
T

E+ 1
1+ηc

E
T

πAE
”

v

= (1 + ηc) max
v

v
T
v

vT
“

ηc(I−E
T

E)+I−E
T

(I−πA)E
”

v
.

We make now the following main assumption that relates the smoother M and the
coarse–grid projection πA:

(A) There is a constant ηs > 0 such that for any vector v, it holds

vTA(I −M−TA)(I − πA)(I −M−1A)v ≤ ηs

(
vTAv − vTA(I −M−TA)(I −M−1A)v

)
.
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.
Assumption (A) can be rewritten as

(2.17) vTE
T
(I − πA)Ev ≤ ηs vT

(
I − E

T
E
)

v.

Using this estimate in (2.16), we obtain

1

1 + ηc

vTBv

vTAv
≤ max

v

vTv

vT

(
I + (ηc − ηs) (I − E

T
E)
)

v
.

Thus if ηc ≥ ηs, the coarse-level inequalities

(2.18) 0 ≤ vT
c (Bc − Ac)vc ≤ ηc vT

c Acvc,

imply the same type inequalities on the next finer level

(2.19) 0 ≤ vT (B − A)v ≤ ηc vTAv.

That is, an induction argument over the levels applies, since at the initial (coarsest) level
Bc = Ac, hence (2.18) holds for any ηc ≥ 0, in particular, it holds for ηc = ηs. Thus, we
have the following main V-cycle MG convergence result.

Theorem 6.1. The V(1,1)–cycle MG preconditioner B is spectrally equivalent to A
with a bound given in (2.19) where ηc ≥ ηs if assumption (A) holds.

6.1. Assumptions that imply main assumption (A). First, we consider an
assumption that is equivalent to (A). More specifically, we assume:

(A∗) There is a constant δs ∈ (0, 1) such that

‖(I −M−TA)v‖2
A ≤ δs‖(I − πA)v‖2

A + ‖πAv‖2
A for all v.

Assumption (A∗) has the following interpretation. The smoother reduces the “oscilla-
tory” component of the error referring to the subspace Range (I − πA), whereas it does
not amplify the “smooth” error component referring to the coarse space Range (πA) =
Range (P ). We show next the following result

Proposition 6.1. Assumptions (A∗) and (A) are equivalent. with δs = ηs

1+ηs
.

Proof. Consider Assumption (A) in the form (2.17). By rearranging terms we also
have

vTE
T

(
I − 1

1 + ηs

πA

)
Ev ≤ ηs

1 + ηs

vTv.

Since πA and I − πA are projections, and due to the same reason πA(I − πA) = 0, we
have

I − 1

1 + ηs

πA = δsπA + (I − πA) = δsπ
2
A + (I − πA)2 =

(√
δsπA + (I − πA)

)2

.

Thus, we have the norm estimate

‖
(√

δsπA + (I − πA)
)
Ev‖2 ≤ ηs

1 + ηs

vTv.

The same result holds for the transposed operator, i.e., we have

‖ET
(√

δsπA + (I − πA)
)

v‖2 ≤ ηs

1 + ηs

vTv.
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Finally, noticing that
(√

δsπA + (I − πA)
)−1

= (I − πA) +
1√
δs
πA,

which combined with the preceding estimate gives

‖ET
v‖2 ≤ δs ‖

(√
δsπA + (I − πA)

)−1
v‖2

= δs ‖
(
(I − πA) + 1√

δs
πA

)
v‖2

= δs‖(I − πA)v‖2 + ‖πAv‖2.

Letting v : = A
1
2v in the last estimate, assumption (A∗) is obtained. Tracing the above

steps backward, it is easily seen that (A∗) implies (A). �

Relation between “strong approximation property” and assumption (A).
We formulate next two properties.

(B) “ℓ2 boundedness of πA”:

‖A‖‖(I − πA)v‖ ≤ ηb ‖Av‖.
(C) “Strong approximation property”: For every v there is a coarse interpolant Pvc

such that

‖v − Pvc‖2
A ≤ ηc

‖A‖ ‖Av‖2.

The following result holds.

Proposition 6.2. Property (C) implies (B) with ηb = ηa.

Proof. The proof is based on the discrete version of Aubin–Nitsche’s argument.

Consider e = (I − πA)v and let Au = e. Letting ηc =
√

ηc

‖A‖ and using that e is A-

orthogonal to the coarse space, we have for Puc the accurate coarse interpolant of u from
(C),

‖e‖2 = eTAu
= eTA(u − Puc)
≤ ‖e‖A‖u − Puc‖A

≤ ηc ‖e‖A‖Au‖
= ηc ‖e‖A‖e‖.

That is, we have ‖e‖2 ≤ ηc

‖A‖ ‖e‖2
A = ηc

‖A‖ eTAe = ηc

‖A‖ eTAv ≤ ηc

‖A‖ ‖e‖‖Av‖ which shows

property (B). �

We conclude with the following two results.

Proposition 6.3. Property (B) implies assumption (A) with ηs = ηb
‖fM‖
‖A‖ .

Proof. We have, with ṽ = Ev, E = I −M−1A,

ṽTA(I − πA)ṽ ≤ ‖Aṽ‖‖(I − πA)ṽ‖ ≤ ηb

‖A‖ ‖Aṽ‖2.

This estimate combined with the bound for ‖Aṽ‖2 which we derive below imply the
desired result.
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Using the identity A
1
2 M̃−1A

1
2 = I − EE

T
, we also have

‖Aṽ‖2 ≤ ‖M̃‖ vTETAM̃−1AEv

= ‖M̃‖ (A
1
2v)TA− 1

2ETA
1
2 (I − EE

T
)A

1
2EA− 1

2 (A
1
2v)

= ‖M̃‖ (A
1
2v)TE

T
(I − EE

T
)E(A

1
2v)

= ‖M̃‖ (A
1
2v)T

(
E

T
E − (E

T
E)2
)

(A
1
2v)

≤ ‖M̃‖ (A
1
2v)T

(
I − E

T
E
)

(A
1
2v)

= ‖M̃‖ vT
(
A− A(I −M−TA)(I −M−1A)

)
v.

We used the elementary inequality t − t2 ≤ 1 − t for the symmetric matrix E
T
E which

has eigenvalues between zero and one. �

Lemma 6.1. If the smoother M is efficient on the A–orthogonal complement of the
coarse space, i.e., on the subspace Range (I − πA) in the sense that

(2.20) vT
s Mvs ≤ ηs vT

s Avs for all vs = (I − πA)v.

Then, assumption (A) holds (with M replaced with MT ).
If the smoother M is s.p.d. and properly scaled such that

vTAv ≤ vTMv for all v,

then assuming that (2.20) holds with M replaced with M , assumption (A) also holds.

Proof. The result follows from the Cauchy–Schwarz inequality

wTA(I − πA)w ≤ ‖Aw‖
M

−1‖(I − πA)w‖M ≤ √
ηs ‖Aw‖

M
−1‖(I − πA)w‖A

That is,

(2.21) wTA(I − πA)w ≤ ηs wTAM
−1
Aw.

Using the latter inequality for w = (I −M−TA)v, noticing that AM
−1
A = A − A(I −

M−TA)(I −M−1A), we see that the r.h.s. of the latter inequality takes the form (letting

E = I − A
1
2M−1A

1
2 and using the inequality t− t2 ≤ 1 − t for EE

T
)

wTAM
−1
Aw =

(
A

1
2v
)T

E(I − E
T
E)E

T
(A

1
2v) ≤ (A

1
2v)T (I − EE

T
)(A

1
2v),

which is the r.h.s. of (A) (with M is replaced with MT ). Also, the left–hand side of
(2.21) is the left–hand-side of (A) (with M replaced with MT ).

The second statement of the Lemma is proven noticing that in the case of M being
s.p.d. and scaled so that vTAv ≤ vTMv, we have that

1

2
vTMv ≤ vTMv ≤ vTMv.

That is, efficiency of M in the subspace Range(I − πA) implies efficiency of M in the
same subspace with the same constant ηs. �
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CHAPTER 6

The MG: a recursive application of inexact TG

This lecture studies the multigrid (or MG) iteration method as a recursive application
of inexact TG method. We also study the effect of more smoothing steps on the MG
convergence factor. The lecture ends with some stable multilevel decompositions of finite
element spaces obtained by successive steps of mesh refinement. The latter function de-
composition provides stable decomposition of the corresponding coefficient vector spaces
and hence offer tools to prove MG convergence without assuming “strong approximation
property”. The lecture ends with an example of stable decomposition for a non–convex
domain (hence no full regularity result is available).

1. Composite iterations and the respective iteration matrix

Given an s.p.d. matrix A, let M0 provide an A-convergent iteration. The latter is
equivalent to the fact of MT

0 +M0 − A being s.p.d.
Given an integer m and let m = 2ν + θ where θ = 0 or 1. For a given initial

iterate x0 for solving the s.p.d. problem Ax = b perform the following iteration steps
for k = 1, . . . , ν

M0(x2k−1 − x2k−2) = b − Ax2k−2,
MT

0 (x2k − x2k−1) = b − Ax2k−1.

If θ = 0, let xm = x2ν ; otherwise (if θ = 1) perform one more step

M0(xm − x2ν) = b − Ax2ν .

The iteration matrix E of the above composite process takes the product form

E = (I −M−1
0 A)θ

(
(I −M−T

0 A)(I −M−1
0 A)

)ν
= (I −M−1

0 A)θ(I −M
−1
A)ν .

Recall that M = M(MT +M − A)−1MT .
Based on E, we can define implicitly the matrix M from the equation

I −M−1A = E.

That is, M−1 = (I−E)A−1. Since ‖A 1
2EA− 1

2‖ < 1 (M0 is A–convergent), it is clear that

M is well-defined (i.e., I − E or equivalently I − A
1
2EA− 1

2 is invertible).

Introduce the scaled iteration matrices E0 = I − A
1
2M−1

0 A
1
2 , E = A

1
2EA− 1

2 . The
following relation holds

E = E
θ

0

(
E

T

0E0

)ν

.

Hence,

E
T
E =

(
E

T

0E0

)m

.
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2. Multigrid V -cycle algorithm with more smoothing steps

We now define the MG algorithm as inexact TG algorithm recursively calling the
coarse-level MG operator Bc defined by induction on the previous coarse levels. At the
initial (coarsest) level Bc = Ac, i.e., we use exact solve there.

Assuming that at some coarse level Bc has been defined at the next fine level, we
define B using the following inexact TG algorithm.

Algorithm 2.1 (Inexact TG algorithm with several smoothing steps). Let A be
s.p.d., P : R

nc 7→ R
n be the interpolation matrix, and let M0 be an A-convergent

smoother. Finally let Bc be an s.p.d. approximation to the exact coarse-grid matrix
Ac = P TAP .

For a given initial iterate x0, to define the next TG iterate xTG, we perform the
following steps:

• Perform m = 2ν + θ (θ = 0 or 1) pre–smoothing iterations with the composite
smoother M defined implicitly from the relation I−M−1A = (I−M−1

0 A)θ
(
ET

0 E0

)ν
,

i.e., compute y from

M(y − x0) = b − Ax0.

• Solve the inexact coarse problem

Bcxc = P T (b − Ay).

• interpolate: z = y + Pxc.
• Perform m post–smoothing composite iterations in reverse order, i.e., compute

xTG from the equations

MT (xTG − z) = b − Az.

The above algorithm defines, at a given level of a hierarchy of grids, the actions of B−1

assuming the actions of B−1
c are available. Applying recursion over the levels, a multigrid

method is defined by initially letting Bc = Ac and then B is defined on the basis of Bc

and at the next level setting Bc := B the next level B is defined as above.

Assuming now assumption (B) (which holds if the strong approximation property (C)
holds). I.e., using the Cauchy–Schwarz inequality and assumption (B), we have

(2.22) ṽTA(I − πA)ṽ ≤ ‖Aṽ‖‖(I − πA)ṽ‖ ≤ ηb

‖A‖ ‖Aṽ‖2.

We will use this estimate for ṽ = Ev. Our goal is to prove estimate as in assumption (A),
which as we know, implies uniform MG convergence i.e., a uniformly bounded ρ away
from unity, or equivalently a uniformly bounded spectral equivalence constantK ≤ 1+ηs.
More specifically, the following result holds.

Theorem 2.1 (Braess and Hackbusch). The following spectral equivalence relations
hold for the MG V-cycle with m-step composite smoother if the strong approximation
property (C) holds if m = 2ν + 1

vTAv ≤ vTBv ≤
(

1 +
1

m
ηb

‖M̃0‖
‖A‖

)
vTAv.
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For even m, we have

vTAv ≤ vTBv ≤
(

1 +
1

m
ηb

‖M0‖
‖A‖

)
vTAv.

Proof. Assume that m = 2ν + 1. The case of even m is proved similarly. Using the

identity A
1
2M̃−1

0 A
1
2 = I − E0E

T

0 , we have

(2.23)

‖Aṽ‖2 ≤ ‖M̃0‖ vTETAM̃−1
0 AEv

= ‖M̃0‖ (A
1
2v)TA− 1

2ETA
1
2 (I − E0E

T

0 )A
1
2EA− 1

2 (A
1
2v)

= ‖M̃0‖ (A
1
2v)TE

T
(I − E0E

T

0 )E(A
1
2v)

= ‖M̃0‖ (A
1
2v)T

(
E

T
E − E

T
E0E

T

0E
)

(A
1
2v)

= ‖M̃0‖ (A
1
2v)T

(
E

T

0E0

)m (
I − E

T

0E0

)
(A

1
2v)

≤ 1
m

‖M̃0‖ (A
1
2v)T

(
I −

(
E

T

0E0

)m)
(A

1
2v)

= 1
m

‖M̃0‖ (A
1
2v)T

(
I − E

T
E
)

(A
1
2v)

= 1
m

‖M̃0‖ vT
(
A− A(I −M−TA)(I −M−1A)

)
v.

We used the elementary inequality for t ∈ [0, 1], tm ≤ tk for k ≤ m, i.e., mtm ≤
m−1∑
k=0

tk,

hence

tm(1 − t) ≤ (1 − t)
1

m

m−1∑

k=0

tk =
1

m
(1 − tm).

We applied this inequality to the symmetric matrix E
T

0E0 which has eigenvalues between
zero and one. Combining the latter estimate (2.23) with (2.22) the desired property (A)

follows with ηs = 1
m
ηb

‖fM0‖
‖A‖ .

�

3. MG analysis without the strong approximation property (C)

Here, we use indices k, 0 ≤ k ≤ ℓ to denote the level index of the grids generated
by successive steps of refinement, Tk with respective meshsize hk = 2−kh0, k ≥ 0. The
corresponding finite element spaces are Vk. For k = ℓ, we use the notation V = Vh = Vℓ,
h = hℓ, which is the space of our main interest. We also have Ak and Gk the kth level
stiffness and mass matrices, respectively. They are nk × nk s.p.d. sparse matrices. We
recall the spectral relations between Ak, the diagonal Dk of Ak, Gk and the standard
vector–inner product in R

nk :

(2.24) vT
kAkvk ≤ κ vT

kDkvk ≃ h−2
k vT

kGkvk ≃ hd−2
k vT

k vk.

The constant κ depends on the type of elements we use; for the case of piecewise linear
functions κ = 3. The number d = 2 or 3 stands for the dimension of the domain Ω ⊂ R

d,
where the b.v.p. is posed.
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3.1. The “XZ”-identity. We now formulate a main identity that characterizes the
V –cycle MG operator B = Bℓ. This identity is referred to as the “XZ”-identity due to a
result of Xu and Zikatanov in [XZ02] (see also [Va08]).

Theorem 3.1. Given a sequence of s.p.d. matrices Ak, and Let Mk be the kth level
smoother convergent in Ak-norm, and let Pk−1 : R

nk−1 7→ R
nk the corresponding interpo-

lation matrix form coarse level k−1 to the next finer level k. We assume the Galerkin re-
lation Ak−1 = P t

k−1AkPk−1. Consider the respective V(1,1)-cycle MG operator B = BMG

defined based on the specified smoothers and interpolation matrices.
For any fine–grid vector v = vℓ, the XZ-identity in a matrix-vector form reads:

(2.25)

vTBv = min
(vk=v

f
k
+Pkvk−1)

ℓ
k=1

[
vT

0A0v0

+
ℓ∑

k=1

(
vf

k +M−T
k AkPk−1vk−1

)T

Mk

(
vf

k +M−T
k AkPk−1vk−1

)]
.

Proof. The proof follows as a recursive application of the TG identity found in
Theorem 4.1. �

Using the triangle inequality, it is clear that in order to bound vTBv in terms of
vTAv, it is sufficient to bound the following two sums (i)’, (ii)’ for some particular

decomposition of v involving the components vk and vf
k = vk − Pk−1vk−1:

(i)’
∑

k

(vf
k)TMkv

f
k ,

and
(ii)’

vT
0A0v0 +

∑

k

(vk−1)
TP T

k−1Ak

(
MT

k +Mk − Ak

)−1
AkPk−1vk−1.

We proved for Mk being the forward Gauss–Seidel smoother that

vT
kMkvk ≃ vT

kDkvk.

For the same smoother, we have MT
k +Mk −Ak = Dk. Finally, recalling (2.24), i.e., that

Dk ≃ h−2
k Gk, it is clear that to estimate (i)’ and (ii)’ for smoothers Mk equivalent to the

Gauss–Seidel, it is equivalent to bound the sums

(i)
∑

k

h−2
k (vf

k)TGkv
f
k ,

and
(ii)

vT
0A0v0 +

∑

k

h2
k (vk−1)

TP T
k−1AkG

−1
k AkPk−1vk−1
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Rewriting sums (i)-(ii) using finite element functions. Let v ∈ Vh and vk, v
f
k ∈

Vk correspond to the coefficient vectors v and vk, vf
k , respectively. Assume that v =

∑
k

vf
k

where vf
k = vk − vk−1, k ≥ 1 and vf

0 = v0 We recall that the finite element spaces are
nested, i.e., Vk−1 ⊂ Vk. Define the vector ψk = G−1

k AkPk−1vk−1 and let ψk ∈ Vk be the
finite element function corresponding to the coefficient vector ψk. Then, by definition

ψT
kAkPk−1vk−1 = a(vk−1, ψk).

We also have vk−1 =
k−1∑
j=0

vf
j . Hence,

ψT
kAkPk−1vk−1 = a(vk−1, ψk) =

k−1∑

j=0

a(vf
j , ψk).

We make now the following assumptions:

(S) “stable decomposition”: The decomposition of v, based on the components vf
k

is such that for vk =
k∑

j=0

vf
j we have

∑

k

h−2
k ‖vf

k‖2
0 ≤ CS a(v, v).

(I) “strengthened inverse inequality:” for j ≤ k and any ψj ∈ Vj and ψk ∈ Vk, it
holds

a(ψk, ψj) ≤ CI h
− 1

2
k h

− 1
2

j ‖ψk‖0|ψj|1.

The following main result then holds:

Theorem 3.2. Under the assumptions (S) and (I), the sums (i) and (ii) are bounded
in terms of vTAv uniformly with respect to the number of levels ℓ and the fine–grid mesh
size h 7→ 0. Equivalently, the V –cycle MG operator B is spectrally equivalent to the
fine–grid stiffness matrix A.

Proof. The sum (i) is actually assumption (S). To bound sum (ii), we use the finite
element representation

∑

k

h2
k (G−1

k AkPk−1vk−1)
TAkPk−1vk−1 =

∑

k

h2
k

∑

j≤k

a(ψk, v
f
j ).

The sum (ii) also equals to

∑

k

h2
k (G−1

k AkPk−1vk−1)
TGk

(
G−1

k AkPk−1vk−1

)
=
∑

k

h2
k(ψk)

TGkψk =
∑

k

h2
k‖ψk‖2

0.



i

56 6. THE MG: A RECURSIVE APPLICATION OF INEXACT TG

Using assumption (I), we have
∑
k

h2
k‖ψk‖2

0 =
∑
k

h2
k

∑
j≤k

a(ψk, v
f
j )

≤ CI

∑
k

h2
k

∑
j≤k

h
− 1

2
k h

− 1
2

j |vf
j |1‖ψk‖0

= CI

∑
k

hk‖ψk‖0

∑
j≤k

√
hk

hj
|vf

j |1

≤ CI

(
∑
k

∑
j≤k

h2
k‖ψk‖2

0

(
1√
2

)k−j

) 1
2
(
∑
k

∑
j≤k

(
1√
2

)k−j

|vf
j |21

) 1
2

≤
√

2√
2−1

CI

(∑
k

h2
k‖ψk‖2

0

) 1
2

(
∑
j

|vf
j |21

) 1
2

.

We used
√
hk/hj =

(
1√
2

)k−j

. Since |vf
j |1 ≤ Ch−1

j ‖vf
j ‖0 (based on (2.24)), we have using

assumption (S), ∑

j

|vf
j |21 ≤ C

∑

j

h−2
j |vf

j |21 ≤ C a(v, v).

That is, we showed

∑

k

h2
k‖ψk‖2

0 ≤ C

(
∑

k

h2
k‖ψk‖2

0

) 1
2

|v|1.

This shows the desired mesh-independent bound of sum (ii) in terms of |v|21 = a(v, v) =
vTAv. �

4. Verification of assumption (I)

Consider two nested finite element spaces VH ⊂ Vh corresponding to respective coarse
triangulation TH and a refined one Th. Let T be a coarse mesh element (triangle). For
functions ψH ∈ VH and ψh ∈ Vh, noticing that the gradient of ψH is constant on T (since
ψH is linear on T ) the integration by parts formula gives
∫

T

∇ψH · ∇ψh dx = −
∫

T

div(∇ψH)ψh dx +

∫

∂T

(∇ψH) · n ψh dσ =

∫

∂T

(∇ψH) · n ψh dσ.

Hence by Cauchy–Schwarz inequality we get

∫
T

∇ψH · ∇ψh dx ≤
(∫

∂T

(∇ψH · n)2 dσ

) 1
2
(∫

∂T

ψ2
h dσ

) 1
2

.

Use now the following inverse inequality valid for any f.e. function ψh; namely, the equiv-
alence between discrete ℓ2–norm and the respective integral L2-norm of f.e. functions,

∫

∂T

ψ2
h dσ ≃ hd−1

∑

xi∈∂T

ψ2(xi) ≤ hd−1
∑

xi∈T

ψ2(xi) ≃ h−1

∫

T

ψ2
h dx.
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Also, since ∇ψH is a constant vector on T , we have
∫

∂T

(∇ψH · n)2 dσ ≃ |∂T |
|T |

∫

T

|∇ψH |2 dx ≃ H−1

∫

T

|∇ψH |2 dx.

Therefore,

∫

T

∇ψH · ∇ψh dx ≤ CI H
− 1

2



∫

T

|∇ψH |2 dx




1
2

h−
1
2



∫

T

ψ2
h dx




1
2

.

Using summation over T ∈ TH , a(ψH , ψh) =
∑
T

∫
T

∇ψH · ∇ψh dx, based on the last

inequality, we have then

a(ψH , ψh) ≤ CIH
− 1

2h−
1
2

∑

T



∫

T

|∇ψH |2 dx




1
2


∫

T

ψ2
h dx




1
2

.

The desired strengthened inverse inequality (I) follows then applying the Cauchy–Schwarz
inequality

∑
T

(∫
T

|∇ψH |2 dx
) 1

2
(∫

T

ψ2
h dx

) 1
2

≤
(∑

T

|∇ψH |2 dx
) 1

2
(∑

T

∫
T

ψ2
h dx

) 1
2

= ‖∇ψH‖0‖ψh‖0.

5. Verification of assumption (S)

Consider the Galerkin (also called elliptic) projections πk : H1
0 7→ Vk defined as the

solution of the Galerkin finite element problem: For any u ∈ H1
0 solve for πku ∈ Vk the

Galerkin f.e. problem
a(πku, ϕ) = a(u, ϕ) for all ϕ ∈ Vk.

Since the spaces are nested, i.e., Vk ⊂ Vk+1, it is easily seen that

πkπk+1 = πk.

Assume now full regularity of the b.v.p.. Then as we know (by Aubin–Nitsche’s
argument) the following L2–error estimate holds

(2.26) ‖u− πku‖0 ≤ Chk |u− πku|1.
Using this estimate for u = πk+1u, based on the fact that πkπk+1 = πk, we obtain

(2.27) ‖πku− πk+1u‖0 ≤ Chk |(πk − πk+1)u|1.
The decomposition of our interest is based on the components vf

k = (πk − πk−1)v.
That is, we have

v =
∑

k

vf
k =

∑

k

(πk − πk−1)v.

To verify (S), we need to bound the sum
∑

k

h−2
k ‖vf

k‖2
0
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in terms of |v|21 = a(v, v) = vTAv. For this, we use the a(., .)-orthogonality of the

components vf
k and vf

j for j 6= k. Indeed, assuming j < k, we have that vf
k = (I −

πk−1)(πkv) is a(., .)-orthogonal to Vk−1 which contains Vj (for j ≤ k − 1). This shows

that vf
k is a(., .)-orthogonal to vf

j ∈ Vj. As a corollary, we obtain the identity

|v|21 =
∑

k

|(πk − πk−1)v|21.

Then, using the L2–error estimate (2.27), combined with the orthogonality for the com-
ponents, we obtain

∑

k

h−2
k ‖(πk − πk−1)v‖2

0 ≤ C
∑

k

|(πk − πk−1)v|21 = C|v|21 = Ca(v, v).

6. Lions’ example

We recall that to prove (2.26), we assumed full regularity of the b.v.p. To avoid this
assumption, other projections that are accurate in L2 and stable in H1

0 are needed. It
appears that the L2 projections Qk : L2 7→ Vk satisfy that property (see later Section
1). Alternatively, we may want to partition the domain Ω into overlapping set of m0 ≥ 1
convex polygons. Then if any H1

0 (Ω) function can be decomposed into H1 components
supported into one of the convex polygonal subdomains, a stable decomposition of each
component would imply a stable decomposition of the original H1

0 (Ω) function.
Explicit construction of continuous H1

0–stable decomposition with components sup-
ported in convex polygons was shown in Lions [Li87] for a model L–shaped domain Ω
with m0 = 2. We present this example next.

Example 6.1. Given the L–shaped domain Ω shown in Figure 1. Consider the fol-
lowing cut–off function

χ =





1, x ≤ 0,
1 − bx

ay
, (x, y) ∈ T = {b ≥ y ≥ b

a
x, 0 ≤ x ≤ a},

0, y ≤ b
a
x, x ∈ [0, a].

Its gradient is non–zero only on T and it equals

∇χ =
b

a

[ − 1
y

x
y2

]
.

On T , we have x2

y2 ≤ a2

b2
and 1

x2+y2 ≥ 1
a2

b2
y2+y2

. This shows that

|∇χ|2 =
b2

a2

1

y2

[
1 +

x2

y2

]
≤ b2

a2

1

x2 + y2

[
1 +

a2

b2

] [
1 +

a2

b2

]
.

The decomposition of our main interest reads

v = χv + (1 − χ)v.

Note that v1 = χv is supported in the convex domain (rectangle) Ω1 = (−c, a) × (0, b)
and v2 = (1 − χ)v is supported in the convex domain (rectangle) Ω2 = (0, a) × (−a, b).
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b

−a

a0

T

−c

Figure 1. L–shaped domain Ω partitioned into two overlapping rectangles
Ω1 = (−c, a) × (0, b) and Ω2 = (0, a) × (−a, b).

To show the desired H1
0–stability, we have to estimate |v1|1 in terms of |v|1. We have

∫
Ω

|∇v1|2 dx ≤ 2
∫
Ω

v2|∇χ|2 dx + 2
∫
Ω

χ2|∇v|2 dx

≤ 2
∫
Ω

χ2|∇v|2 dx + C
∫
Ω

v2(x)

dist
2 (x, ∂Ω)

dx.

The stability follows due to a classical inequality
∫

Ω

v2(x)

dist2 (x, ∂Ω)
dx ≤ C |v|21,

valid for H1
0 (Ω)–functions.
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CHAPTER 7

Additive MG and MG as block–Gauss-Seidel on an extended
system

This lecture studies the additive MG (or BPX) method and its relation to the more
traditional (multiplicative) MG by viewing both as block Gauss–Seidel and Jacobi meth-
ods on an extended semi-definite system.

1. The additive MG or BPX method

One way to define the MG preconditioner B is based on the following block–matrix
factorization:

We first introduce

B̂ =

[
I 0

P TAM−1 I

] [
M 0
0 Bc

] [
I M−TAP
0 I

]
,

and then

B−1 = [I, P ] B̂−1

[
I
P T

]
.

In the “additive” MG we ignore the unit triangular factors in the matrix B̂, i.e., we
consider instead

B̂add =

[
M 0
0 Bc

]
,

and then define as before

B−1
add = [I, P ] B̂−1

add

[
I
P T

]
,

or more explicitly, we have

B−1
add = M

−1
+ PB−1

c P T .

It is also clear that we do not have to use a composite smoother M (coming from both
M and MT ), instead a single s.p.d. one, Λ, suffices. I.e., we have then

B−1
add = Λ−1 + PB−1

c P T .

The following algorithm can be used to evaluate B−1
add = B−1

ℓ in the case of ℓ ≥ 1
levels. For this purpose, introduce a hierarchy of nk × nk s.p.d. matrices Ak, s.p.d.
smoothers Λk, and for k = 1, . . . , ℓ the interpolation matrices Pk−1 : R

nk−1 7→ R
nk such

that Ak−1 = P T
k−1AkPk−1. Here, nk−1 < nk and we also let Λ0 = A0 and Pℓ = I.

Algorithm 1.1 (The multilevel additive MG (BPX) algorithm). To compute B−1
addb =

B−1
BPXb for a given b, we compute rk and xk, for k = 0, . . . , ℓ and let B−1

addb = xℓ, in
the following steps:
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(1) Let r0 = b and for k = ℓ down to 1 compute

rk−1 = P T
k−1rk.

(2) Compute x0 = A−1
0 r0 and for k = 1, . . . , ℓ, compute

xk = Λ−1
k rk + Pk−1xk−1.

(3) The output is B−1
addb = xℓ.

From step (2) above, it is clear that B−1
k rk = xk satisfies the relation B−1rk =

Λ−1
k rk + Pk−1B

−1
k−1rk−1. Using now step (1), i.e., rk−1 = P T

k−1rk, we get B−1rk =(
Λ−1

k + Pk−1B
−1
k−1P

T
k−1

)
rk, that is, the following recurrence holds, starting with B0 = A0,

B−1
k = Λ−1

k + Pk−1B
−1
k−1P

T
k−1.

which shows that Algorithm 1.1 does implement the multilevel additive preconditioner.
It also gives us the following more explicit definition of the method.

Definition 1.1 (Additive MG (BPX) preconditioner). Introduce a hierarchy of nk ×
nk s.p.d. matrices Ak, s.p.d. smoothers Λk, and for k = 1, . . . , ℓ and interpolation
matrices Pk−1 : R

nk−1 7→ R
nk such that Ak−1 = P T

k−1AkPk−1 and nk−1 < nk. Let also
Λ0 = A0 and Pℓ = I.

The multilevel additive V-cycle preconditioner Badd = Bℓ, also referred to as the BPX
preconditioner, admits the following explicit form

(2.28) B−1
add =

ℓ∑

j=0

(Pℓ . . . Pj)Λ
−1
j (P T

j . . . P T
ℓ ).

1.1. Additive MG: convergence properties. Similarly to the traditional MG,
the following main result holds. sometimes referred to as “Lions

′
Lemma”.

Theorem 1.1. Consider for any v decompositions of the form:

(o) vℓ = v,

(i) for k = ℓ, . . . , 1 let vk = [I, Pk−1]

[
vf

k

vk−1

]
.

Then for the kth level additive MG operator Bk, based on s.p.d. smoothers Λk for Ak (for

example, Λk = Mk

(
MT

k +Mk − Ak

)−1
MT

k or Λk = Dk–the diagonal of Ak) the following
identity holds: for any k ≥ 0 and k ≥ s,

vT
kBkvk = inf

(vj=v
f
j +Pj−1vj−1)k

j=s+1

[
vT

s Bsvs +
k∑

j=s+1

(vf
j )T Λjv

f
j

]
.

Note that at the coarsest level s = 0, we typically set B0 = A0.

Proof. We have to note that since the additive MG is also defined via a relation
B−1

k = [I, Pk−1] B̂
−1
k [I, Pk−1]

T the same proof as for the standard MG applies in this

case. That is, we use the fact that ‖X‖ = ‖XT‖ = 1, for X = B̂
− 1

2
k [I, Pk−1]

T B
1
2
k . This

shows that for any decomposition vk = vf
k + Pk−1vk−1 = [I, Pk−1] v̂k, v̂k =

[
vf

k

vk−1

]
,

vT
kBkvk = v̂T

k [I, Pk−1]
T Bk [I, Pk−1] v̂k ≤ v̂T

k B̂kv̂k.
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That is,

vT
kBkvk ≤ (vf

k)T Λkv
f
k + vT

k−1Bk−1vk−1 ≤ vT
s Bsvs +

k∑

j=s+1

(vf
j )T Λjv

f
j .

The rest of the proof is identical to the one of the MG (cf., Theorem 3.1 which is based
on Theorem 4.1.)

�

Our main goal is to prove the spectral equivalence relations

vTAv ≃ vTBaddv.

For the estimate from above, we need to show that for any decomposition vk = vf
k +

Pk−1vk−1 the following inequalities hold

vTAv ≤ C

(
vT

0A0v0 +
k∑

j=1

(vf
j )T Λjv

f
j

)
.

Then, the desired upper bound would follow by taking minimum over all possible decom-
positions. To prove the above estimate, we will use the “strengthened inverse inequal-
ity”for any pair of functions vf

l ∈ Vl and vf
j ∈ Vj

a(vf
l , v

f
j ) ≤ CI h

− 1
2

l h
− 1

2
j ‖vf

j ‖0 |vf
l |1 if j ≤ l.

In terms of finite element functions, we have the decomposition v =
∑
j

vf
j , vf

0 = v0,

vf
k ∈ Vk and vk =

k∑
j=0

vf
j ∈ Vk. We have (hl = hj2

j−l),

vTAv = a(v, v) = a(
∑
j

vf
j ,
∑
l

vf
l )

=
∑
l

a(vf
l , v

f
l ) + 2

∑
j<l

a(vf
l , v

f
j )

≤ C2
I

∑
l

h−2
l ‖vf

l ‖2
0 + 2CI

∑
j<l

h
− 1

2
l h

− 1
2

j ‖vf
l ‖0|vf

j |1

= C2
I

∑
l

h−2
l ‖vf

l ‖2
0 + 2CI

∑
j<l

h
1
2
l h

− 1
2

j |vf
j |1

(
h−1

l ‖vf
l ‖0

)

= C2
I

∑
l

h−2
l ‖vf

l ‖2
0 + 2CI

∑
j<l

(
1√
2

)l−j

|vf
j |1

(
h−1

l ‖vf
l ‖0

)

≤ C2
I

∑
l

h−2
l ‖vf

l ‖2
0 + 2CI

√
2√

2−1

(
∑
j

|vf
j |21

) 1
2 (∑

l

h−2
l ‖vf

l ‖2
0

) 1
2

≤ C2
I

(
1 + 2

√
2√

2−1

) ∑
l

h−2
l ‖vf

l ‖2
0.

Finally, using the fact that Λj ≃ Dj (the diagonal of Aj) and that Dj ≃ h−2
j Gj (scaled

mass matrix), we see that
∑
j

h−2
j ‖vf

j ‖2
0 ≃ ∑

j

h−2
j (vf

j )TGjv
f
j ≃ ∑

j

(vf
j )T Λjv

f
j , which im-

plies the desired upper bound vTAv ≤ C vTBaddv. For the bound in the other direction,
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we need to prove that for some particular decomposition v =
∑
j

vf
j , the following bound

holds
vTBaddv ≤∑

j

(vf
j )T Λjv

f
j ≃∑

j

(vf
j )TDjv

f
j ≃∑

j

h−2
j (vf

j )TGjv
f
j

=
∑
j

h−2
j ‖vf

j ‖2
0 ≤ C a(v, v).

The latter inequality, we have verified for the finite element projections vf
j = (πj −πj−1)v

and convex domain and we commented out how to handle the non-convex domain cases.

Change of notation

As already mentioned (cf. Remark 5.1) in some cases it is more convenient to label
the level indices so that k < l refer to fine (k) and coarse (l), respectively. In particular,
level 0 stands for the finest level whereas level ℓ is the coarsest one. This convention
agrees better with commonly accepted linear algebra (matrix) notation that we often
use. With this convention, Pk refers to the interpolation from coarse level k + 1 to fine
level k. The respective vector spaces are Vk+1 = R

nk+1-coarse and Vk = R
nk-fine, i.e.,

we then have nk+1 < nk.

2. MG as product iteration method

Introduce next the composite interpolation matrices P k = P0 . . . Pk−1 from kth level
coarse vector space Vk all the way up to the finest level vector space V = V0. The
following result will allow us to view the symmetric V (1, 1)-cycle MG as a product iter-
ative method performed on the finest level. The iterations exploit corrections from the
subspaces P kVk of the original vector space V = V0. Such methods are sometimes called
“subspace correction” methods.

We recall the recursive two-level definition of Bk,

(2.29) B−1
k = M

−1

k + (I −M−T
k Ak)PkB

−1
k+1P

T
k (I − AkM

−1
k ).

Proposition 2.1. The following recursive relation between the subspace iteration

matrices I − P kB
−1
k P

T

kA and I − P k+1B
−1
k+1P

T

k+1A holds,

I − P kB
−1
k P

T

kA = (I − P kM
−T
k P

T

kA)(I − P k+1B
−1
k+1P

T

k+1A)(I − P kM
−1
k P

T

kA).

Proof. We have, from the definition 2.29

P kB
−1
k P

T

k = P kM
−1

k P
T

k + P k(I −M−T
k Ak)PkB

−1
k+1P

T
k (I − AkM

−1
k )P

T

k .

Now use the fact that Ak = P
T

kAP k and P k+1 = P kPk to arrive at the expression,

P kB
−1
k P

T

k = P kM
−1

k P
T

k + (I − P kM
−T
k P

T

kA)P k+1B
−1
k+1P

T

k+1(I − AP kM
−1
k P

T

k ).

Then forming I − P kB
−1
k P

T

kA gives,

I−P kB
−1
k P

T

kA = I−P kM
−1

k P
T

kA−(I−P kM
−T
k P

T

kA)P k+1B
−1
k+1P

T

k+1A(I−P kM
−1
k P

T

kA).

It remains to notice thatM
−1

k = M−1
k +M−T

k −M−T
k AkM

−1
k = M−1

k +M−T
k −M−T

k P
T

kAP kM
−1
k

implies

I − P kM
−1

k P
T

kA = (I − P kM
−T
k P

T

kA)(I − P kM
−1
k P

T

kA),
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which combined with the previous identity gives the desired result.
�

MG as block Gauss–Seidel. Based on the above product form of the MG V-cycle
iteration matrix, the following interpretation of the V-cycle MG is seen.

In the downward cycle, we compute corrections P kx
f
k from the coarse subspaces

Range (P k), k = 0, . . . , ℓ by solving the following systems

(2.30) Mkx
f
k = P

T

k

(
b − A

k−1∑

j=0

P jx
f
j

)

The current approximation is
k∑

j=0

P jx
f
j . At the coarsest level we solve for a correction

xf
ℓ = xℓ the system

Aℓxℓ = P
T

ℓ

(
b − A

ℓ−1∑

j=0

P jx
f
j

)
.

We let yf
ℓ = xℓ. On the way back, at level k < ℓ, we compute an update yf

k to xf
k , by

solving for the correction yf
k − xf

k , the equation

(2.31) MT
k (yf

k − xf
k) = P

T

k

(
b − A

ℓ∑

j=k+1

P jy
f
j − A

k∑

j=0

P jx
f
j

)
.

That is, after step k on the way back, the current approximation is

ℓ∑

j=k

P jy
f
j +

k−1∑

j=0

P jx
f
j .

Using the fact that xf
k solves the equation (2.30) and Ak = P

T

kAP k, the system for yf
k

can be rewritten as

MT
k yf

k = (MT
k +Mk − Ak)x

f
k − P

T

kA
ℓ∑

j=k+1

P jy
f
j .

The final MG V-cycle approximation is

ℓ∑

j=0

P jy
f
j .

In conclusion, introducing the blocks Tkj = P
T

kAP j, and the block–lower triangular
matrix

LB =




M0 0 . . . 0
T10 M1 . . . 0
...

. . . . . . 0
Tℓ,0 . . . Tℓ,ℓ−1 Mℓ


 ,
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the inverse of the V-cycle preconditioner BMG can be represented by the following block-
matrix formula

(2.32) B−1
MG =

[
P 0, . . . , P ℓ

]
L−T

B

(
diag (MT

k +Mk − Ak)
ℓ
k=0

)
L−1

B

[
P 0, . . . , P ℓ

]T
.

This formula gives the following alternative representation of the XZ-identity (Theorem
3.1).

Theorem 2.1. The following main identity holds for the V -cycle MG operator BMG:

vTBMGv = min
v=

ℓ
P

j=0
P jv

f
j




vf
0
...

vf
ℓ




T

LB

(
diag (MT

k +Mk − Ak)
)−1

LT
B




vf
0
...

vf
ℓ


 .

We note that the block-factored matrix LB

(
diag (MT

k +Mk − Ak)
)−1

LT
B is the in-

exact symmetric block Gauss–Seidel preconditioner for the block–matrix T . Indeed,
decompose T = DT + LT + LT

T where LT is the strictly block–lower triangular part of T
and DT = diag (Ak)

ℓ
k=0 is the block-diagonal part of T . Finally, let M = diag (Mk)

ℓ
k=0.

It is clear then that LB = M + LT and hence

LB

(
diag (MT

k +Mk − Ak)
)−1

LT
B = LB

(
LT

B + LB − T
)−1

LT
B,

which shows the desired result.
To solve a given system Ax = b we can proceed by first transforming it (cf. [Gr94])

based on the fact that any x allows for a (non-unique) decomposition x =
ℓ∑

k=0

P kx
f
k and

then after forming P
T

kAx =
ℓ∑

l=0

P
T

kAP lx
f
l = P

T

k b to end up with the following consistent

extended system

T




xf
0
...

xf
ℓ


 =



P

T

0 b
...

P
T

ℓ b


 .

Note that the matrix of this system T = (Tkj), Tkj = P
T

kAP j, is symmetric and only
positive semi-definite. The latter consistent semi-definite system is solved then by the
CG method using either the (inexact) symmetric Gauss–Seidel matrix

LB

(
diag (MT

k +Mk − Ak)
ℓ
k=0

)−1
LT

B,

or the (inexact) block–Jacobi one

diag
(
Mk(M

T
k +Mk − Ak)

−1MT
k

)ℓ
k=0

= diag
(
Mk

)ℓ
k=0

≃ diag (Λk)
ℓ

k=0 ,

as preconditioner. The original solution is recovered then as

x =
[
P 0, . . . , P ℓ

]



xf
0
...

xf
ℓ


 =

ℓ∑

k=0

P kx
f
k .
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CHAPTER 8

MG complexity and analysis of variable-step (nonlinear)
AMLI-cycle MG

This lecture studies the complexity of various multigrid (or MG) iteration methods
(V -cycle, W -cycle, or more general AMLI-cycle). Then, we analyze the AMLI-cycle MG
method - both the stationary and conjugate gradient (or CG) based one. For this, we
introduce a variable–step CG method and prove some convergence rate estimates.

1. Arithmetic complexity of MG cycles

Consider a hierarchy of meshes Tk obtained by successive steps of uniform refinement
of an initial coarse triangulation TH ; T0 = TH and Tk is obtained by refining Tk−1. The
corresponding meshsizes are related hk = 1

2
hk−1 and the size nk of the nodesets Nk

(vertices of the triangles in 2D) are of order 2dkn0, where d = 2 or 3 is the dimension
of the computational domain (polygon or polytope) Ω ⊂ R

d. The corresponding finite
element spaces Vk are nested, i.e., Vk−1 ⊂ Vk and there is an interpolation mapping
Pk−1 : R

nk−1 7→ R
nk that relates the corresponding coefficient vectors vk−1 of a function

vk−1 ∈ Vk−1 to Pvk−1 viewed as an element of Vk (since Vk−1 ⊂ Vk). Also, the respective
stiffness matrices are variationally related, i.e., Ak−1 = P T

k−1AkPk−1.
Assume that one smoothing iteration with Mk and MT

k costs O(nk) operations. This
is the case if Mk comes from the sparse stiffness matrix Ak (that has O(nk) non-zero
entries), for example if Mk is the forward Gauss–Seidel iteration matrix of the scaled
Jacobi (ωDk, Dk being the diagonal of Ak and ω suitable weight).

In a typical inexact TG algorithm, we perform

(1) three residual computations, b − Ax0, b − Ay and b − Az which is an order
O(nk) operations;

(2) one solve with the coarse–grid operator Bc, the cost denoted by wk−1 operations;
(3) one restriction based on the action of P T and one interpolation of the form

z = y + Pxc, both requiring O(nk) operations.

Thus the following recursive relation is immediately seen:

wk = wk−1 + Cnk.

Thus

wV −cycle ≡ wℓ = w0 + C
∑

k

nk = w0 + C
∑

k

2dk = w0 + C nℓ

ℓ∑

k=1

2d(k−ℓ) ≤ w0 + C nℓ.

67
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2. W–cycle and more general AMLI, or polynomially-based, MG–cycles

Assume that we have defined at a given coarse “c”-level an s.p.d. approximation Bc

to Ac, such that

vT
c Acvc ≤ vT

c Bcvc for all vc.

In general, we may not have the actions of Bc on vectors available, what is important,
we assume that the actions B−1

c on vectors are readily available. As we saw earlier these
actions for Bc (and B) being the V-cycle MG operator are computable by the recursive
inexact TG algorithm.

Having actions of B−1
c on vectors available, we may define a more accurate approxi-

mation B
(ν)
c to Ac by the following inner iterative method: For any given vector bc, the

more accurate approximation to the solution of Axc = bc, than B−1
c bc equals the νth

iterate x
(ν)
c of the inner iterative method:

Let x
(0)
c = 0. For s = 1, . . . , ν, we compute

(2.33) Bc(x
(s)
c − x(s−1)

c ) = bc − Acx
(s−1)
c .

This shows that with Ec = I −B−1
c Ac,

B(ν)−1

c bc ≡ x(ν)
c = B−1

c bc+(I−B−1
c Ac)x

(ν−1)
c = (I+Ec+E

2
c + · · ·+Eν−1

c )B−1
c bc+E

ν
c x

(0)
c .

That is, for x
(0)
c = 0, we have

B(ν)−1

c bc = (I − Eν
c )(I − Ec)

−1B−1
c bc = (I − Eν

c )A−1
c bc.

W-cycle and AMLI-cycle. Thus, introducing the polynomial pν(t) = (1 − t)ν , we
have the following equivalent definition

(2.34) B(ν)−1

c =
[
I − pν(B

−1
c Ac)

]
A−1

c .

The latter definition can be used for more general polynomials pν as long as pν(0) = 1
and |pν(t)| < 1 on an interval containing the spectrum of B−1

c Ac. Typically, we choose
pν(t) to be non-negative on the spectrum of B−1

c Ac, or simply being nonnegative. For
example, if we choose ν = 2 and

pν(t) = (1 − t)2 ≥ 0,

the resulting MG–cycle is referred to as the so–called W -cycle. This means that we use
two recursive stationary inner iterations (as in (2.33)).

We estimate next the complexity of the following generalized cycle MG algorithm.
Given an approximation Bc to Ac for an integer ν ≥ 1, ν = νc (i.e., it may depend on

the level index), we define the more accurate approximation B
(ν)
c to Ac and use it in the

inexact TG–algorithm.
More specifically we consider:

Algorithm 2.1 (MG algorithm with arbitrary number of inner iterations). Given
Bc - an s.p.d. approximation to Ac, for an integer ν = νc ≥ 1 and a suitable polynomial

pν of degree ν such that pν(0) = 1, we define B
(ν)−1

c as in (2.34).
Then one iteration for solving Ax = b for a given x0 computes xMG = x0 +B−1(b−

Ax0) in the following steps:
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(i) “pre-smoothing iteration:”

M(y − x0) = b − Ax0.

(ii) “inexact coarse–grid correction” using polynomial-type inner iterations, i.e, com-
pute xc from

xc = B(ν)−1

c P T (b − Ay).

(iii) “interpolate:”

z = y + Pxc.

(iv) “post–smoothing iteration:”

MT (xMG − z) = b − Az.

We have O(nk) operations in total for the smoothing steps (i) and (iv), for computing
the residuals in (i), (ii), and (iv), to implement the interpolation step (iii) as well as the
restriction of the residual in (ii). The cost of the inner iterations used to implement the

inverse action of B
(ν)
c as implemented in (2.33) is readily estimated as

νc(wc + O(nc)),

where the cost O(nc) stands for computing the coarse-level residuals in (2.33).
Thus the following recursion holds

(2.35) wk = νk−1(wk−1 + O(nk−1)) +O(nk).

Let us now assume the following behavior of νk. Given an integer parameter k0 ≥ 1
and another fixed integer ν ≥ 1, assume that νk takes one of the following two values

(2.36) νk =

{
ν, if k = sk0,
1, otherwise.

The above cycling strategy is sometimes referred to as the AMLI-cycle (“Algebraic Multi-
Level Iteration” cycle) originally used in combination with some optimal (Chebyshev)
polynomials to define pν in (2.34).

In the AMLI-cycle, the general work estimate recursion (2.35) simplifies to

w(s+1)k0 = ν wsk0 + νO(nsk0) + O(nsk0+1 + · · · + nsk0+k0).

Applying recursion, we have

w(s+1)k0 = O(n(s+1)k0) + νO(nsk0) + ν wsk0

= O(n(s+1)k0) + νO(nsk0)
+ν O(nsk0) + ν2 w(s−1)k0

= O(n(s+1)k0) + νO(nsk0)
+νO(nsk0) + ν2O(n(s−1)k0)
+ν2O(n(s−1)k0) + ν3O(n(s−2)k0)
...
+νs−1O(2nk0) + νswk0

= νswk0 + O(
s+1∑
j=2

νs+1−j njk0).
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Since wk0 = O(nk0), and
njk0

n(s+1)k0

= 2jk0d2−(s+1)k0d = 1
2d(s+1−j)k0

, we end up with the final

work estimate

w(s+1)k0 = O(
s+1∑

j=1

νs+1−j njk0) = O(n(s+1)k0)
s∑

j=0

( ν

2dk0

)j

.

The latter sum of the geometric progression is O(1) if

(2.37) ν < 2dk0 .

In that case we have that wk = O(nk), i.e., the resulting multilevel cycle leads to a MG
method of optimal cost.

The W–cycle corresponds to ν = 2 and k0 = 1. It is clear that it has always an
optimal complexity for d ≥ 2 (since 2 < 2d).

In some applications, we may have to choose large ν (i.e., sufficiently many inner
iterations) to improve the quality of the cycle. To control the complexity of the resulting
MG method then, we have to skip k0 levels (and use only simple V -cycle recursion there)
where k0 satisfies the inequality (2.37).

3. Analysis of the AMLI-cycle

We consider the simple choice of polynomial pν(t) = (1 − t)ν . Then if Bc is s.p.d.

such that vT
c Acvc ≤ vT

c Bcvc, it follows that the modified one B
(ν)
c also satisfies the same

inequality

vT
c B

(ν)−1

c vc = vT
c

(
I − (I −B−1

c Ac)
ν
)
A−1

c vc ≤ vT
c A

−1
c vc.

For the upper bound, we have

vT
c B

(ν)
c vc ≤ max

t∈[ 1
1+ηc

, 1]

1

1 − pν(t)
vT

c Acvc,

where ηc satisfies the inequality

vT
c Bcvc ≤ (1 + ηc) vT

c Acvc.

For the particular polynomial pν = (1 − t)ν , we have

max
t∈[ 1

1+ηc
, 1]

1

1 − pν(t)
=

1

1 − (1 − 1
1+ηc

)ν
=

1 + ηc

1 + qc + q2
c + · · · + qν−1

c

, qc =
ηc

1 + ηc

.

Let us now use the XZ-identity for the V-cycle between levels sk0 and m ≤ (s+1)k0 with

inexact solve at the coarse level sk0 using the modified B
(ν)
c = B

(ν)
sk0

based on Bc = Bsk0 .
We have

vTBv = min
(vk=v

f
k
+Pk−1vk−1)

m
k=sk0+1

(
vT

sk0
B

(ν)
sk0

vsk0

+
m∑

j=sk0+1

(
vf

j +M−T
j AjPj−1vj−1

)T

M j

(
vf

j +M−T
j AjPj−1vj−1

))
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Using the estimate between B
(ν)
c and Ac in the latter identity, we end up

vTBv ≤ 1+ηc

1+qc+q2
c+···+qν−1

c
min

(vk=v
f
k
+Pk−1vk−1)

m
k=sk0+1

(
vT

sk0
Ask0vsk0

+
m∑

j=sk0+1

(
vf

j +M−T
j AjPj−1vj−1

)T

M j

(
vf

j +M−T
j AjPj−1vj−1

))

= 1+ηc

1+qc+q2
c+···+qν−1

c
vTB(sk0) 7→mv.

In the last line above we used the V –cycle MG operator that uses exact solve at its
coarsest level sk0. Thus, the inexact V –cycle one, B, is bounded by the exact V –cycle
operator multiplied by the factor 1+ηc

1+qc+q2
c+···+qν−1

c
resulting from the error ηc ≥ 0 that we

commit at level sk0.
Assume now that the V –cycle operators B(jk0) 7→(j+1)k0 of level length k0, i.e., between

any pair of levels jk0 and (j + 1)k0 and exact solve at their respective coarse level jk0

can be bounded in terms of A(j+1)k0 uniformly with respect to j by a constant κk0 . That
is this constant may depend on k0 but is independent of j. Hence

vTAv ≤ vTB(jk0) 7→(j+1)k0v ≤ κk0 vTAv, A = A((j+1)k0).

In what follows, we want to choose ν sufficiently large so that

1 + ηc

1 + qc + q2
c + · · · + qν−1

c

κk0 ≤ 1 + ηc.

It is clear that if ν > κk0 , we can find a qc ∈ (0, 1) such that the above inequality holds.
In the case of W -cycle, we are in the situation of k0 = 1 and κk0 = KTG = 1

1−ρTG
,

where ρTG is the convergence factor of any exact TG method. Thus the condition for
uniform W -cycle convergence factor is

1

1 − ̺TG

= KTG < 2.

That is, if at all levels the exact TG method has a convergence factor

̺TG <
1

2
,

then the W-cycle is also uniformly convergent with a factor

̺W−cycle = 1 − 1

KW−cycle

≤ 1 − 1

1 + ηc

=
ηc

1 + ηc

= qc.

The constant qc ∈ (0, 1) solves the equation KTG

1+qc
= 1, or qc = KTG − 1 = 1

1−̺TG
− 1 =

̺TG

1−̺TG
, i.e., we have

̺W−cycle ≤
̺TG

1 − ̺TG

< 1.

4. Using nonlinear approximate coarse-grid operators

In this section, we assume that the operators B−1
c are approximated by some non-

linear mappings Bc[·] that satisfy the deviation estimate

‖B−1
c vc −Bc[vc]‖Bc

≤ δc ‖vc‖B−1
c
.
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Using the nonlinear mapping Bc[.] in a (conjugate–gradient like) iterative procedure,

we can define an approximation B
(ν)
c [·] to A−1

c that is again a nonlinear mapping. By
increasing ν ≥ 1, the number of these iterations, we get better approximation that
satisfies the estimate

(2.38) ‖A−1
c vc −B(ν)

c [vc]‖Ac
≤ δ

ν

c ‖vc‖A−1
c
.

where

(2.39) δc =

√
1 − 1 − δ2

c

κc

.

Here, κc is the condition number of B−1
c Ac.

A non–linear TG operator with inexact coarse-grid solve is defined as follows

B[v] = M
−1

v + (I −M−TA)PB(ν)
c

[
P T (I − AM−1)v

]
.

We can also define the companion linear TG operator using B−1
c as inexact coarse–grid

solver,

B−1v = M
−1

v + (I −M−TA)PB−1
c P T (I − AM−1)v.

We have certain monotonicity property. More specifically, consider for any v the coarse
vector vc = P T (I − AM−1)v. Then

‖B[v] −B−1v‖B ≤ ‖Bc[vc] −B−1
c vc‖Bc

.

From the definitions of vc and B−1, we have

‖vc‖2
B−1

c
= ‖B− 1

2
c vc‖2

= vT (I −M−TA)PB−1
c P T (I − AM−1)v

≤ vT
(
M

−1
+ (I −M−TA)PB−1

c P T (I − AM−1)
)

v

= ‖v‖2
B−1 .

This inequality also shows that ‖B− 1
2

c P T (I −AM−1)B
1
2‖ ≤ 1. The desired result is seen

from the inequalities

‖B−1v −B[v]‖B = ‖B 1
2 (I −M−TA)P

(
B

(ν)
c [vc] −B−1

c vc

)
‖

≤ ‖B 1
2 (I −M−TA)PB

− 1
2

c ‖‖B(ν)
c [vc] −B−1

c vc‖Bc

= ‖B− 1
2

c P T (I − AM−1)B
1
2‖‖B(ν)

c [vc] −B−1
c vc‖Bc

≤ ‖B(ν)
c [vc] −B−1

c vc‖Bc
.

Now, let us consider the following nonlinear AMLI-type MG cycle. For a given integer
parameter k0 ≥ 1 and a fixed number if inner iterations ν ≥ 1 at every level k of
multiplicity k0, i.e., k = sk0 for some s ≥ 1, we run ν inner iterations that from a
nonlinear mapping Bk[.] that approximates the linear V –cycle mapping (its inverse) B−1

k

(with exact solve at level k − k0 = (s − 1)k0, we define an iterated one B
(ν)
k [.] that

approximates A−1
k with certain accuracy. Our goal is to estimate the quality of the

nonlinear mapping B(s+1)k0 [.] and its iterated version B
(nu)
(s+1)k0

[·] as an approximation to

A−1
(s+1)k0

.
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Using the monotonicity result, we get the inequalities

‖B−1
(s+1)k0

v −B(s+1)k0 [v]‖B(s+1)k0
≤ ‖B−1

sk0
vc −B

(ν)
sk0

[vc]‖Bsk0
,

for a vector vc such that
‖vc‖B−1

sk0

≤ ‖v‖B−1
(s+1)k0

.

Since at level sk0, B
−1
(s+1)k0

uses exact solve, i.e., we have Bsk0 = Ask0 , hence

‖B−1
(s+1)k0

v −B(s+1)k0 [v]‖B(s+1)k0
≤ ‖A−1

sk0
vc −B

(ν)
sk0

[vc]‖Ask0
.

Assume now by induction, that

‖A−1
sk0

vc −B
(ν)
sk0

[vc]‖Ask0
≤ δ ‖vc‖A−1

sk0

.

Due to the monotonicity, we have then for k ≤ (s+ 1)k0,

‖B−1
k v −Bk[v]‖Bk

≤ ‖A−1
sk0

vc −B
(ν)
sk0

[vc]‖Ask0
≤ δ ‖vc‖A−1

sk0

≤ δ ‖v‖B−1
k
.

Assume also that the k0th length V–cycle MG operator Bk has a relative condition
number with respect to Ak bounded by κk0 . Then applying the estimate for the iterated
nonlinear mapping, we obtain the estimate

‖A−1
k v −B

(ν)
k [v]‖Ak

≤ δ
ν‖v‖A−1

k
.

where

δ ≤
√

1 − 1 − δ

κk0

.

To complete the induction argument, we have to show that we can choose ν sufficiently
large for a fixed k0 such that the inequality

(√
1 − 1 − δ2

κk0

)ν

≤ δ,

has a solution δ ∈ (0, 1). Equivalently, letting t = δ
2
ν ∈ (0, 1), we need to solve the

inequality

1 − t ≤ 1 − tν

κk0

.

That is,
κk0 ≤ 1 + t+ · · · + tν−1.

This is solvable, if ν > κk0 (noting that κk0 ≥ 1) since then the function f(t) = κk0 −
(1 + t+ · · · + tν−1) changes sign in the interval [0, 1].

The following result similar to the (linear) W -cycle holds.

Corollary 4.1. If the two–grid method at all levels (with exact solve at its coarse
level) is uniformly convergent so that ̺TG < 1

2
, i.e., KTG = 1

1−̺TG
< 2, then the nonlinear

W–cycle (or nonlinear AMLI-cycle with ν = 2 preconditioned CG-based recursive calls
at all levels) is uniformly convergent with a factor

δ ≤ κTG − 1 =
̺TG

1 − ̺TG

< 1.
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5. Steepest descent algorithm with nonlinear preconditioner

A nonlinear coercive mapping. Let B be a s.p.d. mapping with relative condition
number κ with respect to a given s.p.d. matrix A, i.e., if we have

(2.40) γ1v
TAv ≤ vTBv ≤ γ2 vTAv for all v,

then we can choose κ = γ2

γ1
as an estimate of the condition number of B−1A.

We assume now, that by some algorithm we can approximate B−1 with a computable
nonlinear mapping B[.] such that the following estimate holds:

‖B−1v −B[v]‖B ≤ δ ‖v‖B−1 .

Here δ is a tolerance between zero and one. The above estimate is equivalent to

‖v‖2
B−1 − 2vTB[v] + ‖B[v]‖2

B ≤ δ2 ‖v‖2
B−1 .

This inequality implies the coercivity estimate

vTB[v] ≥ 1

2

(
(1 − δ2) ‖v‖2

B−1 + ‖B[v]‖2
B

)
≥

√
1 − δ2 ‖v‖B−1‖B[v]‖B.

Using then the relations (2.40) we arrive at the modified coercivity estimate

(2.41) vTB[v] ≥
√

1 − δ2

κ
‖v‖A−1‖B[v]‖A.

A nonlinearly preconditioned steepest descent algorithm. Now consider the
following iteration method that minimizes the A−1-norm of the residual rk+1 = rk −
αAB[rk] along the search direction dk = B[rk]. That is, starting with some iteration x0

for solving Ax = b, for k ≥ 0 we compute rk = b − Axk and form xk+1 = xk + αB[rk]
where α is chosen so that

‖rk+1‖A−1 = ‖rk − αAB[rk]‖A−1 7→ min .

This minimization problem gives the following formula

α =
rT

kB[rk]

‖B[rk]‖2
A

.

With this choice of α the following relation is seen

‖rk+1‖2
A−1 = ‖rk‖2

A−1 − (rT
kB[rk])

2

‖B[rk]‖2
A

.

Using the coercivity estimate (2.41) the following convergence rate estimate is immedi-
ately seen

‖rk+1‖2
A−1 ≤

(
1 − 1 − δ2

κ

)
‖rk‖2

A−1 .

This leads to the kind of estimates (2.38)–(2.39) that we used previously in Section 4.
Indeed, letting b = v and x0 = 0 defining B(ν)[v] = xν , we arrive at the estimate

‖A−1v −B(ν)[v]‖A ≤
(

1 − 1 − δ2

κ

) ν
2

‖v‖A−1
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A nonlinearly preconditioned CG algorithm. At the end we remark that in
practice we use the potentially more accurate than the above steepest descent algorithm,
namely, the conjugate gradient method with possibly nonlinear preconditioner B[.]. It
can be summarized as follows:

Algorithm 5.1 (Variable–step (Flexible) Preconditioned CG Algorithm). Given the
system Ax = b with a s.p.d. matrix A and let B[.] be a nonlinear mapping that approxi-
mates the inverse of a linear preconditioner B, also a s.p.d. matrix.

The algorithm below uses a sequence of integers {mk}k≥0, 0 ≤ mk ≤ mk−1 +1 ≤ k−1
for k ≥ 1 (m0 = m1 = 0). A typical choice is mk = 0.

For a given initial iterate x0, for k ≥ 0 the method computes rk = b−Axk, r̃k = B[rk]
and respective search vectors {dj}j≥0.

More specifically, the algorithm consists of the following steps:

(1) Letting x0 = 0, hence r0 = b, and r̃0 = B[r0]. We let d0 = r̃0. The first iterate
then equals

x1 =
dT

0 r̃0

dT
0Ad0

d0.

The corresponding residual is r1 = r0 − d
T
0 er0

dT
0 Ad0

Ad0.

(2) For k ≥ 1, compute r̃k = B[rk] and based on the most recent mk + 1 search
vectors {dj}k−1

j=k−1−mk
, the next search vector is computed as follows:

dk = r̃k −
k−1∑

j=k−1−mk

r̃T
kAdj

dT
j Adj

dj,

(3) The new iterate is

xk+1 = xk +
r̃T

k dk

dT
kAdk

dk,

and
(4) the corresponding residual is

rk+1 = b − Axk+1 = rk −
r̃T

k dk

dT
kAdk

Adk.

We remark that it can be shown that dT
k r̃k = rT

k r̃k and that the above algorithm
computes at every step k + 1 an iterate so that its residual is minimized in A−1-norm
along the most recent mk + 2 search directions {Adj}k

j=k−1−mk
. Since they span the

preconditioned residual Ar̃k, the method is at least as accurate as the preconditioned
steepest descent method that we described earlier.
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CHAPTER 9

Smoothing rates of iterative methods and the cascadic MG

This lecture introduces and studies an optimal Chebyshev-like polynomial. Then, the
so-called “cascadic” MG is introduced and analyzed based on properties of this polyno-
mial.

1. An optimal Chebyshev–like polynomial

Consider the Chebyshev polynomials Tk(t) defined by recursion as follows, T0 = 1,
T1(t) = t and for k ≥ 1, Tk+1(t) = 2tTk(t)− Tk−1(t). Letting t = cosα ∈ [−1, 1], we have
the explicit representation Tk(t) = cos kα, which is seen from the trigonometric identity
cos(k + 1)α+ cos(k − 1)α = 2 cosα cos kα.

We now prove some properties of Tk that will be needed in the analysis of two MG
methods later on.

Proposition 1.1. We have the expansion T2k+1(t) = c2k+1t + tQk(t
2), c2k+1 =

(−1)k(2k+ 1), for k ≥ 0, where Qk is a polynomial of degree k such that Q(0) = 0. Sim-
ilarly, T2k(t) = (−1)k +Pk(t

2), where Pk is a polynomial of degree k such that Pk(0) = 0.

Proof. We have T1 = t, T2 = 2tT1−T0 = 2t2−1, and T3 = 2tT2−T1 = 2t(2t2−1)−
t = 4t3 − 3t. That is, assume by induction that for k ≥ 1, T2k−1(t) = c2k−1t + tQk−1(t

2)
and T2k(t) = (−1)k +Pk(t

2) for some polynomials Qk−1 and Pk of respective degrees k−1
and k, and such that Qk−1(0) = 0 and Pk(0) = 0. Then, from T2k+1 = 2tT2k − T2k−1, we
get

T2k+1 = 2t((−1)k + Pk(t
2)) − (−1)k−1(2k − 1)t− tQk−1(t

2)
= (−1)k(2k + 1)t+ t (2Pk(t

2) −Qk−1(t
2)) .

That is, the induction assumption for T2k+1 is confirmed with Qk(t) = 2Pk −Qk−1, and
hence, Qk(0) = 0. Similarly, for T2k+2, we have

T2k+2 = −T2k + 2tT2k+1

= −(−1)k − Pk(t
2) + 2t

(
(−1)k(2k + 1)t+ tQk(t

2)
)

= (−1)k+1 +
(
2(−1)k(2k + 1)t2 + 2t2Qk(t

2) − Pk(t
2)
)
.

The latter confirms the induction assumption for T2k+2 with Pk+1(t
2) = 2(−1)k(2k +

1)t2 + 2t2Qk(t
2) − Pk(t

2) and hence Pk+1(0) = 0. �

Proposition 1.2. The following estimate holds for any t ∈ [0, 1],

|T2k+1(t)| ≤ (2k + 1)t.

Proof. Note that for t = cosα ∈ [−1, 1], |Tk(t)| = | cos kα| ≤ 1. Therefore, assum-
ing by induction that |T2k−1(t)| ≤ (2k − 1)t for t ∈ [0, 1], we have

|T2k+1(t)| = |2tT2k(t) − T2k−1(t)| ≤ 2t+ (2k − 1)t = (2k + 1)t,

77
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which confirms the induction assumption.
�

Proposition 1.3. For a given b > 0, consider for t ∈ [0, b] the function

(2.42) ϕν(t) = (−1)ν 1

2ν + 1

√
b√
t
T2ν+1

(√
t√
b

)
.

We have that ϕν(t) is a polynomial of degree ν such that ϕν(0) = 1, that is, ϕν(t) =
1 − tqν−1(t) for some polynomial qν−1(t) of degree ν − 1.

Proof. For ν = 0, ϕν = 1. Consider the case ν ≥ 1. Due to Proposition 1.1, we

have with λ =
√

t
b
∈ [0, 1], that ϕν(t) = 1

c2ν+1

1
λ
λ (c2ν+1 +Qν(λ

2)) = 1−λ2qν−1(λ
2), since

Qν(0) = 0 hence 1
c2ν+1

Qν(λ
2) = −λ2qν−1(λ

2) for some polynomial qν−1(λ) of degree ν−1.

That is, we showed that ϕν(t) as defined in (2.42) is a polynomial of degree ν such that
ϕν(0) = 1.

�

Proposition 1.4. The polynomial ϕν defined in (2.42) has the following optimality
property:

(2.43) min
pν : pν(0)=1

max
t∈[0, b]

|
√
t pν(t)| = max

t∈[0, b]
|
√
t ϕν(t)| =

√
b

2ν + 1
.

We have ϕν(0) = 1 and also

(2.44) max
t∈[0, b]

|ϕν(t)| = 1.

Proof. The first fact follows from the optimality property of the Chebyshev poly-

nomials, since letting λ =
√

t
b
∈ [0, 1]

√
tϕν(t) equals T2ν+1(λ) times a constant.

The fact that |ϕν(t)| ≤ 1 follows from Proposition 1.2.
�

Here are some particular cases of the polynomials ϕν .

Using the definition of the Chebyshev polynomials, T0 = 1, T1 = t, Tk+1 = 2tTk − Tk−1,
for k ≥ 1, we get T2 = 2t2 − 1 and hence

T3(t) = 4t3 − 3t.

Thus,

ϕ1(t) = −1

3

√
b(4

t

b
3
2

− 3√
b
) = 1 − 4

3

t

b
.

This in particular shows that

sup
t∈(0, b]

|1 − ϕ1(t)|√
t

=
4

3

1√
b
.

The next polynomial is based on T5 = 2tT4 − T3 = 2t(2tT3 − T2) − T3 = (4t2 − 1)(4t3 −
3t) − 4t3 + 2t = 16t5 − 20t3 + 5t. Therefore,

ϕ2(t) =
1

5

√
b

t

(
16
√
tt2

1

b
5
2

− 20
√
tt

1

b
3
2

+ 5
√
t

1√
b

)
.
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This shows,

ϕ2(t) =
16

5

t2

b2
− 4

t

b
+ 1.

We also have,

sup
t∈(0, b]

1 − ϕ2(t)√
t

=
4√
b

sup
x∈(0,1]

(x− 4

5
x3) =

4

3

√
5

3

1√
b
.

In general, it is clear that the following result holds.

Proposition 1.5. There is a constant Cν independent of b such that the following
estimate holds,

(2.45) sup
t∈(0, b]

|1 − ϕν(t)|√
t

≤ Cν

1

b
1
2

.

Proof. We have, 1 − ϕν(t) = tqν−1(t), that is, 1−ϕν√
t

=
√
t qν−1(t) and therefore the

quotient in question is bounded for t ∈ (0, b]. More specifically, the following dependence
on b is seen:

sup
t∈(0, b]

|1 − ϕν(t)|√
t

=
1

b
1
2

sup
λ∈(0, 1]

∣∣∣1 − (−1)ν

2ν+1
T2ν+1(

√
λ)√

λ

∣∣∣
√
λ

.

Clearly, the constant Cν = sup
λ∈(0, 1]

˛

˛

˛

˛

1− (−1)ν

2ν+1

T2ν+1(
√

λ)
√

λ

˛

˛

˛

˛

√
λ

is independent of b.

�

1.1. Application to smoothing rate estimates of the preconditioned CG
method. Consider Ax = b where A is a s.p.d. matrix. Let also Λ be a s.p.d. precon-
ditioner to A. The kth iterate xk, k ≥ 1, of the preconditioned conjugate gradient (or
PCG) method is characterized as certain best polynomial approximation to x = A−1b.

Introducing A = Λ− 1
2AΛ− 1

2 and x = Λ
1
2x and b = Λ− 1

2b, the standard convergence
estimate of the CG method reads,

‖x − xk‖A = ‖x − xk‖A = min
pk: pk(0)=1

‖pk(A)(x− xk)‖A = min
pk: pk(0)=1

‖pk(A)Λ
1
2 (x − x0)‖A.

In other words, we have

‖x − xk‖A = min
pk: pk(0)=1

‖A
1
2pk(A)Λ

1
2 (x − x0)‖.

Since the eigenvalues of the s,p.d. matrix A vary in the interval (0, ‖A‖), we can use the
polynomial in (2.42) with b = ‖A‖. This will give us the following estimate for the PCG
method

‖x − xk‖A = min
pk: pk(0)=1

‖A
1
2pk(A)Λ

1
2 (x − x0)‖ ≤ max

t∈(0, ‖A‖]
|
√
tϕk(t)| ‖x − x0‖Λ.

That is, we have the following, sometimes referred to as “smoothing rate” estimate of
the PCG method:

(2.46) ‖x − xk‖A ≤ ‖A‖ 1
2

2k + 1
‖x − x0‖Λ.
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1.2. Smoothing rate estimates for stationary iterative methods. Estimates
similar to the PCG smoothing rate estimate (2.46) can be derived for stationary iterative
methods. Let M be a matrix that provides A-convergent iterations for Ax = b. Equiva-

lently, let M +MT −A be s.p.d. Define L = M
(
M +MT − A

)− 1
2 and let A = L

−1
AL

−T

and b = L
−1

b. Consider the iteration process

(L
T
xk) = (L

T
xk−1) + (b − A(L

T
xk−1).

Its computationally feasible equivalent version reads

xk = xk−1 + L
−T
L
−1

(b − Axk−1) = xk−1 +M
−1

(b − Axk−1) .

Another, more familiar form of the above iteration reads

xk− 1
2

= xk−1 +M−1(b − Axk)

xk = xk− 1
2

+M−T (b − Axk− 1
2
).

Introducing E = I − A, since its eigenvalues are between zero and one, we have the
following convergence estimate,

‖x − xk‖A = ‖LT
(x − xk)‖A

= ‖Ek
L

T
(x − x0)‖A

= ‖A
1
2 (I − A)k L

T
(x − x0)‖

≤ max
t∈[0, 1]

√
t(1 − t)k ‖LT

(x − x0)‖

= 1√
2k+1

(
1 − 1

2k+1

)k ‖x − x0‖M .

2. Cascadic Multigrid

We first describe the following two-grid algorithm.

Algorithm 2.1 (Two-grid cascadic algorithm). Consider Ax = b. Let P : R
nc 7→

R
n be the interpolation matrix, Ac = P TAP the coarse matrix and Λ an s.p.d. precon-

ditioner to A (such as symmetric Gauss–Seidel, M or the Jacobi one F ). The two-grid
cascadic algorithm computes an approximation xCTG to the exact solution x = A−1b in
the following steps:

(i) Solve the coarse-grid problem Acxc = P Tb.
(ii) Interpolate and compute the residual r = b − APxc = (I − πA)Tb, where πA =

PA−1
c P TA is the coarse-grid projection.

(iii) Apply m ≥ 1 iterations by the preconditioned using conjugate gradient method
(PCG) based on Λ to Av = r with initial iterate v0 = 0. Let vm be the resulting
mth iterate.

(iv) Compute the cascadic TG approximation xCTG = vm + Pxc.

Using the smoothing property (2.46) of the PCG method, we have the following
estimate

‖v − vm‖A ≤ ‖A‖ 1
2

2m+ 1
‖v‖Λ
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where v : Av = r = (I−πA)Tb, that is v = A−1(I−πA)Tb = (I−πA)A−1b = (I−πA)x.
Therefore, the following estimate holds

‖v − vm‖A ≤ ‖A‖ 1
2

2m+ 1
‖Λ‖ 1

2 ‖(I − πA)x‖.

Assume now property (B), i.e., the ℓ2–boundedness of the projection πA

‖A‖‖(I − πA)v‖2 ≤ ηb ‖v‖2
A.

The latter holds if the “strong approximation property” ‖v− Pvc‖2
A ≤ ηa

‖A‖ ‖Av‖2 holds

which is the case for finite element matrices coming from boundary value problems for
Laplace operator posed on convex polygonal domain.

Under the assumption of ℓ2–boundedness of the projection πA, we arrive at the esti-
mate

‖v − vm‖A ≤ ‖A‖
2m+ 1

(‖Λ‖ηb

‖A‖

) 1
2

‖(I − πA)x‖A.

The final estimate reads,

‖x − xCTG‖A = ‖(x − Pxc) − vm‖A

= ‖v − vm‖A

≤
√

ηb

2m+1
‖(I − πA)x‖A.

where

ηb = ηb ‖Λ− 1
2AΛ− 1

2‖ ‖Λ‖
‖A‖ .

The multilevel version of the method takes the following form.

Algorithm 2.2 (Multilevel Cascadic MG). Let P k : R
nk 7→ R

nℓ be the composite

interpolants, i.e., P k = Pℓ . . . Pk. The coarse matrices are Ak = P
T

kAP k = P T
k Ak+1Pk

and A = Aℓ is the fine-grid matrix, whereas A0 is the coarse matrix at the initial level
k = 0. Let Λk be s.p.d. preconditioner for Ak such as symmetric Gauss–Seidel, or Jacobi
matrix coming from Ak. The multilevel cascadic MG algorithm computes xCMG as an
approximation to the exact solution of Ax = b for a given r.h.s. b in the following steps:

(i) Let rℓ = b and for k = ℓ, . . . 1 compute bk−1 = P T
k−1bk.

(ii) Solve A0x0 = b0,

(iii) For k = 1, . . . , ℓ with initial iterate x
(0)
k = Pk−1xk−1 perform m = mk PCG

iterations for computing an approximate solution to the kth level coarse system

Akx̂k = bk. Then let xk = x
(m)
k .

(iv) The cascadic multigrid (CMG) approximation is xCMG = xℓ.

In what follows we need to estimate the difference Pk−1x̂k−1 − x̂k. Since Ak−1x̂k−1 =
bk−1 = P T

k−1bk = P T
k−1Akx̂k, we obtain

Pk−1x̂k−1 − x̂k = (Pk−1A
−1
k−1P

T
k−1Ak − I)x̂k = −(I − πk

k−1)x̂k.

Above, πk
k−1 is the two-level Ak–based projection. We assume the uniform in k, ℓ2-

boundedness of πk
k−1 (cf. Assumption (B))

‖Ak‖‖(I − πk
k−1)v‖2 ≤ ηb ‖v‖2

Ak
.
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Using the above estimate for v = (I − πk
k−1)x̂k, we obtain the desired auxiliary estimate

(2.47) ‖Pk−1x̂k−1 − x̂k‖ ≤
√
ηb

‖Ak‖
1
2

‖Pk−1x̂k−1 − x̂k‖Ak
.

Using the best polynomial approximation property of the PCG method and the special
polynomial pm(t) = ϕm(t) for the interval (0, ‖Ak‖], assuming the uniform in k ≥ 0
bound

ηb ‖Ak‖
‖Λk‖
‖Ak‖

≤ ηb,

the following estimate for the CMG approximation is obtained (based also on (2.47)),

(2.48)

‖x(m)
k − x̂k‖Ak

= min
pm: pm(0)=1

‖pm(Ak)Λ
1
2
k (Pk−1xk−1 − x̂k)‖Ak

≤
√

ηb

2m+1
‖Pk−1x̂k−1 − x̂k‖Ak

+ ‖Λ
1
2
k (Pk−1x̂k−1 − Pk−1xk−1)‖Ak

=

√
ηb

2m+1
‖P k(Pk−1x̂k−1 − x̂k)‖A + ‖Pk−1(x̂k−1 − xk−1)‖Ak

=

√
ηb

2m+1
‖P k(Pk−1x̂k−1 − x̂k)‖A + ‖xk−1 − x̂k−1‖Ak−1

=

√
ηb

2m+1
‖P k−1x̂k−1 − P kx̂k‖A + ‖x̂k−1 − xk−1‖Ak−1

.

Introduce the projections πk = P kA
−1
k P

T

kA. Then

πkx = πkA
−1b = P kA

−1
k P

T

k b = P kA
−1
k bk = P kx̂k.

Therefore the preceding estimate (2.48) reads

‖xk − x̂k‖Ak
= ‖x(m)

k − x̂k‖Ak
≤

√
ηb

2m+ 1
‖(πk − πk−1)x‖A + ‖xk−1 − x̂k−1‖Ak−1

.

Now, using recursion with m = mk and the fact that x0 = x̂0, we end up with the
estimate

‖x − xCMG‖A ≤ √
ηb

ℓ∑
k=1

1
2mk+1

‖(πk − πk−1)x‖A

≤ √
ηb

(
ℓ∑

k=1

1
(2mk+1)2

) 1
2
(∑

k

‖(πk − πk−1)x‖2
A

) 1
2

.

As a corollary, if we usemk smoothing PCG iterations at level k that satisfy the geometric
rule

2mk + 1 = µℓ−k (2m+ 1),

for a given m ≥ 1 and a µ ≥ 2, we end up with the following final estimate

‖x − xCMG‖A ≤ µ√
µ2 − 1

√
ηb

2m+ 1

(
ℓ∑

k=1

‖(πk − πk−1)x‖2
A

) 1
2

=
µ√
µ2 − 1

√
ηb

2m+ 1
‖x‖A.
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If we run stationary iterations to define xk = x
(m)
k the starting estimate reads

‖x(m)
k − x̂k‖Ak

= ‖Em

k Λ
1
2
k (Pk−1xk−1 − x̂k)‖Ak

≤ ‖Em

k Λ
1
2
k (Pk−1x̂k−1 − x̂k)‖Ak

+‖Em

k Λ
1
2
k (Pk−1x̂k−1 − Pk−1xk−1)‖Ak

≤ ‖Em

k Λ
1
2
k (Pk−1x̂k−1 − x̂k)‖Ak

+‖Λ
1
2
k (Pk−1x̂k−1 − Pk−1xk−1)‖Ak

≤ 1√
2m+1

‖Λ
1
2
k (Pk−1x̂k−1 − x̂k)‖

+‖x̂k−1 − xk−1‖Ak−1

≤
√

ηb√
2m+1

‖(πk − πk−1)x‖A + ‖xk−1 − x̂k−1‖Ak−1
.

The final estimate translates to

‖x − xCMG‖A ≤
√
ηbµ/(µ− 1)√

2m+ 1

(
ℓ∑

k=1

‖(πk − πk−1)x‖2
A

) 1
2

=

√
ηbµ/(µ− 1)√

2m+ 1
‖x‖A.

Here we have assumed that the smoothing iterations mk vary according to the rule

2mk + 1 = µℓ−k(2m+ 1).

Complexity of CMG. Assuming that nk ≃ 2dnk−1 (d = 2 or 3) and mk ≃ µℓ−k m,
the complexity of the CMG is readily estimated to be of order

∑

k

nkmk ≃ nℓm
∑

k

( µ
2d

)ℓ−k

≃ O(nℓ)

if 2 ≤ µ < 2d, which we can always satisfy if d ≥ 2.
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Algebraic MG: main principles and
algorithms for finite element problems
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CHAPTER 10

Algebraic MG: coarse degrees of freedom and interpolation
matrices

This lecture introduces the main principles of algebraic multigrid method (or AMG).
In particular, we provide arguments for construction of interpolation matrices, both the
selection of their domain of definition (or the selection of coarse-grid dofs) and the com-
putation of the actual interpolation weights (or entries of P ). We describe a classical
choice of the coarse-dofs as subset of fine-grid dofs, the notion of compatible relaxation
and the energy boundedness of the of a hierarchical coarse-grid projection and their role
of proving weak approximation property and hence TG convergence. We also describe
a spectral way of selecting coarse dofs and present two important examples, one coming
from finite element discretization and another one handling fairly general matrices uti-
lizing a least–squares approach and leading to a “strong approximation property” hence
providing TG convergence that improves with increasing the number of smoothing steps.

1. Algebraic MG (or AMG) as an “inverse problem”

Consider a linear system of equations Ax = b with a sparse s.p.d. matrix which, we
may not have knowledge about its origin. Since the MG methods have proven optimal
convergence properties, we may want to utilize the MG principle to design preconditioners
for A. For example, to design a two–grid preconditioner (and then continue by recursion),
we need to construct an interpolation matrix P . This involves, in particular, the selection
of the domain of definition of P , which is referred to as “coarse degrees of freedom” (or
coarse dofs). Then, we need to build the actual mapping P . In matrix notation, this
means that we need to select the number of columns of P , the sparsity pattern of P ,
i.e., the number of nonzero entries of for each row of P , their positions and finally the
actual entries of P . Using geometric MG language, we need to choose for each fine-grid
dof (row of P ) a coarse-grid neighborhood (i.e., the column indices of P corresponding
to the non-zero entries in that fine-grid row) and the actual interpolation weights (the
non-zero entries of P at the corresponding positions).

Once, a P has been constructed, the coarse–grid matrix Ac is typically defined vari-
ationally, i.e., Ac = P TAP . Since, we want to apply the same construction recursively,
we want Ac to have similar properties as A (however being with smaller size). At the
minimum, we want that Ac be sparse. This imposes the requirement on P to be sparse
as well. That is, each fine–grid dof should interpolate from a bounded number of coarse
dofs.

We know, that a two-grid (and MG for that matter) to be successful, a balance
between the smoother M and the coarse-space Range (P ) must be established, in the
sense, that the coarse space should ensure a “weak approximation property”:
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For each fine-grid vector v there is a coarse–grid interpolant Pvc such that

(3.1) ‖v − Pvc‖fM ≤ ηw ‖v‖A,

for a constant ηw independent of v. Here, M̃ = MT (M+MT −A)−1M is the symmetrized
smoother corresponding to an A-convergent iteration matrix MT .

Traditionally, to define a TG method, i.e., to construct a P , the smoother M is
pre–selected to provide a convergent iterative method (in A-norm), in the simplest cases
like weighted Jacobi, Gauss–Seidel, incomplete factorization matrices (in the M–matrix
case), overlapping Schwarz methods (block Gauss–Seidel with small overlapping blocks),
etc.

Then, given M (and A), P is constructed so that the target is to ensure the weak
approximation estimate (3.1). It is clear that this procedure is an “inverse problem” and
as any inverse problem it is “ill–posed”. The latter means that there is not a unique
solution to this task. Part of the problem is that many coarse spaces (or equivalently,
many interpolation matrices) can lead to equally good (or bad) TG methods. The least
rigorous part in the construction of P is the choice of the coarse degrees of freedom. At
any rate, all resulting procedures that lead to a P to be used in a two-grid iteration process
are commonly refereed to as “algebraic” two–grid or algebraic MG, and abbreviated as
AMG. Originally, the AMG concept was proposed by Achi Brandt, Steve McCormick
and John Ruge in 1982.

Choosing coarse dofs to be subset of fine-grid dofs. A typical case (as originally
proposed) is to have a mapping represented by a rectangular nc × n matrix R which
represents the embedding Nc = RN ⊂ N . Under proper ordering (the coarse dofs
ordered last) the matrix R admits the following block form

R = [0, I] .

Then a natural assumption is to have the interpolation matrix P being identity at the
coarse dofs, i.e.,

P =

[
W
I

]
} Nf ≡ N \ Nc

} Nc
·

It is clear then that RP = I and hence the mapping Q = PR being a projection. Indeed
Q2 = P (RP )R = PR = Q.

Weak approximation property and compatible relaxation. We recall that if

D is an s.p.d. matrix, spectrally equivalent to the symmetrized smoother M̃ , then a
necessary condition for the TG convergence is the weak approximation property

‖(I − πD)v‖D ≤ ηw ‖v‖A.

Note that the projection Q = PR can be seen as an analog of the “best” one, πD = PR∗,
where R∗ = (P TDP )−1P TD. We note, that R∗ is not sparse in general. A “good” choice
of the coarse dofs would correspond to a fast decay of the inverse of P TDP , so that
it can be approximated by a sparse matrix, hence the choice PR for proving a weak
approximation property of the form

(3.2) ‖(I − PR)v‖D ≤ ηw ‖v‖A,
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would be justified (in the simplest cased when D is diagonal). We note that this is only
a sufficient condition for TG convergence, since it implies ‖(I − πD)v‖D = min

wc

‖v −
Pwc‖D ≤ ‖v − PRv‖D ≤ ηw ‖v‖A.

Assume (3.2) for a s.p.d. D that is spectrally equivalent to M̃ , i.e.,

(3.3) c1v
TDv ≤ vTM̃v ≤ c2 vTDv.

First, we show that D and A are spectrally equivalent, when restricted to the set Nf =
N \ Nc, the hierarchical complement of the set of coarse dofs Nc. This is trivially seen

by choosing v =

[
vf

0

]
. We have then PRv = 0, and hence (3.2) takes the form

(3.4) vT
f Dffvf ≤ η2

wvT
f Affvf .

where Dff comes from the block partitioning of D =

[
Dff Dfc

Dcf Dcc

]
} Nf

} Nc
– the same

as for A. Using finally the fact that M̃ comes from an A–convergent smoother MT for

A, we have vTAv ≤ vTM̃v, which together with (3.3) implies

(3.5) vTAv ≤ c2v
TDv.

Using (3.5) for v =

[
vf

0

]
gives the desired upper bound

(3.6) vT
f Affvf ≤ c2v

T
f Dffvf .

That is, both (3.4) and (3.6) represent the fact that D−1
ff Aff is well–conditioned, and is

sometimes referred to as “compatible relaxation” (or CR), a concept introduced by Achi
Brandt in 2000.

Energy boundedness of the projection PR. The weak approximation property

(3.2) and the fact that D is spectrally equivalent to M̃ imply that I −PR is bounded in
energy.

To show this result we note first, that since M̃ comes from an A-convergent smoother

MT which together with the spectral equivalence of D and M̃ show estimate (3.5). Using
the latter estimate combined with the weak approximation property (3.2) gives

‖(I − PR)v‖A ≤ ‖(I − PR)v‖
fM
≤ √

c2 ‖(I − PR)v‖D ≤ √
c2 ηw‖v‖A.

That is, the desired result follows (using also Kato’s lemma)

(3.7) ‖PR‖A = ‖I − PR‖A ≤ √
c2 ηw.

Energy boundedness of PR and CR imply TG convergence. We show next
that the energy boundedness of PR and good CR bound κff defined below (see also
(3.6))

(3.8) c2 ≥ λmax(D
−1
ff Aff ) ≥ λmin (D−1

ff Aff ) ≥ κff ,

imply weak approximation property of the form (3.2) with

ηw ≤ 1
√
κff

‖PR‖A,
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and hence a TG convergence holds with ̺TG = 1 − 1
KTG

where

(3.9) KTG ≤ c2 η
2
w ≤ c2λ

−1
min(D

−1
ff Aff ) ‖PR‖2

A ≤ c2
κff

‖PR‖2
A.

Since (I−PR)v =

[
vf

0

]
first using the spectral equivalence between Dff and Aff , and

then the norm bound of I − PR (which is the same as for PR), we have

‖(I − PR)v‖D ≤ λ
1
2
max(DffA

−1
ff ) ‖(I − PR)v‖A ≤ λ

− 1
2

min(D
−1
ff Aff ) ‖PR‖A ‖v‖A.

That is letting ηw = λ
− 1

2
min(D

−1
ff Aff ) ‖PR‖A ≤ ‖PR‖A√

κff
the desired estimate (3.2) holds.

2. Heuristic algorithms for coarse-grid selection

Assume that an initial set of coarse dofs Nc has been selected. To test if the respective
lower CR bound κff is acceptable, we run the “source” iteration: For any if ∈ Nf ≡
N \ Nc, perform PCG iteration to solve the problem

Affxf = eif ,

where the vector eif has a single non–zero entry at position if ∈ Nf . For a preconditioner
we use Dff coming from a matrix D that has sparse inverse. Since the iterates have the
form p(D−1

ff Aff )eif for a polynomial p, it is clear that they will have non-zero entries

only in a neighborhood around the fine-dof if . It is clear also that if D−1
ff Aff is well-

conditioned then these iterates will have fast decay away from position if . If this is not
the case, the dof if is a candidate to be added to the set of coarse dofs Nc. Among all
such candidates we select a subset (according to some criterion) and augment Nc with
it, and then repeat the process until we are satisfied with the resulting decay.

Research tasks. Design a criterion for measuring decay rates and a criterion for
selecting coarse dofs from a candidate set. Use so–called maximal independent set algo-
rithms.

3. Algorithms for computing P

We proved that a sufficient condition for TG convergence is to have PR bounded in
energy. Assuming that we have selected the coarse dofs set Nc and the sparsity pattern
of the columns of P , i.e., the fine-dof neighbors that a given coarse dof interpolates to,
we need to compute the actual entries corresponding to the selected sparsity pattern.
In other words if P =

[
ψ1, ψ2, . . . , ψnc

]
, and the columns ψic

of P have prescribed

support sets Ωic of fine–grid dofs. Let Iic =




0
I
0


 } Ωic be extension of vectors vic

defined on Ωic by zero outside Ωic to vectors vic defined on N .
From the weak approximation property (with D = ‖A‖ I)

‖A‖ 1
2 ‖(I − PR)v‖ ≤ ηw ‖v‖A,

it is clear that if v is a near-null vector of A, i.e., ‖v‖A ≈ 0, then PRv ≈ v. Thus, a
heuristic approach to construct P is to have PR1 = 1 for any near–null vector 1 of A.
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Such vectors are sometimes referred to as “algebraically smooth vectors”. Since we also
want PR be bounded in energy, a sufficient condition for this is to minimize the following
quadratic functional ∑

ic

ψT
ic
Aψic

7→ min,

subject to
∑
ic

ψic
= 1. Note that the above quadratic expression is the trace of the matrix

P TAP , and its square root defines a matrix norm that we use as a more computationally
feasible approximation to the desired A–norm of PR.

Since ψic
= IΩic

ψic
, the above constrained minimization problem can be rewritten as

follows. Introduce the local matrices AΩic
= IT

Ωic
AIΩic

. Then

∑

ic

ψT
ic
Aψic

=
∑

ic

ψ
T

ic
AΩic

ψic
7→ min .

Forming the Lagrangian

L((ψ
ic
), λ) =

1

2

∑

ic

ψ
T

ic
AΩic

ψic
− λT

(
1 −

∑

ic

IΩic
ψic

)
7→ min,

and minimizing it leads to the following saddle–point system

AΩic
ψic

+ IT
Ωic
λ = 0, for ic = 1, . . . , nc,∑

ic

IΩic
ψic

= 1.

To solve the above saddle–point problem we introduce the local matrices Tic = IΩic
A−1

Ωic
IT
Ωic

and let T =
∑
ic

Tic . We have then

ψic
= −A−1

Ωic
IT
Ωic
λ,

which used in the second equation above gives

1 = −
∑

ic

IΩic
A−1

Ωic
IT
Ωic
λ = −Tλ.

Hence λ = −T−11 and therefore

ψic
= IΩic

ψic
= TicT

−11.

It is clear that
∑
ic

ψic
= 1.

We note that to compute the vector T−11 in practice, we can use the PCG method
with preconditioner the diagonal matrix Λ =

∑
ic

IΩic
ΛicI

T
Ωic

coming from the diagonals Λic

of Tic . The local matrices A−1
Ωic

are explicitly computed, hence Tic are explicitly available.
Finally, we comment on the choice of the vector 1. As mentioned above, it corresponds

to an approximation to the minimal eigenvector of D−1A, or more generally to a vector

1 corresponding to λmin(M̃
−1A). For matrices coming from finite element discretization
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of elliptic PDEs (like Laplacian), a common choice is the constant vector 1 =




1
...
1


, or

a vector obtained by applying m ≥ 1 times the iteration matrix (I − M̃−1A) to it, i.e.,

(I − M̃−1A)m1. Since A1 is zero except near the boundary of the domain, the smoothed
version of 1 differs from it, only within a strip near the domain boundary (assuming

diagonal or sparse M̃−1).
For more general applications, the vector 1 is more difficult to compute and in general

we may need more than one vector to design a successful AMG method.

4. Spectral choice of coarse dofs

In some applications, the s.p.d. matrix A defines a quadratic form vTAv which can
be assembled from local quadratic forms vT

τ Aτvτ . More specifically, let {τ}τ∈T be an
overlapping partition of relatively small sets τ that cover the set N of fine-grid dofs. The
matrices Aτ act on vectors vτ defined on the local sets τ . Introduce the extension matrices
Iτ . Then any fine–grid vector v restricted to τ can be represented as vτ = v|τ = IT

τ v.
We assume

vTAv =
∑

τ

(IT
τ v)TAτI

T
τ v =

∑

τ

vT
τ Aτvτ .

We also assume that the local matrices Aτ are symmetric positive semi–definite.
Solve now the local eigenvalue problems

Aτqk = λk qk, k = 1, . . . , nτ .

Note that the eigenvalues λk are non-negative.
For a given tolerance θ ∈ (0, 1), we choose nc

τ ≤ nτ such that for k > nc
τ , we have

λk > θ λmax = λnτ
. We define then the local interpolation matrices Pτ =

[
q1, . . . , qnc

τ

]
.

To define a global interpolation matrix, we need some diagonal matrices Wτ to be used
as weights in what follows. The diagonal matrices Wτ have non-negative entries and are
such that ∑

τ

IτWτI
T
τ = I.

The latter property is called “partition of unity” property.
To define the global interpolation matrix, we first introduce the sets τc consisting of

the indices 1, . . . , nτc
, corresponding to the eigenvalues λk for k ≤ nc

τ . The set Nc, is the
union of all τc with their entries renumbered with global indices from one to nc =

∑
τ

nc
τ .

Let Iτc
be the mapping that implements the local-to-global numbering of the coarse dofs

in each τc.
The global interpolation matrix P takes then the form:

P =
∑

τ

IτWτPτI
T
τc
.
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Since each coarse vector vc has block components vc
τc

, where vc
τc

= IT
τc
vc, the actions of

P are computed as follows

Pvc =
∑

τ

IτWτPτv
c
τc
.

If the tolerance θ is properly chosen, we can ensure the following local estimates: for
any given v and its restriction to τ , vτ , there is a coarse vector vc

τc
such that

(3.10) ‖Aτ‖‖vτ − Pτ vc
τc
‖2 ≤ δ vT

τ Aτ vτ .

We assume that ‖Aτ‖ are uniformly bounded from below by η‖A‖ for a constant η, i.e.,

(3.11) ‖Aτ‖ ≥ η ‖A‖.
We remark that ‖Aτ‖ ≤ ‖A‖. The latter is seen from the inequality vT

τ Aτvτ ≤ vTAv ≤
‖A‖‖v‖2. Choosing v = 0 outside the set τ which gives vT

τ Aτvτ ≤ ‖A‖‖vτ‖2, that is
‖Aτ‖ ≤ ‖A‖.

We have the following main result.

Theorem 4.1. The local estimates (3.10)–(3.11) imply the following global weak ap-
proximation property

‖A‖‖v − Pvc‖2 ≤ δ

η
‖v‖2

A.

Proof. Given v and its restrictions vτ to the sets τ . Let vc = (vc
τc

) be the local
coarse components for which the estimates (3.10) hold.

We have the identity v =
∑
τ

IτWτvτ and Pvc =
∑
τ

IτWτv
c
τc

. Hence v − Pvc =
∑
τ

IτWτ (vτ − Pτv
c
τc

). Therefore

‖v − Pvc‖2 = (v − Pvc)
T

(∑
τ

IτWτ (vτ − Pτv
c
τc

)

)

=
∑
τ

(
W

1
2

τ IT
τ (v − Pvc)

)T

W
1
2

τ

(
vτ − Pτv

c
τc

)
)

≤
(∑

τ

(v − Pvc)
T IτWτI

T
τ (v − Pvc)

) 1
2

×
(∑

τ

(vτ − Pτv
c
τc

)TWτ (vτ − Pτv
c
τc

)

) 1
2

= ‖v − Pvc‖
(∑

τ

(vτ − Pτv
c
τc

)TWτ (vτ − Pτv
c
τc

)

) 1
2

≤ ‖v − Pvc‖
(∑

τ

(vτ − Pτv
c
τc

)T (vτ − Pτv
c
τc

)

) 1
2

= ‖v − Pvc‖
(∑

τ

‖vτ − Pτv
c
τc

)‖2

) 1
2

.

Therefore

(3.12) ‖v − Pvc‖2 ≤
∑

τ

‖vτ − Pτv
c
τc

)‖2.
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This shows that
‖v − Pvc‖2 ≤∑

τ

‖vτ − Pτv
c
τc

)‖2

≤∑
τ

δ
‖Aτ‖v

T
τ Aτvτ

≤ δ
η‖A‖

∑
τ

vT
τ Aτvτ

= δ
η‖A‖ vTAv,

which is the desired result. �

5. Examples

Finite element matrices. A natural example of matrices A assembled from local
positive semi-definite matrices Aτ comes from finite element discretization of elliptic
PDEs (such as Laplace equation). The sets τ , when we apply the method recursively, can
be agglomerates T of fine–grid (one level finer) elements τ (connected unions of fine–grid
elements). The agglomerates T are viewed as sets in terms of one level higher fine–grid
dofs. The sets, where the local eigenproblems are defined are unions of agglomerates,
denoted by Ω. We remark that each agglomerate T in general belongs to a number of
such local subdomains Ω. The local matrices AΩ are assembled from the fine–grid element
matrices Aτ for τ ⊂ Ω. Typically, such subdomain Ω is the union of all agglomerates
T that share a common fine–grid dof (here the agglomerates are viewed as sets on the
initial fine–grid). The coarse level element matrices are then defined as the symmetric
positive semi–definite matrices PITAT I

T
T P , where IT stands for extension by zero outside

the agglomerate T (viewed as a set of one-level higher fine-grid dofs). The local matrix
AT is assembled from the fine-grid element matrices Aτ , τ ⊂ T . Once having coarse-
level element matrices the method can be recursively applied. It requires agglomeration
procedure that generates the next level agglomerates and respective local subdomains
where the associated eigenproblems are posed.

5.1. The window-based spectral AMG method. A purely algebraic way of
constructing local quadratic forms is based on the following least–squares approach.

Let {w} provide an overlapping partition of the set N of fine–degrees of freedom.
From our given n× n sparse matrix A, extract its rows that correspond to the index set
w and form a rectangular matrix Aw of size |w| ×n (|w| stands for the number of entries
in w). Let {Qw} provide a partition of unity, i.e.,

∑
w

IwQwI
T
w = I, where as before Iw

stands for extension of vectors vw defined on w to vector Iwvw =




0
vw

0


 where the zero

entries corresponds to indices in N \w. Since Aw = IT
wA, the following identity is easily

seen ∑
w

(Awv)TQwAwv =
∑
w

(IT
wAv)TQwI

T
w (Av)

=
∑
w

(Av)T IwQwI
T
w (Av)

= (Av)T

(∑
w

IwQwI
T
w

)
(Av)

= vTATAv.
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Hence, the local matrices AT
wQwAw, or in fact some semi-definite Schur complements Sw

of them, can be used to solve local eigenproblems associated with the sets w, and thus
ensure local approximation properties.

The observation that AT
wQwAw are local, is seen from the assumption on sparsity of A,

i.e., that each row of A has bounded number of nonzero entries. The actual local matrices
that will be used to compute the eigenvectors are defined as the Schur complements

vT
wSwvw = min

vχ

[
vw

vχ

]T

AT
wQwAw

[
vw

vχ

]
.

We recall again that the block vχ = v|χ=N\w enters the above quadratic minimization

problem with a small (bounded) number of its entries, corresponding to the non-zero
entries ai,j of Aw (i ∈ w and j in χ = N \ w).

To analyze the method we first notice that based on the definition of Sw, we have
vT

wSwvw ≤ vTAT
wQwAwv ≤ ∑

w

vTAT
wQwAwv = vTATAv ≤ ‖A‖2 ‖v‖2. Hence for v

vanishing outside the set w, we have vT
wSwvw ≤ ‖A‖2 ‖vw‖2. That is,

‖Sw‖ ≤ ‖A‖2.

Based on Sw, we can construct the local Pw that ensures the local weak approximation
properties

‖Sw‖‖vw − Pw vc
wc
‖2 ≤ δ vT

wSwvw.

In the same way (as in the case of local matrices Aτ before) we define a global P (using
another partition of unity matrix set {Ww}),

P =
∑

w

IwWwPwI
T
wc
,

for which we can prove the estimate (see (3.12))

‖v − Pvc‖2 ≤
∑

w

‖vw − Pwvc
wc
‖2.

Assuming again the quasiuniformity of the windows, i.e., the estimate

‖Sw‖ ≥ η‖A‖2,

for a constant η ∈ (0, 1] independent of w, we end up with the final estimates

‖v − Pvc‖2 ≤∑
w

‖vw − Pwvc
wc
‖2

≤∑
w

δ
‖Sw‖ vT

wSwvw

≤ δ
η ‖A‖2

∑
w

vTAwQwAwv

= δ
η ‖A‖2 ‖Av‖2.

That is, we proved the following “strong approximation property”:

(3.13) ‖A‖ ‖v − Pvc‖2 ≤ δ

η ‖A‖ ‖Av‖2.

We remark at the end, that we did not use symmetry, nor positive definiteness of A.



i



i

CHAPTER 11

Adaptive AMG and Smoothed Aggregation (SA) AMG

This lecture introduces the concept of adaptive AMG methods and motivates the
need for constructing of interpolation mappings that fit (approximately or exactly) a set
of “algebraically smooth” vectors. We study several approaches of such interpolation
rules. The lecture ends up with a formulation and multilevel analysis of the smoothed
aggregation (or SA) algebraic multigrid method.

1. The concept of adaptive AMG

The standard smoothing (or relaxation) iterations, possibly combined with a coarse-
grid correction based on a projection π = πA := P (P TAP )−1P TA, can be formulated
as

(3.14) x := (I −M−TA)(I − π)(I −M−1A)x.

If P = 0 (or not defined) we set π = 0. By monitoring the norm of two consecutive iterates
(viewed as errors for solving the trivial equation Ax = 0),we can get an indication about
the quality of the respective (TG) iteration method. Since inverting the coarse–grid
matrix Ac = P TAP can be expensive, we approximate the projection π by either using

πM = P
(
P TMP

)−1
P TM (when M is sparse), or we can construct an initial (tentative

and possibly not very efficient) V–cycle operator Bc and replace I−π with I−PB−1
c P TA.

To begin with, when we have not constructed even a single interpolation matrix P (hence
π = 0), we simply run the relaxation process (letting π = 0 above).

At any rate, at some point after m ≥ 1 iterations, we may encounter very slow
convergence, which means that

(3.15) xTAx ≃ xT
oldAxold.

In other words, we have that xm := x is a good approximation to the minimal eigenvector
q of the generalized eigenproblem

Aq = λminMq,

(assuming π = 0). Indeed, (3.15) implies that ‖(I −M
−1
A)x‖A ≃ ‖x‖A, that is x

T Ax

xT Mx
≈

λmin ≃ 0.
Our goal would therefore be to incorporate this “algebraically smooth” vector 1 :=

q ≈ xm into the “to be constructed” coarse space. Equivalently, we want to construct a
P such that

1 ∈ Range (P ).

Assume that, we have constructed a P , and by recursion we have constructed an initial
coarse V-cycle operator Bc. Then, we repeat the above procedure, where now we run the

97
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modified (inexact) two–grid iteration starting with a random initial iterate x = x0:

x := (I −M−TA)(I − PB−1
c P TA)(I −M−1A)x.

In general, by testing the current method available we eventually end up with a
component x that the current level V –cycle cannot handle; that is, the A–norms of two
successive iterates x and xnew are not too different, i.e.,

xT
newAxnew ≃ xTAx.

The reasons for this to happen are, either,

• the current coarse space cannot well approximate e = x−Pxc =

[
ef

0

]
, and/or

• Bc cannot successfully damp the coarse interpolant xc of x.

A possible remedy to the above is to improve the coarse space and/or coarse solvers B−1
c

by augmenting the current interpolation matrix P =

[
W
I

]
by adding few more columns

(or one block–column) Pnew, i.e., to construct

P =

[
W P new

I 0

]
.

The new columns of P are based on additional coarse dofs Nc, new ⊂ N \ Nc. The latter
can be chosen in the same way as for P noting that the interpolation error e = x− Pxc

vanishes at the current coarse dofs set Nc, i.e., e|Nc
= 0.

In conclusion, we see that we need to be able to construct interpolation matrices P
that fit (interpolate exactly or approximately) several “algebraically smooth” vectors
11, . . . , 1m, for any given (small) number m ≥ 1.

2. Algorithms to fit several vectors

If the set of vectors 1k restricted to small neighborhood sets of indices {A} provide
some reasonable approximation properties, i.e.,

‖vA −
∑

k

αk 1k|A ‖2 ≤ ηA vT
AAAvA.

then, we may construct a tentative P by simply putting together the pieces of the vectors
1k, 1k|A, using nonnegative diagonal PU (partition of unity) matrices, similarly to the
spectral AMG methods. Here, we assume that there is a set of local matrices {AA} that
provide a sense of “local” energy. In other words, we assume that the global quadratic
form associated with the original n × n s.p.d. matrix A can be split into a sum of
local quadratic forms associated with the local symmetric positive semi–definite matrices
AA where {A} provides a (overlapping or non-overlapping) partition of the index set
1, 2, . . . , n.
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2.1. Interpolation by constrained energy minimization. To fix the ideas, we
assume here a finite element setting. In particular, we assume that the sets A are covered
exactly by fine-grid elements τ ∈ Th and use the notation T instead of A. In addition to
the given s.p.d. matrix A, we assume access to the local mass matrices GT (assembled,
for every T , from the fine–grid element mass matrices Gτ for τ ⊂ T ).

Given the set of vectors 1k, k = 1, . . . , m, to each T , we associate m basis functions

ϕ
(k)
T supported in a neighborhood ΩT of T that is contained in the union ∪T ′

of all

neighbors T
′
to T . The function ϕ

(k)
T , for a fixed k, solves the following local constrained

minimization problem

a(ϕ
(k)
T , ϕ

(k)
T ) = ϕ

(k)T

T Aϕ
(k)
T 7→ min,

subject to the prescribed integral moments

1T
l GT

′IT
T

′ϕ
(k)
T = δT, T

′ 1T
l GT1k, for all T

′ ∩ ΩT 6= ∅ and l = 1, . . . , m.

Here, δT, T
′ = 0 for T 6= T

′
and δT, T = 1. We also use the notation IX for zero extension

of vectors defined on X to vectors of full size. Since ϕ
(k)
T is supported in ΩT , we have

ϕ
(k)
T = IΩT

ϕ(k)
T

, where now the vector ϕ(k)
T

is defined only on ΩT .

The coefficient vectors ϕ
(k)
T for k = 1, . . . , m running over all T ∈ TH provide the

columns of the desired interpolation matrix P . It is clear that by construction
∑

T

ϕ
(k)
T − 1k

is GT
′–orthogonal to all 1l when restricted to any fixed T

′
. Hence, in a weak sense

∑

T

ϕ
(k)
T ≈ 1k.

That is, the resulting P approximately fits all given vectors 1k.
The accuracy can be improved, by performing some iterations used to minimize the

difference

‖
∑

T

ϕ
(k)
T − 1k‖2

A

subject to the above integral moments constraints. One possible algorithm is as follows.

Given current approximations ϕ
(k)
T , T ∈ TH for a fixed k that satisfy the respective

integral constraints.

Then a new set is obtained by updating each ϕ
(k)
T running over all T and solving the

local constrained minimization problem for gT supported in ΩT . More specifically, we
solve

‖gT +
∑

T
′

ϕ
(k)

T
′ − 1k‖2

A 7→ min

subject to the constraints

(3.16) 1T
l GT

′IT
T

′gT = 0 for all T
′
: T

′ ∩ ΩT 6= ∅ and l = 1, . . . , m.
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Equivalently, introducing the error e = 1k −
∑
T

′
ϕ

(k)

T
′ , we solve

J(gT ) ≡ 1

2
gT

TAgT − eTAgT 7→ min

subject to (3.16). This leads to a small (local) saddle–point system for the non-zero
entries of gT (which is supported in ΩT ) and the respective Lagrange multiplier. More
specifically, we have for gT = IΩT

g
T

and a Lagrange multiplier λ of size the number of

neighbors of T (including T ) times m, that both solve the saddle–point system (letting
AΩT

= IT
ΩT
AIΩT

)



AΩT
[. . . , IT

ΩT
IT ′GT

′1l, . . . ]


...
1T

l GT
′IT

T
′IT

...


 0




[
g

T

λ

]
=

[
IT
ΩT
Ae

0

]
.

After gT is being computed, we update the current ϕ
(k)
T = IΩT

ϕ(k)
T

,

ϕ(k)

T
:= ϕ(k)

T
+ g

T
,

and move onto the next set T .
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Figure 1. Typical coarse basis functions based on fitting one (constant) function.

Examples of fitting one (constant) function and matrix A coming from Laplace op-
erator are seen on Fig. 1. Fitting several (m = 4) functions vk = sin(Πkxx) sin(Πkyy),
k = (kx, ky), kx, ky = 1, . . . ,

√
m, and matrix A coming from Laplace operator, is

illustrated on Fig. 2.

2.2. Smoothed Aggregation (SA) AMG. If the partitioning {A} is non-overlapping,
the respective sets A are referred to as aggregates. The simple block–diagonal P then
may not as good as an interpolation matrix for use in a multilevel cycle. The respective
coarse vector spaces can be viewed as “piecewise” constant, which in terms of functions,
are discontinuous. Thus, we may need to “smooth” out the block–diagonal (tentative) P .
This leads to a method proposed by P. Vaněk (1992), [VanSA], known as the “smoothed
aggregation” AMG or SA AMG.
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Figure 2.
∑
T

Φ
(k)
T based on fitting four sin functions vk on a 3 × 3 coarse

mesh (H = 1/3); h = 1/36.

Construction of locally supported basis by SA. To illustrate the method we assume
in the present section that A is a given symmetric positive semi–definite matrix and let
1 be a given null-vector of A, i.e., A1 = 0. The method will be applied to a matrix A0

that coincides with A (after certain boundary conditions are imposed).
For a given integer ν ≥ 1 partition the set of degrees of freedom of A, i.e., the fine

grid into nonoverlapping sets Ai such that Ai contains an index i with the following
property. Namely, for any integer s ≤ ν, the entries of (As)ij away from i are zero. More
specifically, we assume,

(3.17) (As)ij = 0, for all indices j outside Ai.

Let 1i = 1|Ai
and be zero outside Ai. It is clear that

(3.18)
∑

i

1i = 1.

For a given diagonal matrix D (to be specified later on), let A = D− 1
2AD− 1

2 .
Let ϕν be a given polynomial (to be specified later on) of degree ν ≥ 1 such that

ϕν(0) = 1. Hence ϕν(t) = 1 − tqν−1(t) for another polynomial qν−1.
In what follows we use the notation v(xi) to denote the ith entry of a vector v. This

is motivated by the fact that very often in practice v are coefficient vectors of functions
v when expanded in terms of a given Lagrangian finite element basis.

Define now,

(3.19) ψi = (I −D−1Aqν−1(D
−1A))1i.

We have,

(3.20)
∑

i

ψi = (I −D−1Aqν−1D
−1A)

∑

i

1i = (I −D−1Aqν−1(D
−1A))1 = 1,

since A1 = 0. Also (As1j)i = 0 implies that ((D−1A)s1j)i = 0 since D is diagonal and
hence As and (D−1A)s have the same sparsity pattern. Thus, 1(xi) =

∑
j

(ψj)(xi) =
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Figure 3. Formation of aggregates to guarantee sparsity of all coarse-level operators.

(1i)(xi) − (D−1Aqν−1(D
−1A)1i)(xi), for all s ≤ ν, and j 6= i. The latter implies

(D−1Aqk−1(D
−1A)1i)(xi) = 0.

Therefore

ψi(xi) = 1(xi).

The vectors ψi will form our coarse basis. Note that they have local support and form
a partition of unity (in the sense of identity (3.20)) and they also provide a Lagrangian
basis.
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Figure 4. The overlap of the extended aggregates obtained by applying
two actions of A illustrating the sparsity of the resulting SA coarse-level op-
erator. Darker color corresponds to elements that belong to fewer extended
aggregates.

We comment next on one way of constructing aggregates that leads to coarse matrices
with controlled sparsity pattern. Namely, assume we are given a quasi-uniform mesh Th

that triangulates our polygonal (or polyhedral) domain Ω. Choose a parameter H and
generate a uniform mesh TH with boxes of size H ×H (×H in 3D). Consider only those
boxes that provide covering of Ω. Each box Ωij(or Ωijk in 3D) intersects part of the mesh
Th. In this way we construct aggregates Aij (or Aijk) each containing all fine–grid vertices
that are within a particular box (with some arbitration of nodes on box boundaries if
any). The only requirement is that the resulting aggregates have large enough interior
which can be ensured if H is large enough and Th is fine enough. Fig. 3 illustrates this
geometric way to generate aggregates with guaranteed diameter bound, whereas Fig.
4 illustrates the overlap of the support of the polynomially smoothed basis functions
defined as in (3.20) for ν = 2. It is clear that after one level of smoothed aggregation,
the resulting coarse matrix will have sparsity pattern corresponding to a finite difference
matrix on uniform grid (9-point stencil in 2D and 27-point stencil in 3D).

Finally, we note that the above properties hold for any null–vector 1 of A. We note
that A may have several null-vectors such as in the case of matrices coming from linear
elasticity (the respective null-vectors or functions are called “rigid body modes”).
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To continue the process by recursion define 1c = [1, . . . , 1]T ∈ R
nc . We have, Ac1c =

P TA
∑
i

ψi = P TA1 = 0. Here P =
[
ψ1, . . . , ψnc

]
is the interpolation matrix. Due to

the Lagrangian property of the basis {ψi}, i.e., ψi(xj) = δij it follows that P has a full
column rank.

We then generate coarse aggregates with corresponding polynomial property (3.17).
Note that we have the flexibility to change ν, i.e., to have ν = νk depending on the level
number.

Assume that we have generated ℓ ≥ 1 levels and at every level k we have constructed
the respective interpolation matrices Pk. Then after a proper choice of smoothers Mk we
end up with a symmetric V (1, 1)–cycle smoothed aggregation AMG. Our goal is to ana-
lyze the method, by only assuming that the vector 1 ensures a multilevel approximation
property formulated later on (see (3.23)).

The fact that 1 is a (near)–null–vector of A is not needed. That is why in practice
the resulting coarse bases are not necessarily Lagrangian. Nevertheless convergence is
guaranteed as we can see next.

3. A general setting for the SA method

In this section we select the parameters of the smoothed aggregation method.
To simplify the analysis we assume that ν ≥ 1 is independent of k. We assume that

we are given a set of block–diagonal matrices Ik−1 : R
nk 7→ R

nk−1 . We assume that Ik−1

has the following block–diagonal form,

Ik−1 =




11 0 0 . . . 0
0 12 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1nk−1 0
0 0 . . . 0 1nk




} A1

} A2

} ...
} Ank−1

} Ank

where, for k > 1, 1i =




1
...
1


. Note that the vector 1i ∈ R

|Ai|, has as many entries of ones,

as the size of the fine–grid set (called aggregate) Ai they interpolate to. We stress upon
the fact that, the SA method will be well–defined as soon as the first “piecewise–constant”
interpolant I0 is specified. We outlined earlier a choice of I0 based on a nullvector of A.
We can of course select other initial coarse level interpolants, that for example fit several
a priori given vectors.

Let Ik−1 be the piecewise constant interpolant from level k to level k − 1 and let
Ik−1 = I0 . . . Ik−1 be the composite one. We define Dk = IT

k−1Ik−1. Denote then

Ak−1 = D
− 1

2
k−1Ak−1D

− 1
2

k−1. Then, the interpolation matrix Pk−1 is constructed as before, on

the basis of Ak−1, Dk−1 and the norm of Ak−1 for our fixed ν. More specifically, we have

Pk−1 = Sk−1Ik−1,

where

Sk−1 = ϕν

(
D−1

k−1Ak−1

)
,
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and ϕν(t) = (−1)ν 1
2ν+1

√
b√
t
T2ν+1

(√
t√
b

)
for b = bk−1 ≥ ‖Ak−1‖. We will show later on (in

Lemma 3.1) that b = bk−1 ≤ ‖A‖
(2ν+1)2(k−1) .

The smoother Mk is chosen such that

Mk ≃ ‖Ak‖ Dk.

More specifically, we assume that, Mk is s.p.d. and spectrally equivalent to the diagonal
matrix ‖Ak‖ Dk, and scaled so that,

(3.21) vTAkv ≤ ‖Ak‖vTDkv ≤ vTMkv.

Based on the above choice of Pk, Ak and Mk, for 0 ≤ k ≤ ℓ, starting with Bℓ = Aℓ,
for k = ℓ− 1, . . . , 1, 0, we recursively define a V –cycle preconditioner Bk to Ak in the
following standard way,

I −B−1
k Ak = (I −M−T

k Ak)
(
I − PkB

−1
k+1P

T
k Ak

)
(I −M−1

k Ak).

Letting B = B0, we are concerned in what follows with the (upper) bound K∗ in the
estimate

(3.22) vTAv ≤ vTBv ≤ K⋆ vTAv.

3.1. The result of Vaněk, Mandel and Brezina. We present here perhaps the
only known multilevel convergence result for algebraic multigrid; namely, the suboptimal
convergence of the smoothed aggregation (or SA) AMG. The original proof is found
in [SA] and targeted matrices A coming from second order elliptic PDEs (scalar, like
Laplace equation, or systems, such as elasticity).

One of the main assumption in the analysis is a “weak approximation property” of
certain coarse spaces of piecewise constant vectors. Namely, that a f.e. function v can be
approximated by a piecewise constant interpolant IH in L2. The latter is defined based
on sets Ai (the union of fine–grid elements that cover our aggregates, which we later do
not distinguish, i.e., treat as the same sets of degrees of freedom) with diameter O(H).
On each set Ai, IHv is constant, for example equal to an average value of v over Ai, i.e.,
IHv = 1

|Ai|
∫
Ai

v dx. Then, if A comes from a Laplace–like discrete problem, the following

is a standard estimate in L2 in terms of the energy norm ‖.‖A,

‖v − IHv‖0 ≤ caH ‖v‖A.

Rewriting this in terms of vectors leads to the following one

h
d
2 ‖v − IHv‖ ≤ caH ‖v‖A,

where d = 2 or d = 3 is the dimension of the domain where the corresponding PDE
(Laplacian–like) is posed. Since then ‖A‖ ≃ hd−2, we arrive at

‖v − IHv‖ ≤ ca
H

h

1

‖A‖ 1
2

‖v‖A.

In the application of the SA we will have H
h
≃ (2ν + 1)k+1, where ν ≥ 1 will be the poly-

nomial degree of a polynomial used to smooth out the piecewise constant interpolants,
that we start with. Also, k = 0, 1, . . . , ℓ stands for the coarsening level. We summarize

this estimate as our main assumption. Given the nonoverlapping sets A(k)
i (aggregates)
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at coarsening level k ≥ 0 viewed as sets of fine–grid dofs. Let Qk be the block–diagonal

ℓ2–projections that for every vector v restricted to an aggregate A(k)
i assigns a scalar

value vi, the average of v|Ai
over Ai. Finally, let Ik interpolate them back all–the way

up to the finest level as constants over A(k)
i (equal to the average value vi). Finally,

assume that the diameter of A(k)
i is of order (2ν + 1)k+1h where h is the finest mesh size.

Then, the following approximation property is our main assumption:

(3.23) ‖v − IkQkv‖ ≤ ca
(2ν + 1)k+1

‖A‖ 1
2

‖v‖A.

The latter assumption is certainly true if the matrix A comes from elliptic PDEs dis-
cretized on a uniformly refined mesh, and the corresponding aggregates at every level k
are constructed based on the uniform hierarchy of the geometric meshes. In the appli-
cations when we have access to the fine–grid matrix only (and possibly to the fine–grid
mesh) when constructing the hierarchy of aggregates we have to follow the rule that their
graph diameter grows like (2ν + 1)k+1. A typical choice in practice is ν = 1.

An optimal Chebyshev like polynomial. We first revisit a Chebyshev–like poly-
nomial introduced earlier (in a previous lecture).

Consider the Chebyshev polynomials Tk(t) defined by recursion as follows, T0 = 1,
T1(t) = t and for k ≥ 1, Tk+1(t) = 2tTk(t)− Tk−1(t). Letting t = cosα ∈ [−1, 1], we have
the explicit representation Tk(t) = cos kα, which is seen from the trigonometric identity
cos(k + 1)α+ cos(k − 1)α = 2 cosα cos kα.

Proposition 3.1. For a given b > 0, the function defined for t ∈ [0, b]

(3.24) ϕν(t) = (−1)ν 1

2ν + 1

√
b√
t
T2ν+1

(√
t√
b

)
,

is a polynomial of degree ν such that ϕν(0) = 1, that is, ϕν(t) = 1 − tqν−1(t) for some
polynomial qν−1(t) of degree ν − 1.

Proposition 3.2. The polynomial ϕν defined in (3.24) has the following optimality
property:

(3.25) min
pν : pν(0)=1

max
t∈[0, b]

|
√
t pν(t)| = max

t∈[0, b]
|
√
t ϕν(t)| =

√
b

2ν + 1
.

Also, ϕν(0) = 1 and

(3.26) max
t∈[0, b]

|ϕν(t)| = 1.

Here are some particular cases of the polynomials ϕν .

Using the definition of the Chebyshev polynomials, T0 = 1, T1 = t, Tk+1 = 2tTk − Tk−1,
for k ≥ 1, we get T2 = 2t2 − 1 and hence

T3(t) = 4t3 − 3t.

Thus,

ϕ1(t) = −1

3

√
b(4

t

b
3
2

− 3√
b
) = 1 − 4

3

t

b
.
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This in particular shows that

sup
t∈(0, b]

|1 − ϕ1(t)|√
t

=
4

3

1√
b
.

The next polynomial is based on T5 = 2tT4 − T3 = 2t(2tT3 − T2) − T3 = (4t2 − 1)(4t3 −
3t) − 4t3 + 2t = 16t5 − 20t3 + 5t. Therefore,

ϕ2(t) =
1

5

√
b

t

(
16
√
tt2

1

b
5
2

− 20
√
tt

1

b
3
2

+ 5
√
t

1√
b

)
.

This shows,

ϕ2(t) =
16

5

t2

b2
− 4

t

b
+ 1.

We also have,

sup
t∈(0, b]

1 − ϕ2(t)√
t

=
4√
b

sup
x∈(0,1]

(x− 4

5
x3) =

4

3

√
5

3

1√
b
.

In general, it is clear that the following result holds.

Proposition 3.3. There is a constant Cν independent of b such that the following
estimate holds,

(3.27) sup
t∈(0, b]

|1 − ϕν(t)|√
t

≤ Cν

1

b
1
2

.

Proof. We have, 1 − ϕν(t) = tqν−1(t), that is, 1−ϕν√
t

=
√
t qν−1(t) and therefore the

quotient in question is bounded for t ∈ (0, b]. More specifically, the following dependence
on b is seen:

sup
t∈(0, b]

|1 − ϕν(t)|√
t

=
1

b
1
2

sup
λ∈(0, 1]

∣∣∣1 − (−1)ν

2ν+1
T2ν+1(

√
λ)√

λ

∣∣∣
√
λ

.

Clearly, the constant Cν = sup
λ∈(0, 1]

˛

˛

˛

˛

1− (−1)ν

2ν+1

T2ν+1(
√

λ)
√

λ

˛

˛

˛

˛

√
λ

is independent of b.

�

Preliminary estimates. Our second main assumption is that we can construct at
every level k ≥ 1 aggregates with the polynomial property (3.17). The latter is needed to
keep the sparsity pattern of the resulting coarse matrices under control. We also assume
that the the size of the composite aggregates coming from level k onto the finest level
satisfy the estimate

max
i∈Nk

|diam(Ai)| ≤ (2ν + 1)kh.

As already mentioned above the above assumption is easily met in practice for meshes
that are obtained by uniform refinement. For more general unstructured finite element
meshes the above assumption is only a practical rule to construct the coarse level aggre-
gates.

The analysis in what follows closely follows [SA].
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Lemma 3.1. The following main estimate holds true:

‖Ak‖ ≤ ‖A‖
(2ν + 1)2k

.

Proof. Recall that Dk+1 = IT
k Ik. Then, with Sk = I −D−1

k Akqν(D
−1
k Ak), using the

fact that Pk = SkIk and Dk+1 = I
T

kDkIk, we have

‖D− 1
2

k+1Ak+1D
− 1

2
k+1‖ = sup

v

v
T Ak+1v

vT Dk+1v

= sup
v

v
T I

T
k ST

k
AkSkIkv

(Ikv)T Dk(Ikv)

≤ sup
v

v
T ST

k AkSkv

vT Dkv
.

Therefore, based on property (3.25) of ϕν , we get,

vTD
− 1

2
k ST

k AkSkD
− 1

2
k v ≤ sup

t∈
»

0, ‖D− 1
2

k
AkD

− 1
2

k
‖
–

t(1 − tqν−1(t))
2 ‖v‖2

≤ ‖D− 1
2

k
AkD

− 1
2

k
‖

(2ν+1)2
‖v‖2.

That is, by recursion (with D0 = I, A0 = A), we end up with the estimate

‖D− 1
2

k+1Ak+1D
− 1

2
k+1‖ ≤ ‖A‖

(2ν + 1)2(k+1)
.

Thus the proof is complete. �

We will be using the main result regarding the relative spectral condition number of
the ℓth level V–cycle preconditioner B with respect to A, which we restate here.

Given smoothers Mj and interpolation matrices Pj and respective coarse matrices
relates as Aj+1 = P T

j AjPj. Each smoother Mj is such that MT
j + Mj − Aj is s.p.d..

Then, the following main identity holds:

(3.28)
vTAv ≤ vTBv = inf

(vk)

[
vT

ℓ Aℓvℓ +
∑
j<ℓ

(
MT

j vf
j + AjPjvj+1

)T

(
MT

j +Mj − Aj

)−1
(
MT

j vf
j + AjPjvj+1

)]
.

The inf here is taken over the components (vk) of all possible decompositions of v:

(i) starting with v0 = v, and

(ii) for k ≥ 0, vk = vf
k + Pkvk+1.

Introduce now the following averaging operators,

(3.29) Qk−1 = (IT
k−1Ik−1)

−1IT
k−1 : R

n0 7→ R
nk .

Note that Ik−1Qk−1 are ℓ2–orthogonal projections.
We will be interested in a particular recursive decomposition for any given fine–

grid vector v. Based on the characterization identity (3.28) utilizing an energy stable
particular decomposition of the fine–gird vectors, we can get an upper bound of K∗,



i

3. A GENERAL SETTING FOR THE SA METHOD 109

which is our goal. Introduce Q−1 = I, and let for k ≥ 0, vk = Qk−1v ∈ R
nk . We have

the two–level decomposition

vk =
(
Qk−1v − PkQkv

)
+ PkQkv = vf

k + Pkvk+1.

In order to bound the relative condition number of the V–cycle preconditioner B with
respect to A, (due to estimate (3.28)), based on our choice of the smoother as in (3.21),
it is sufficient to bound the expressions (i) and (ii) below:

(i)
∑
k<ℓ

(vf
k)TMkv

f
k =

∑
k<ℓ

(
Qk−1v − PkQkv

)T
Mk

(
Qk−1v − PkQkv

)

and

(ii)
∑
k≤ℓ

vT
kAkvk =

∑
k<ℓ

vTQ
T

k−1AkQk−1v,

both in terms of vTAv.

Estimating the first sum (i). Recall that Pk = SkIk, Sk = I−D−1
k Akqν−1(D

−1
k Ak),

Ik = I0I1 . . . Ik andDk = (Ik−1)
T Ik−1. Note that (see (3.26)) ‖D

1
2
k SkD

− 1
2

k ‖ = sup
t∈[0, ‖Ak‖]

|ϕν(t)| =

1. We start with the inequality,

‖
(
Qk−1 − PkQk

)
v‖Dk

= ‖
(
Qk−1 − SkIkQk

)
v‖Dk

= ‖D
1
2
k Sk

(
Qk−1 − IkQk

)
v + (I − Sk)Qk−1v‖

≤ ‖D
1
2
k Sk

(
Qk−1 − IkQk

)
v‖ + ‖D

1
2
k (I − Sk)Qk−1v‖

≤ ‖D
1
2
k SkD

− 1
2

k ‖‖D
1
2
k

(
Qk−1 − IkQk

)
v‖

+‖(I −D
1
2
k SkD

− 1
2

k )D
1
2
kQk−1v‖

≤ ‖D
1
2
k

(
Qk−1 − IkQk

)
v‖ + ‖(I −D

1
2
k SkD

− 1
2

k )D
1
2
kQk−1v‖

= ‖Ik−1

(
Qk−1 − IkQk

)
v‖ + ‖(I −D

1
2
k SkD

− 1
2

k )D
1
2
kQk−1v‖.

Let (0, b] be the interval that contains the eigenvalues of Ak = D
− 1

2
k AkD

− 1
2

k which is used
to construct the optimal polynomial ϕν(t) = 1 − tqν−1(t), i.e., b ≥ ‖Ak‖. Notice that

I −D
1
2
k SkD

− 1
2

k = I − ϕν(Ak) = A
− 1

2
k

(
I − ϕν(Ak)

)
A

1
2
k .

Based on estimate (3.27) we then get,

‖(I −D
1
2
k SkD

− 1
2

k )D
1
2
kQk−1v‖ ≤ max

t∈(0, b]

1−ϕν(t)√
t

‖A
1
2
kD

1
2
kQk−1v‖

≤ Cν
1√
b
‖A

1
2
kD

1
2
kQk−1v‖

≤ Cν
1

‖Ak‖
1
2
‖Qk−1v‖Ak

.

Thus, we arrived at the estimate

(3.30) ‖(Qk−1 − PkQk)v‖Dk
≤ ‖

(
Ik−1Qk−1 − IkQk

)
v‖ +

Cν

‖Ak‖
1
2

‖Qk−1v‖Ak
.

The final bound on sum (i) will be derived after an estimate of the terms in sum (ii) is
obtained.
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Estimating the second sum (ii). We bound next ‖Qkv‖Ak+1
.

Since ‖A
1
2
kD

−1
k A

1
2
k ‖ = ‖Ak‖, we have ‖A

1
2
kSkA

− 1
2

k ‖ = ‖ϕν(A
1
2
kD

−1
k A

1
2
k )‖ ≤ 1 and sim-

ilarly ‖D
1
2
k SkD

− 1
2

k ‖ = ‖ϕν(D
− 1

2
k AkD

− 1
2

k )‖ = ‖ϕν(Ak)‖ ≤ 1. The first estimate shows
that

wTST
k AkSkw ≤ wTAkw.

Then, based on Lemma 3.1, we obtain

(3.31)

‖Qkv‖Ak+1
= ‖PkQkv‖Ak

= ‖SkIkQkv‖Ak

≤ ‖Sk

(
IkQk −Qk−1

)
v‖Ak

+ ‖SkQk−1v‖Ak

≤ ‖Sk

(
IkQk −Qk−1

)
v‖Ak

+ ‖Qk−1v‖Ak

≤ ‖
(
A

1
2
kD

− 1
2

k

)(
D

1
2
k SkD

− 1
2

k

)
D

1
2
k

(
IkQk −Qk−1

)
v‖ + ‖Qk−1v‖Ak

≤ ‖Ak‖
1
2 ‖D

1
2
k

(
IkQk −Qk−1

)
v‖ + ‖Qk−1v‖Ak

≤ ‖A‖ 1
2

(2ν+1)k ‖Ik−1

(
IkQk −Qk−1

)
v‖ + ‖Qk−1v‖Ak

≤ ‖A‖ 1
2

(2ν+1)k ‖Ik−1

(
IkQk −Qk−1

)
v‖ + ‖Qk−1v‖Ak

.

We have,

‖v − IkQkv‖2 = ‖
(
Ik−1Qk−1 − IkQk

)
v‖2 + ‖v − Ik−1Qk−1v‖2,

since IT
k−1Ik−1Qk−1 = IT

k−1 and Ik = Ik−1Ik, which imply
(
v − Ik−1Qk−1v

)T (
Ik−1Qk−1 − IkQk

)
v =

(
v − Ik−1Qk−1v

)T
Ik−1(⋆) = 0,

Therefore,
‖
(
Ik−1Qk−1 − IkQk

)
v‖ ≤ ‖v − IkQkv‖.

That is, if we bound ‖v − IkQkv‖ the result will follow.
Use now the main estimate (3.23) which was our main assumption. It reads,

‖v − IkQkv‖2 ≤ σ2
a

(2ν + 1)2(k+1)

‖A‖ vTAv.

Then,

(3.32) ‖
(
Ik−1Qk−1 − IkQk

)
v‖ ≤ σa

(2ν + 1)k+1

‖A‖ 1
2

‖v‖A.

Substituting the latter estimate in (3.31), leads to the following main recursive estimate,

‖Qkv‖Ak+1
≤ ‖Qk−1v‖Ak

+ σa

(2ν + 1)k

‖A‖ 1
2

‖A‖ 1
2

(2ν + 1)k
‖v‖A

That is, we proved the following main estimate,

(3.33) ‖Qkv‖Ak+1
≤ ‖Qk−1v‖Ak

+ ∆ ‖v‖A ≤ (1 + σak) ‖v‖A.

Thus the second sum is bounded as follows

(3.34)
∑

l≤ℓ

vT
kAkvk =

∑

k≤ℓ

‖Qk−1v‖2
Ak

≤ Cℓ3 vTAv.
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Completing the bound of the first sum (i). We showed, see estimate (3.30)

‖
(
Qk−1 − PkQk

)
v‖Dk

≤ ‖
(
Ik−1Qk−1 − IkQk

)
v‖ +

Cν

‖Ak‖
1
2

‖Qk−1v‖.

This estimate, together with (3.32) and (3.33), imply

‖
(
Qk−1 − PkQk

)
v‖Dk

≤ σa

(2ν + 1)k

‖A‖ 1
2

‖v‖A +
Cν

‖Ak‖
1
2

(1 + σak) ‖v‖A.

We need to bound ‖Ak‖
1
2‖
(
Qk−1 − PkQk

)
v‖Dk

. (Recall that Mk ≃ ‖Ak‖ Dk.) This
implies

(3.35)

‖Ak‖
1
2‖
(
Qk−1 − PkQk

)
v‖Dk

≤ ‖Ak‖
1
2

(
σa

(2ν + 1)k

‖A‖ 1
2

+ Cν

‖Ak‖
1
2

(1 + σak)

)
‖v‖A

≤ ‖A‖ 1
2

(2ν + 1)k
σa

(2ν + 1)k

‖A‖ 1
2

‖v‖A

+Cν(1 + σak) ‖v‖A

= [σa + Cν (1 + σak)] ‖v‖A.

Final estimates. In conclusion, we are ready to complete the proof of the following
main result (given for ν = 1 in [SA]).

Theorem 3.1. Under the following assumptions:

• the approximation property (3.23) of the piecewise constant interpolants Ik (from
coarse level k+1 all the way up to finest level 0) holds. This is the case if the kth
level composite aggregates have diameter that grows not faster than (2ν + 1)kh
(where h is the finest meshsize).

• the choice of smoother is Mk ≃ ‖Ak‖ Dk, where Dk = IT
k−1Ik−1 and Ak =

D
− 1

2
k AkD

− 1
2

k ;
• the choice (3.24) of the polynomials ϕν with b ≥ ‖Ak‖ at every level k used in the

construction of the smoothed interpolation matrices Pk = ϕν(D
−1
k Ak)Ik, where

Ik is the piecewise constant interpolant from coarse level k + 1 to the next fine
level k;

the resulting V (1, 1)–cycle MG preconditioner B is nearly spectrally equivalent to A with
K∗ ≤ Cℓ3, where K∗ is the constant in (3.22).
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Proof. It remains to use the estimates (3.35) and (3.34), for the particular decom-
position vk = (Qk−1 − PkQk)v + PkQkv and vk+1 = Qkv. We have, see identity (3.28),

vTBv ≤
[
‖PℓQℓv‖2

Aℓ
+ 2

∑
k

‖Ak‖‖
(
Qk−1 − PkQk

)
v‖2

Dk
+ 2

∑
k

‖PkQkv‖2
Ak

]

≤
(

2
∑
k≤ℓ

‖Qk−1v‖2
Ak

+ 2
∑
k<ℓ

(σa + Cν(1 + kσa))
2 ‖v‖2

A

)

≤ C

[
ℓ3 +

∑
k<ℓ

k2

]
‖v‖2

A

≤ Cℓ3 ‖v‖2
A.

�
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CHAPTER 12

Appendix: H1
0 -norm characterization

Here we provide some auxiliary results on boundedness and approximation properties
of finite element quasi-interpolants and respective L2 projections.

1. A H1-bounded approximation operator

Let Vh be a given finite element space spanned by the Lagrangian basis {ϕ(h)
i }xi∈Nh

.
Define the linear operator

Q̃hv =
∑

xi∈Nh

(v, ϕ
(h)
i )

(1, ϕ
(h)
i )

ϕ
(h)
i .

For any element τ from the triangulation Th consider its neighborhood Ωτ of immediate
element neighbors. It is clear then that the diameter of Ωτ is of order O(h). Since the sets
Ωτ have bounded overlap the sum of integrals

∑
τ∈Th

∫
Ωτ

ψ2(x) dx is bounded by a constant

times the integral
∫
Ω

ψ2(x) dx for any function ψ ∈ L2(Ω).

Due to the local support of the basis functions ϕ
(h)
i , the following local estimate is

immediate (using Cauchy–Schwarz inequality and
∫
ϕ

(h)
i ≃ hd,

∫
(ϕ

(h)
i )2 ≃ hd)

∫
τ

(Q̃hv)
2 dx =

∫
τ

(∑
xi∈τ

(v, ϕ
(h)
i )

(1, ϕ
(h)
i )

ϕ
(h)
i

)2

dx

≤ C
∑
xi∈τ

∫
Ωτ

v2 dx

„

R

“

ϕ
(h)
i

”2
dx

«2

 

R

Ωτ

ϕ
(h)
i dx

!2

≤ C
∫
Ωτ

v2(x) dx.

Therefore, we also have
∫

τ

(v − Q̃hv)
2 dx ≤ 2

∫

τ

v2 dx + 2

∫

τ

(
Q̃hv

)2

dx ≤ C

∫

Ωτ

v2(x) dx.

Applying the same inequality for v := v− c on Ωτ , since then
(
(I − Q̃h)c

)∣∣∣
τ

= 0 for any

constant function c on Ωτ , we also get
∫

τ

(v − Q̃hv)
2 dx ≤ C

∫

Ωτ

(v − c)2 dx.
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Using this inequality for c being the average value of v over Ωτ , and applying the Poincaré
inequality, we arrive at the following local approximation estimate

∫

τ

(v − Q̃hv)
2 dx ≤ C diam2(Ωτ )

∫

Ωτ

|∇v|2 dx ≤ C h2

∫

Ωτ

|∇v|2 dx.

The desired global L2–approximation property follows after summation over τ ∈ Th and
using the bounded overlap of the neighborhood sets {Ωτ}, i.e., we have

(3.36) ‖v − Q̃hv‖2
0 ≤ Ch2 |v|21 = Ch2 a(v, v)

The next property is to show that Q̃hv is bounded in | · |1. Introducing the weighted

average values vi =
(v, ϕ

(h)
i )

(1, ϕ
(h)
i )

, we have

|Q̃hv|21 =
∑

τ

∫

τ

∣∣∣∣∣
∑

xi∈τ

vi∇ϕ(h)
i

∣∣∣∣∣

2

dx.

Now use the fact that on τ ,
∑
xi∈τ

ϕ
(h)
i = 1, hence

∑
xi∈τ

∇ϕ(h)
i = 0. That is, ∇ϕ(h)

i0
=

− ∑
xi∈τ\{xi0

}
∇ϕ(h)

i , which implies

|Q̃hv|21 =
∑

τ

∫

τ

∣∣∣∣∣
∑

xi∈τ

(vi − vi0)∇ϕ(h)
i

∣∣∣∣∣

2

dx.

Applying Cauchy-Schwarz inequality, we then obtain

(3.37)
|Q̃hv|21 ≤ C

∑
τ

∑
xi∈τ

(vi − vi0)
2
∫
τ

∣∣∣∇ϕ(h)
i

∣∣∣
2

dx

≤ C
∑
τ

∑
xi∈τ

(vi − vi0)
2hd−2.

In what follows, we need the following estimate bounding the deviation of the weighted
averages vi from the simple averages vτ = 1

|Ωτ |
∫
Ωτ

v dx. We have, for any xi ∈ τ , based

on the Cauchy-Schwarz and Poincaré inequalities, and the fact that ‖ϕi‖0

(1, ϕi)
≃ h−

d
2 ,

vi − vτ =
(v − vτ , ϕi)

(1, ϕi)
≤ Ch



∫

Ωτ

|∇v|2 dx




1
2

‖ϕi‖0

(1, ϕi)
≤ Ch1− d

2



∫

Ωτ

|∇v|2 dx




1
2

.

This shows then for any xi ∈ τ , that the difference of the weighted average values
vi − vi0 , xi, xi0 ∈ τ , can be bounded by the seminorm |.|1, Ωτ

of v over the element
neighborhood Ωτ . That is, we have the local estimates

(vi − vi0)
2 ≤ 2 (vi − vτ )

2 + 2 (vi0 − vτ )
2 ≤ C h2−d

∫

Ωτ

|∇v|2 dx.
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The later estimates, after summation over τ ∈ Th, used in (3.37) based on the bounded
overlap of the local subdomains Ωτ gives the desired energy bound

(3.38) |Q̃hv|21 ≤ C
∑

τ

∫

Ωτ

|∇v|2 dx ≤ C |v|21 = C a(v, v).

Corollary 1.1. The L2–projection operator Qh : L2(Ω) 7→ Vh is bounded in H1

and has 1st order approximation in L2 for functions in H1(Ω).

Proof. The L2–approximation is seen from the minimization property of the L2–
projection, i.e.,

‖v −Qhv‖0 = inf
ϕ∈Vh

‖v − ϕ‖0 ≤ ‖v − Q̃hv‖0,

and estimate (3.36). The H1–boundedness follows from the triangle inequality

|Qhv|1 ≤ |Qhv − Q̃hv|1 + |Q̃hv|1,
the inverse inequality |ψh|1 ≤ CIh

−1 ‖ψh‖0 used for ψh = Qhv − Q̃hv ∈ Vh, the proven

L2–approximation properties of Qh and Q̃h all used after using the triangle inequality

‖Qhv − Q̃hv‖0 ≤ ‖v −Qhv‖0 + ‖v − Q̃hv‖0 ≤ 2 ‖v − Q̃hv‖0 ≤ C h |v|1,
and the H1–boundedness (3.38) of Q̃h. In conclusion, we have the estimate

|Qhv|1 ≤ C |v|1.
�

Remark 1.1. In the analysis of MG, we can use multilevel decompositions based on

the operators Q̃k = Q̃hk
by letting vf

k = (Q̃k − Q̃k−1)v for k ≥ 1, and vf
0 = v0 = Q̃0v.

Alternatively, we may use decompositions based on the L2–projections Qk. Then, we need

to verify assumption (S) for the decomposition v =
∑
k

vf
k based either on Q̃k or Qk. It is

true (see Section 2) that
∑

k

h−2
k ‖vf

k‖2
0 ≃ |v|21 = C a(v, v).

An application of Q̃h to Schwarz methods. Assume that a given computational
domain (polygon or polytope) Ω ⊂ R

d is covered by a set of overlapping subdomains Ωi,
i = 1, 2, . . . , m with bounded diameter of order O(H). Also, let {θi} be a partition of
unity of smooth functions θi that are supported in Ωi such that

∇θi ≤ CH−1.

Let Th be a given triangulation of Ω such that each Ωi is completely covered by elements
from Th. We assume that h ≤ H but no restriction on the size of H/h is assumed.
In practice, the domains Ωi can be constructed as unions of elements T from a coarse
triangulation TH and then Th is obtained by several steps of refinement of TH . For a
partition of unity functions θi, we can simply use the basis of a H1-conforming finite
element space VH associated with TH .
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Given a H1-conforming finite element space Vh associated with Th and let {ϕi}xi∈Nh

be its nodal basis. We are interested, for a given v ∈ Vh, in the following local components

ψi ≡ Q̃h(χiv) =
∑

xj∈Nh∩Ωi

(χiv, ϕj)

(1, ϕj)
ϕj ∈ Vh.

It is clear that ψi are supported in Ω̂i which is the union of Ωi and the neighboring
elements τ ∈ Th. The components ψi also satisfy

∑

i

ψi = Q̃h

(
∑

i

χiv

)
= Q̃hv.

The difference v − Q̃hv can be decomposed as
∑
i

ǫi, where each

ǫi =
∑

xj∈Nh∩Ωi

wj,i

(
v(xj) −

(v, ϕj)

(1, ϕj)

)
ϕj,

is supported in Ωi. The weights wj,i are between zero and one and reflect the fact that
each node xj can belong to several subdomains Ωi (due to their overlap).

Our goal is to bound the local components ǫi + ψi in L2 and H1. For any i, each
individual term in ǫi,

δj ≡
(
v(xj) −

(v, ϕj)

(1, ϕj)

)
ϕj

is bounded in L2 by Ch‖∇v‖0,Ω(xj), where Ω(xj) is the union of all elements τ that share
node xj. To prove this, we first notice that

‖v(xj)ϕj‖2
0 = v2(xj) ‖ϕj‖2

0 ≤ Chd v2(xj) ≤ C‖v‖2
0, Ω(xj)

,

and

‖
(

(v, ϕj)

(1, ϕj)

)
ϕj‖2

0 ≤ ‖v‖2
0, Ω(xj)

‖ϕj‖4
0

(1, ϕj)2
≤ C ‖v‖2

0, Ω(xj)
.

That is, ‖δj‖0 ≤ C ‖v‖0, Ω(xj). Using this result for v := v − const, noticing that
δj does not change then, letting const = vj, the average of v over Ω(xj), we obtain
‖δj‖0 ≤ C ‖v−vj‖0, Ω(xj). The estimate ‖δj‖0 ≤ Ch ‖∇v‖0, Ω(xj) follows then by Poincaré
inequality.

To bound the local terms ǫi, we use Cauchy–Schwarz inequality and the last estimate.
We have

‖ǫi‖2
0 ≤ C

∑

xj∈Nh∩Ωi

‖δj‖2
0 ≤ Ch2

∑

xj∈Nh∩Ωi

‖∇v‖2
0, Ω(xj)

≤ Ch2 ‖∇v‖2
0, bΩi

.

The bound in H1 follows by an inverse inequality used for ǫi ∈ Vh and the last L2–
estimate, i.e., we have

‖∇ǫi‖2
0 ≤ C h−2 ‖ǫi‖2

0 ≤ C ‖∇v‖2
0, bΩi

.
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In conclusion, by summing up the last two estimates, using the bounded overlap of the

subdomains Ωi (and hence of Ω̂i), we have

(3.39) h−2
∑

i

‖ǫi‖2
0 +

∑

i

‖∇ǫi‖2
0 ≤ C ‖∇v‖2

0.

We bound now the local functions ψi = Q̃h (χiv) ∈ Vh. Since Q̃h is bounded in both
L2 and H1, it is sufficient to bound the functions χiv instead. The L2–bound is trivial
since χi is between zero and one. For H1, using the product rule for derivatives and the
assumed bound |∇χi| ≤ CH−1, we have

C−1 ‖∇ψi‖2
0 ≤ ‖∇(χiv)‖2

0 ≤ 2‖v∇χi‖2
0 + 2‖χi∇v‖2

0 ≤ CH−2‖v‖2
0, Ωi

+ 2‖∇v‖2
0, Ωi

.

The final estimate follows by summation over i, using again the bounded overlap of the
Schwarz subdomains Ωi, i.e., we have

(3.40)
∑

i

‖∇ψi‖2
0 ≤ CH−2 ‖v‖2

0 + C ‖∇v‖2
0.

The following result is the essence of the analysis of the so-called overlapping Schwarz
methods that exploit subdomain solvers (locally in each subdomain Ωi). Also, to achieve
optimal condition number, the Schwarz methods utilize in addition a coarse–grid solver
based on a coarse subspace VH associated with a coarse mesh TH of size H that is
comparable to the characteristic diameter of the subdomains Ωi. We recall, that the
subdomains Ωi are assumed to have overlap of size comparable to their diameter. The
latter property is needed to show that a partition of unity functions χi, with controlled
bound O(H−1) on their gradient, is possible to construct.

Theorem 1.1. Assume that for any v ∈ Vh there is a coarse-grid function vH ∈ VH

such that

‖v − vH‖0 ≤ C H ‖∇v‖0 and ‖∇vH‖0 ≤ C ‖∇v‖0.

For example, we can choose vH = Q̃Hv. Consider the local components vi = ǫi + ψi

supported in Ω̂i constructed for the function v − vH ∈ Vh. Then, for the decomposition

v = vH +
∑

i

vi,

the following stability estimate holds

‖∇vH‖2
0 +

∑

i

‖∇vi‖2
0 ≤ C ‖∇v‖2

0.

2. H1
0–norm characterization

In this section we present in a constructive way a H1
0 (Ω)–norm characterization. First

the result is proven for a convex polygonal domain Ω. Consider

−∆u = f(x), x ∈ Ω,

subject to u = 0 on ∂Ω. Since Ω is convex the following full regularity estimate holds

‖u‖2 ≤ C ‖f‖0.
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We assume now that Ω is triangulated on a sequence of uniformly refined triangulations
with characteristic mesh size hk = h02

−k, k ≥ 0, and it is well–known that the respective
finite element spaces of piecewise linear functions Vk = Vhk

satisfy ∪Vk = H1
0 (Ω). Define

the L2–projections Qk : L2(Ω) 7→ Vk. Then, we can prove the following main result

(3.41)
∑

k

h−2
k ‖(Qk −Qk−1)v‖2

0 ≃ ‖v‖2
1.

More generally, we have the following main characterization of H1
0 (Ω), a result originally

proven by Oswald [Os94],

(3.42) ‖v‖2
1 ≃ inf

v=
P

k

vk, vk∈Vk

∑

k

h−2
k ‖vk‖2

0.

To this end let us define the elliptic–projections πk : H1
0 (Ω) : 7→ Vk in the standard way

(∇πkv, ϕ) = (∇v, ∇ϕ), for all ϕ ∈ Vk.

Based on the optimal L2–error estimate ‖v − πk−1v‖0 ≤ Chk‖v‖1, for v := (πk − πk−1)v,
and using the H1

0–orthogonality of the projections, we have

∑

k

h−2
k ‖(πk − πk−1)v‖2

0 ≤ C
∑

k

‖(πk − πk−1)v‖2
1 = C

∑

k

(
‖πkv‖2

1 − ‖πk−1v‖2
1

)
= ‖v‖2

1.

Finally, from the following chain of inequalities, using the fact that Qk are L2–symmetric
and that (Qk −Qk−1)

2 = Qk −Qk−1, and the optimal L2–error estimate, we have

∑
k

h−2
k ‖(Qk −Qk−1)v‖2

0 =
∑

k

h−2
k ((Qk −Qk−1)v, v)

=
∑

k

h−2
k ((Qk −Qk−1)v,

∑

j≥k

(πj − πj−1)v)

≤
∑

k

h−2
k ‖(Qk −Qk−1)v‖0

∑

j≥k

‖(πj − πj−1)v‖0

≤ C
∑

k

∑

j≥k

1

2j−k

(
h−1

k ‖(Qk −Qk−1)v‖0

)
‖(πj − πj−1)v‖1

≤ C

(
∑

k

∑

j≥k

1

2j−k
h−2

k ‖(Qk −Qk−1)v‖2
0

) 1
2

×
(
∑

j

∑

k≤j

1

2j−k
‖(πj − πj−1)v‖2

1

) 1
2

≤ C

(
∑

k

h−2
k ‖(Qk −Qk−1)v‖2

0

) 1
2

‖v‖1.

The latter shows the first desired result (3.41). Applying exactly the same argument as
above to any decomposition v =

∑
j

vj, vj ∈ Vj (formally replacing (πj − πj−1)v with
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vj ∈ Vj) we show the inequality
∑

k

h−2
k ‖(Qk −Qk−1)v‖2

0 ≤
∑

k

∑

j≥k

1

2j−k

(
h−1

k ‖(Qk −Qk−1)v‖0

) (
h−1

j ‖vj‖0

)
.

The latter implies,
∑

k

h−2
k ‖(Qk −Qk−1)v‖2

0 ≤ C inf
v=
P

j

vj , vj∈Vj

∑

j

h−2
j ‖vj‖2

0.

That is, the decomposition v =
∑
j

(Qj − Qj−1)v is quasi–optimal. This (together with

(3.43) below) shows the well–known norm characterization (3.42) of H1
0 (Ω).

For a more general domain Ω we assume that it can be split into overlapping convex
subdomains Ωm, m = 1, . . . , m0 for a fixed number m0. We also assume that there is
a partition of unity of smooth functions θm such that 0 ≤ θm ≤ 1,

∑
m

θm = 1 and θm is

supported in Ωm. Then, since v =
∑
m

θmv and ‖vθm‖2
1 ≤ C‖v∇θm‖2

0, Ωm
+ C‖v‖2

1, Ωm
, if

we can choose θm such that v∇θm ∈ H1
0 (Ωm) with H1–norm bounded in terms of ‖v‖1,

then the decomposition v =
∑
m

θmv will be stable in H1
0 (Ω) and the functions θmv have

the proven H1
0 (Ωm) norm characterization (since Ωm are convex). Such a result has been

shown in Lions [Li87] for a L–shaped domain Ω with m0 = 2. Thus we can find a stable
decomposition for each vm (supported in Ωm) and thus a stable decomposition of the
finite sum v =

∑
m

vm is constructed which proves (3.42) in one of the directions.

For any decomposition v =
∑
j

vj, vj ∈ Vj, and for a fixed α ∈ (0, 1
2
), using the

inequality (p, q) ≤ ‖p‖α‖q‖−α and appropriate inverse inequalities, we have

(3.43)

‖v‖2
1 =

∑

k

(∇(πk − πk−1)v,
∑

j≥k

∇vj)

≤
∑

k

∑

j≥k

‖(πk − πk−1)v‖1+α ‖vj‖1−α

≤ C
∑

k

∑

j≥k

h−α
k ‖(πk − πk−1)v‖1h

−1+α
j ‖vj‖0

= C
∑

k

∑

j≥k

(
1

2α

)j−k

‖(πk − πk−1)v‖1

(
h−1

j ‖vj‖0

)

≤ C

(
∑

k

∑

j≥k

(
1

2α

)j−k

‖(πk − πk−1)v‖2
1

) 1
2

×
(
∑

j

∑

k≤j

(
1

2α

)j−k

h−2
j ‖vj‖2

0

) 1
2

≤ C/(1 − 2−α) ‖v‖1

(
∑

j

h−2
j ‖vj‖2

0

) 1
2

.

This shows the remaining fact that ‖v‖2
1 is bounded in terms of the r.h.s. of (3.42).
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