Topological Data Analysis for Vector Fields The Robustness

Bei Wang

School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah www.sci.utah.edu/~beiwang

April 13, 2017

Robust
 Feature Extraction and Visualization of Vector Fields

Understanding VF is indispensable for many applications

- Turbulence combustion, global oceanic eddies simulations, etc.
- A d-dim VF: a function that assigns to each point a d-dim vector
- $f: S \subset \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, d=2$ or 3
- Critical point $x: f(x)=0$

[Yu, Wang, Grout, Chen, Ma 2010] [Maltrud, Bryan, Peacock, 2010] [Levine, Jadhav, Bhatia, Pascucci, Bremer, 2012]

VF analysis and visualization

Rethink VF Data novel scalable math. rigorous structural stability

Increase Interpretability
feature extraction tracking simplification visualization

Multiscale View

flow dynamics stationary time-varying hierarchical rep.

Simplifying 2D VF: independent of topological skeleton First 3D VF simplification based on critical point cancellation

VF simplification

- Prior work: canceling nearby critical points based on topological skeleton: critical points connected by separatrices that divide domain into regions of uniform flow behavior
- Preserve important scientific properties of the data
- Obtain compact representation for interpretation
- Derive multi-scale view of the flow dynamics

Swirling jet simulation
[Tricoche, Scheuermann, Hagen 2001]

Challenges with prior work

Topological skeleton can be unstable due to numerical instability

(a) Highly rotational flow, near Hopf bifurcations: diff separatrices intersect/switch.
(b-c) Separatrices are unstable w.r.t perturbations.
Sink, saddle-sink, saddle, source, saddle-source

Contributions: Robustness-based simplification

- Canceling critical points based on stability measured by robustness
- Complementary view, independent of topological skeleton
- Efficient computation for large data, avoid numerical integration
- Handle complex boundary configurations
- Analysis generalizes to higher dimensions

Robustness-based simplification in a nutshell

- In the space of all VFs, find the one closest to the original VF with a particular set of critical points removed, bases on the L_{∞} norm
- Results are optimal: no other simplification with a smaller perturbation

Some teaser results: synthetic A

Some teaser results: synthetic B

Some teaser results: synthetic C

Some teaser results: synthetic C

Some teaser results: synthetic C

Visualizing Robustness of Critical Points

Critical points clustered by robustness for time-varying ocean eddie simulation [Wang, Rosen, Skraba, Bhatia and Pascucci (EuroVis) 2013]

Robustness of critical points

- Robustness: quantify the stability of critical points
- Intuitively, the robustness of a critical point is the minimum amount of perturbation necessary to cancel it within a local neighborhood
- Well group theory
- [Edelsbrunner, Morozov and Patel 2010, 2011], [Chazal, Patel and Skraba 2012].
- Robustness computation: based on degree theory and merge tree

r-perturbation: L_{∞}-norm of the VF

Let $f, h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be two continuous 2D vector fields. Define the distance between the two mapping as

$$
\mathrm{d}(f, h)=\sup _{x \in \mathbb{R}^{2}}\|f(x)-h(x)\|_{2}
$$

We say h is an r-perturbation of f, if $\mathrm{d}(f, h) \leq r$.

Degrees

- In 2D, $\operatorname{deg}(x)$ of a critical point x equals its Poincaré index.
- Source +1 , sink +1 , saddle -1 .
- A connected component $C, \operatorname{deg}(C)=\sum_{i} \operatorname{deg}\left(x_{i}\right)$.
- Corollary of Poincaré-Hopf thm: if C in \mathbb{R}^{2} has degree zero, then it is possible to replace the VF inside C with a VF free of critical points

Degrees

- In 2D, $\operatorname{deg}(x)$ of a critical point x equals its Poincaré index.
- Source +1 , sink +1 , saddle -1 .
- A connected component $C, \operatorname{deg}(C)=\sum_{i} \operatorname{deg}\left(x_{i}\right)$.
- Corollary of Poincaré-Hopf thm: if C in \mathbb{R}^{2} has degree zero, then it is possible to replace the VF inside C with a VF free of critical points

Degrees

- In 2D, $\operatorname{deg}(x)$ of a critical point x equals its Poincaré index.
- Source +1 , sink +1 , saddle -1 .
- A connected component $C, \operatorname{deg}(C)=\sum_{i} \operatorname{deg}\left(x_{i}\right)$.
- Corollary of Poincaré-Hopf thm: if C in \mathbb{R}^{2} has degree zero, then it is possible to replace the VF inside C with a VF free of critical points

Degrees

- In 2D, $\operatorname{deg}(x)$ of a critical point x equals its Poincaré index.
- Source +1 , sink +1 , saddle -1 .
- A connected component $C, \operatorname{deg}(C)=\sum_{i} \operatorname{deg}\left(x_{i}\right)$.
- Corollary of Poincaré-Hopf thm: if C in \mathbb{R}^{2} has degree zero, then it is possible to replace the VF inside C with a VF free of critical points

Degrees

- In 2D, $\operatorname{deg}(x)$ of a critical point x equals its Poincaré index.
- Source +1 , sink +1 , saddle -1 .
- A connected component $C, \operatorname{deg}(C)=\sum_{i} \operatorname{deg}\left(x_{i}\right)$.
- Corollary of Poincaré-Hopf thm: if C in \mathbb{R}^{2} has degree zero, then it is possible to replace the VF inside C with a VF free of critical points

Sublevel set

Given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, define its norm (speed of flow) $f_{0}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as

$$
f_{0}(x)=\|f(x)\|_{2}
$$

For some $r \geq 0$, define the sublevel set of f_{0} as

$$
\mathbb{F}_{r}=f_{0}^{-1}[0, r] .
$$

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0}

Track components of \mathbb{F}_{r} as they appear and merge, as r increases from 0

Merge tree of f_{0} and robustness

The robustness of a critical point is the height of its lowest degree zero ancestor in the merge tree. [Chazal, Patel, Skraba 2012] Interpretation: robustness is the min amount of perturbation necessary to cancel a critical point.

Robustness: $\mathrm{rb}\left(x_{1}\right)=\operatorname{rb}\left(x_{2}\right), \operatorname{rb}\left(x_{3}\right)=\operatorname{rb}\left(x_{4}\right)$.

Well group

[Edelsbrunner, Morozov and Patel 2010, 2011], [Chazal, Patel and Skraba 2012] Suppose h is an r-perturbation of f. $\mathbb{H}_{0}=h^{-1}(0)$ is the set of critical points of h. We have inclusion:

$$
i: \mathbb{H}_{0} \rightarrow \mathbb{F}_{r}
$$

i induces linear map:

$$
j_{h}: \mathrm{H}\left(\mathbb{H}_{0}\right) \rightarrow \mathrm{H}\left(\mathbb{F}_{r}\right)
$$

The well group, $\mathrm{U}(r)$, is the subgroup of $\mathrm{H}\left(\mathbb{F}_{r}\right)$, whose elements belong to the image of each j_{h}, for all r-perturbation h of f :

$$
\mathrm{U}(r)=\bigcap_{h} \operatorname{im} j_{h}
$$

Intuitively, an element in $\mathrm{U}(r)$ is considered a stable element in $\mathrm{H}\left(\mathbb{F}_{r}\right)$ if it does not disappear with respect to any r-perturbation.

Robustness Properties

Robustness quantifies the stability of a critical point w.r.t. perturbations of the VFs.

If a critical point x has a robustness r :

- Need $(r+\delta)$-perturbation to cancel x, for arbitrarily small $\delta>0$
- Any $(r-\delta)$-perturbation is not enough to cancel x.

2D VF Simplification Based on Robustness

[Skraba, Wang, Chen and Rosen (PacificVis Best Paper) 2014] [Skraba, Wang, Chen and Rosen (TVCG) 2015]

Image space im (C) of a zero-degree component $C \subseteq \mathbb{F}_{r}$

- Map each vector in C to its vector coordinates
- Critical points map to the origin of $\operatorname{im}(C)$
- im (C) is part of a disk of radius r, whose boundary S could be uncovered/covered.

PL Image space

$f: K \rightarrow \mathbb{R}^{2}, K$ is a triangulation of C
Linear interpolation: edges and triangles in K map to thoese in im (C).

Simplification: Key ideas

- A region contains critical points if its image space contains the origin
- Simplification: deform the VF to create a void surrounding the origin
- Simple boundary: boundary of $\operatorname{im}(C)$ is uncovered
- Complex boundary: boundary of $\mathrm{im}(C)$ is covered

Cut: Create a void surrounding the origin

Deform im (C) to create a void surrounding the origin. c^{*} : cut point

By construction: amount of perturbation $<r+\epsilon$

Example revisited: Synthetic C complex boundary

(a) original, (b) after Unwrap, (c) after Cut and (d) final output after Restore

Ocean eddie simulation

Combustion simulation: Hierarchical simplification

Feature Tracking for 2D Time-Varying VF

Stable critical points could provably be tracked more easily and more accurately in the time-varying setting.
[Skraba, Wang (TopolnVis/Book Chapter), 2014] ${ }^{a}$

Simplifying 2D Time-Varying VF

2D Time-varying VF simplification: Video

Simplifying 3D VF

[Skraba, Rosen, Wang, Chen, Bhatia, Pascucci (PacificVis/TVCG), 2016]

Next? Tensor field simplification, stress tensor, DTI...

Tensor field degenerate points with half integer indices

index -0.5

index 0.5

index 1.5

Corresponding anisotropy vector field critical points with integer indices

index -1.0

index 1

index 3.0
[Wang, Hotz, 2017]

