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14.1 Homology vs. Coholomolgy

14.1.1 Motivation

We can use dimensionality reduction techniques to project higher order point clouds into lower dimensional spaces.
This allows us to compute homology in a simpler space. However, this can cause issues including the loss of infor-
mation and distortion of the projected points. For example, the number of intersections can change based on the angle
used to project an R3 point cloud to a two-dimensional plane. An example of this is shown in Figure 14.1.

Figure 14.1: Projection examples from R3 to R2

In simplicial homology, we can define a chain c ∈ Cp such as c = 12 + 23 + 34. Using simplicial cohomology, we
can define a related cochain c∗ ∈ Cp that defines a parameterization of c as c∗ : c → Z2 where the parameterization
maps an input chain c to a coefficient. This allows the use of a function f to map the point cloud X to a range such
as S1 = [0, 1]. Using this mapping, we can generate values as we move along the underlying points. By assigning
increasing values (blue in Figure 14.1) to the points, we can determine that there is in fact no intersections in the
original point cloud. Using this approach, we can also use multiple functions to determine the amount of tunnels in a
complex shape such as the ‘bouquet of flowers’ in Figure 14.2.
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Figure 14.2: Mapping three rings using multiple parameterizations

14.1.2 Duality

We can say that there exists a duality between homology and cohomology. The notion of homology gives a “geomet-
ric“ representation to a set of simplicial complexes, where cohomology provides an “algebraic“ interpretation“. This
relation is shown in Figure 14.3. Another example of a duality would be the Voronoi diagram (blue) and Delaunay
complex (red) which is shown in Figure 14.4.

Figure 14.3: Homology and Cohomology Duality

Figure 14.4: Another example of a Duality
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14.2 Cohomology Examples

Let κ be the simplicial complex in Figure 14.5:

κ =

 v0, v1, v2, v3
e1, e2, e3, e4, e5
∆1,∆2

Figure 14.5: Simplicial Complex κ

14.2.1 Chains

As we have seen before, we can take examples of p-chains from this simplicial complex:

0-chains (b): b1 = v1, b2 = v1 + v2, b3 = v1 + v2 + v3.
1-chains (a): a1 = e1, a2 = e2, a3 = e1 + e2 + e4 + e4 + e5
2-chains (c): c1 = ∆1, c2 = ∆1 + ∆2

Definition 14.1. A k-chain with a single element is known as an elementary k-dimensional chain or elementary
k-chain.

For example, b1 is an elementary 0-chain and a1 is an elementary 1-chain.

We can also take the boundary of such chains:

∂(c2) = ∂(∆1) + ∂(∆2) = (e1 + e4 +��e5) + (e2 + e3 +��e5) = e1 + e2 + e3 + e4 (14.1)
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14.2.2 Cochains

We also have k-cochains and elementary k-cochains which are the duals of k-chains and elementary k-chains:

0-cochains (β):
v∗0 , v

∗
1 , v

∗
2 , v

∗
3 (elementary 0-cochains)

β0 = v∗0 + v∗1

These cochains give mappings to their equivalent chains:{
v∗0(v0) = 1
v∗0(vn) = 0, where n 6= 0

Similarly for the other dimensions:

1-cochains (α):
e∗1, e

∗
2, e

∗
3, e

∗
4, e

∗
5 (elementary 1-cochains)

α0 = e∗1 + e∗2, α1 = e∗1 + e∗5

The mappings are similar to their 0-dimensional counterparts: e∗1(e1) = 1, e∗1(e2) = 0, · · ·

2-cochains (γ):
∆∗

1, ∆∗
2 (elementary 2-cochains)

γ0 = ∆∗
1 + ∆∗

2

And the corresponding mappings: ∆∗
1(∆1) = 1, ∆∗

1(∆2) = 0, ∆∗
2(∆1) = 0, ∆∗

2(∆2) = 1

Cochains also hold under the distributive property of addition:

β0(v0) = (v∗0 + v∗1)(v0) = v∗0(v0) + v∗1(v0) = 1

14.2.3 Coboundary

A duality called the coboundary exists as a parallel to the boundary.

Let the coboundary operator be symbolized as δ. This gives us the following definition:

If c =
∑
giσ

∗
i , gi ∈ Z2 = {0, 1} where σ∗

i can be v∗i , e∗i , or ∆∗
i , and c is a linear combination of coefficients over

the elementary cochain σ∗
i .

Then δ c =
∑
gi(δ σ

∗
1)

We can take the coboundary of the p-simplex σ∗:

δ σ∗ =
∑
εjτ

∗
j

If σ∗ corresponds to a p-simplex σ, then τj is a (p + 1)-simplex having σ as a face.
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Examples:

δ e∗5 = ∆∗
1 + ∆∗

2

δ v∗1 = e∗1 + e∗2 + e∗5

Similar to boundaries, the coboundary of a coboundary is zero:

δ(δ(v∗1)) = δ(e∗1) + δ(e∗2) + δ(e∗5) =��∆
∗
1 +��∆

∗
2 + (��∆

∗
1 +��∆

∗
2) = 0

14.2.4 Cohomology Groups

In Homology we have the p-cycle group Zp and p-boundary group Bp. In Cohomology we have p-cocycle group Zp

and p-coboundary group Bp. A cocycle is a p-chain that has a coboundary of zero. A p-dimensional cochain is a
coboundary if there exists a (p+1)-chain that is coboundary of.

Examples:

1. ∆∗
1 is a cocycle because δ ∆∗

1 = 0

2. ∆∗
1,∆

∗
2 are coboundaries, since δ e∗1 = ∆∗

1, δ e
∗
3 = ∆∗

2

3. a∗ = e∗1 + e∗5 + e∗3 is a cocycle and a coboundary:
δ(a∗) = δ(e∗1) + δ(e∗5) + δ(e∗3) = ∆∗

1 + (∆∗
1 + ∆∗

2) + ∆∗
2 = 0 and δ(v∗1) = a∗

4. A zero dimensional cochain β = v∗0 + v∗2 + v∗3 + v∗1 is a cocycle:

δ(β) = δ(v∗0) + δ(v∗2) + δ(v∗3) + δ(v∗1)

= (e∗1 + e∗4) + (e∗3 + e∗2) + (e∗3 + e∗4 + e∗5) + (e∗1 + e∗2 + e∗5)

= 0

Therefore β is a cocycle but not a coboundary.

We can define a cohomology group as Hp = Zp/Bp, or the p-cocycle group mod the p-coboundary group.


