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Understanding VF is indispensable for many applications

Turbulence combustion, global oceanic eddies simulations, etc.

A d-dim VF: a function that assigns to each point a d-dim vector

f : S ⊂ Rd → Rd, d = 2 or 3

Critical point x: f(x) = 0

[Yu, Wang, Grout, Chen, Ma 2010] [Maltrud, Bryan, Peacock, 2010] [Levine, Jadhav, Bhatia, Pascucci, Bremer, 2012]



VF analysis and visualization

Simplifying 2D VF: independent of topological skeleton
First 3D VF simplification based on critical point cancellation



VF simplification

Prior work: canceling nearby critical points based on topological
skeleton: critical points connected by separatrices that divide domain
into regions of uniform flow behavior

Preserve important scientific properties of the data

Obtain compact representation for interpretation

Derive multi-scale view of the flow dynamics

Swirling jet simulation [Tricoche, Scheuermann, Hagen 2001]



Challenges with prior work

Topological skeleton can be unstable due to numerical instability

(a) (b)

(c)

(a) Highly rotational flow, near Hopf bifurcations:
diff separatrices intersect/switch.

(b-c) Separatrices are unstable w.r.t perturbations.

Sink, saddle-sink, saddle, source, saddle-source



Contributions: Robustness-based simplification

Canceling critical points based on stability measured by robustness

Complementary view, independent of topological skeleton

Efficient computation for large data, avoid numerical integration

Handle complex boundary configurations

Analysis generalizes to higher dimensions



Robustness-based simplification in a nutshell

In the space of all VFs, find the one closest to the original VF with a
particular set of critical points removed, bases on the L∞ norm

Results are optimal: no other simplification with a smaller perturbation



Some teaser results: synthetic A
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Some teaser results: synthetic B
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Some teaser results: synthetic C
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Some teaser results: synthetic C
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Some teaser results: synthetic C
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Visualizing Robustness of Critical Points
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Critical points clustered by robustness for time-varying ocean eddie simulation
[Wang, Rosen, Skraba, Bhatia and Pascucci (EuroVis) 2013]



Robustness of critical points

Robustness: quantify the stability of critical points

Intuitively, the robustness of a critical point is the minimum amount
of perturbation necessary to cancel it within a local neighborhood

Well group theory

[Edelsbrunner, Morozov and Patel 2010, 2011], [Chazal, Patel and
Skraba 2012].

Robustness computation: based on degree theory and merge tree



r-perturbation: L∞-norm of the VF

Let f, h : R2 → R2 be two continuous 2D vector fields. Define the distance
between the two mapping as

d(f, h) = sup
x∈R2

||f(x)− h(x)||2.

We say h is an r-perturbation of f , if d(f, h) ≤ r.

h(u, v)

f(u, v)

p

r



Degrees

In 2D, deg(x) of a critical point x equals its Poincaré index.

Source +1, sink +1, saddle −1.

A connected component C, deg(C) =
∑

i deg(xi).

Corollary of Poincaré-Hopf thm: if C in R2 has degree zero, then it is
possible to replace the VF inside C with a VF free of critical points
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Degrees

In 2D, deg(x) of a critical point x equals its Poincaré index.

Source +1, sink +1, saddle −1.

A connected component C, deg(C) =
∑

i deg(xi).

Corollary of Poincaré-Hopf thm: if C in R2 has degree zero, then it is
possible to replace the VF inside C with a VF free of critical points
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Sublevel set

Given f : R2 → R2, define its norm (speed of flow) f0 : R2 → R as

f0(x) = ||f(x)||2

For some r ≥ 0, define the sublevel set of f0 as

Fr = f−10 [0, r].



Merge tree of f0

Track components of Fr as they appear and merge, as r increases from 0
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Merge tree of f0 and robustness

The robustness of a critical point is the height of its lowest degree zero
ancestor in the merge tree. [Chazal, Patel, Skraba 2012]
Interpretation: robustness is the min amount of perturbation necessary to cancel
a critical point.
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Robustness: rb(x1) = rb(x2), rb(x3) = rb(x4).



Well group

[Edelsbrunner, Morozov and Patel 2010, 2011], [Chazal, Patel and Skraba 2012]
Suppose h is an r-perturbation of f .
H0 = h−1(0) is the set of critical points of h. We have inclusion:

i : H0 → Fr

i induces linear map:
jh : H(H0)→ H(Fr)

The well group, U(r), is the subgroup of H(Fr), whose elements belong to the
image of each jh, for all r-perturbation h of f :

U(r) =
⋂
h

im jh

Intuitively, an element in U(r) is considered a stable element in H(Fr) if it does
not disappear with respect to any r-perturbation.



Robustness Properties

Robustness quantifies the stability of a critical point w.r.t. perturbations
of the VFs.

If a critical point x has a robustness r:

Need (r + δ)-perturbation to cancel x, for arbitrarily small δ > 0

Any (r − δ)-perturbation is not enough to cancel x.



Visualizing robustness: Video, combustion simulation


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





2D VF Simplification Based on Robustness

[Skraba, Wang, Chen and Rosen (PacificVis Best Paper) 2014]
[Skraba, Wang, Chen and Rosen (TVCG) 2015]



Image space im (C) of a zero-degree component C ⊆ Fr
Map each vector in C to its vector coordinates

Critical points map to the origin of im (C)

im (C) is part of a disk of radius r, whose boundary S could be
uncovered/covered.

S
im(C) im(C)

S

C

(b)(a)

C



PL Image space

f : K → R2, K is a triangulation of C
Linear interpolation: edges and triangles in K map to thoese in im (C).
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Simplification: Key ideas

A region contains critical points if its image space contains the origin

Simplification: deform the VF to create a void surrounding the origin

Simple boundary: boundary of im (C) is uncovered

Complex boundary: boundary of im (C) is covered

S
im(C) im(C)

S

C
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Cut: Create a void surrounding the origin

Deform im (C) to create a void surrounding the origin.
c∗: cut point
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By construction: amount of perturbation < r + ε



Example revisited: Synthetic C complex boundary

(a) (b) (c)

(a) original, (b) after Unwrap, (c) after Cut and (d) final output after Restore



Ocean eddie simulation
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Ocean eddie simulation



Combustion simulation: Hierarchical simplification



Combustion simulation: Hierarchical simplification



Combustion simulation: Hierarchical simplification



Combustion simulation: Hierarchical simplification



Combustion simulation: Hierarchical simplification



Combustion simulation: Hierarchical simplification



Combustion simulation: Hierarchical simplification



Feature Tracking for 2D Time-Varying VF

Stable critical points could provably be tracked more easily and more
accurately in the time-varying setting.

[Skraba, Wang (TopoInVis/Book Chapter), 2014]a



Simplifying 2D Time-Varying VF

[Skraba, Wang, Chen, Rosen (TVCG), 2015]



2D Time-varying VF simplification: Video


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Simplifying 3D VF

[Skraba, Rosen, Wang, Chen, Bhatia, Pascucci (PacificVis/TVCG), 2016]



3D VF simplification


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Next? Tensor field simplification, stress tensor, DTI...

[Wang, Hotz, 2017]


