# University of Utah School of Computing 

CS 6170 Quiz \#2 Solution Spring 2017 Lecturer: Prof. Bei Wang

Name $\qquad$

UID $\qquad$

Due Feb 23, 2017 at the end of the class.

The quiz is open-book, open-notes, but close-internet. In particular, no laptops, calculators, cell phones, or other electronic devices are allowed.

The point value of each question is clearly marked, so allocate your time wisely. The quiz is worth a total of 10 points.

You must complete all work in 10 minutes, there are no exceptions.

This quiz constitutes $10 \%$ of your final grade.

Total $\qquad$ (out of 10 points)

Question 1 (Computing persistent homology by matrix reduction 10 points). Given a filtration derived from the following simplicial complex, compute the points in the persistence diagram via matrix reduction.
You get 1 point for every correct point reported in the persistence diagram. You loose 1 point (up to 2 points) for every mistake you make during the matrix reduction.
In Fig. 1, vertices 1, 2, 3, and 4 comes in at time 1, 2, 3 and 4, respectively; edge 5 (connecting vertices $\{1,2\}$ ) comes in at time 5 , edge 6 (connecting vertices $\{1,3\}$ ) comes in at time 6 , edge 7 (connecting vertices $\{2,3\}$ ) comes in at time 7 , edge 8 (connecting vertices $\{2,4\}$ ) comes in at time 8 , edge 9 (connecting vertices $\{3,4\}$ ) comes in at time 9, edge 10 (connecting vertices $\{1,4\}$ ) comes in at time 10 ; triangle 11 (connecting vertices $\{1,2$, $3\}$ ) comes in at time 11 ; triangle 12 (connecting vertices $\{2,3,4\}$ ) comes in at time 12 ; triangle 13 (connecting vertices $\{1,2,4\}$ ) comes in at time 13 ; triangle 14 (connecting vertices $\{1,3,4\}$ ) comes in at time 14 .


Figure 1: Simplicial complex that contains 4 vertices, 6 edges and 3 triangles. Left: vertices are labeled by the time they appear. Right: edges are labeled by the time they appear.

The boundary matrix is already given as follows, please perform matrix reduction on top of the boundary matrix.


Table 1: Boundary matrix for persistent homology computation.

Now, please report the points in the persistence diagram:

Points in 0 -dimensional persistence diagram (hint: 4 points): $(2,5),(3,6),(4,8),(1, \infty)$
Points in 1-dimensional persistence diagram (hint: 3 points): $(7,11),(9,12),(10,13)$
Points in 2-dimensional persistence diagram (hint: 1 points): $(14, \infty)$

