CS 6170 Computational Topology: Topological Data Analysis

 Spring 2017
Lecture 12: Feb 16, 2017

Lecturer: Prof. Bei Wang beiwang@sci.utah.edu
Scribe: Waiming Tai

This lecture's notes illustrate the concept of computing homology.

12.1 Review of definitions

For any simplicial complex K, we have the following definitions.
Definition 12.1. The p-th cycle group $Z_{p}(K)$ is a set of p-th chain $C_{p}(K)$ with empty boundary. That is, $Z_{p}(K)=$ $\left\{c \mid \partial c=0, c \in Z_{p}(K)\right\}$
Definition 12.2. The p-th boundary group $B_{p}(K)$ is a set of p-th chain $C_{p}(K)$ that is the boundary of $a(p+1)$-th chain. That is, $B_{p}(K)=\left\{c \mid c=\partial d \quad\right.$ for some $\left.d \in C_{p+1}(K)\right\}$

Definition 12.3. The p-th homology group $H_{p}(K)$ is the p-th cycle group $Z_{p}(K)$ modulo the p-th boundary group B_{p}. That is, $H_{p}(K)=Z_{p}(K) / B_{p}(K)$

From now on, we simplify the notation $Z_{p}(K)=Z_{p}, B_{p}(K)=B_{p}$ and $H_{p}(K)=H_{p}$ when K is apparent.
Roughly speaking, H_{p} is the group of cycles that don't bound. Here is an example.

Figure 12.1: The first example

Let $c=13+34+14$. c is a cycle which means $c \in Z_{1}$. However, there is not a $d \in C_{2}$ such that $c=\partial d$ and so $c \notin B_{1}$. Therefore, c is a non-identity element of H_{1}.

Let $c^{\prime}=12+23+13 . c^{\prime} \in Z_{1}$. Also, $c^{\prime}=\partial d^{\prime}$ where $d^{\prime}=123$ and so $c^{\prime} \in B_{1}$. That means c^{\prime} is an identity in H_{1}.
Let $c^{\prime \prime}=12+23+34+14$. We can express $c^{\prime \prime}$ as $(13+34+14)+(12+23+13)=c+c^{\prime}$. It means that $c^{\prime \prime} \approx c$ in H_{1}.

Here is another example.

Figure 12.2: The second example

Consider $12+25+35+34+14$. Is this cycle an identity in H_{1} ? The answer is yes. We can express it as $(13+34+14)+(12+23+13)+(23+35+25)$. It is easy to see that $12+23+13$ and $23+35+25$ are in B_{1} but $13+34+14$ is not.

Definition 12.4. A generating set of a group G is a subset of G such that every element in G can be expressed as the combination (under group operation) of finitely many elements of the subset and their inverses.

Definition 12.5. Rank of a group $G \operatorname{rank}(G)$ is the smallest cardinality of a generating set of G. That is, $\operatorname{rank}(G)=$ $\min _{S \subset G}|S|$ where minimum is over all generating set of G.

Definition 12.6. The p-th Betti number β_{p} is the rank of H_{p}. That is, $\beta_{p}=\operatorname{rank}\left(H_{p}\right)$.

Figure 12.3: Generating set example

In the above example, $\operatorname{rank}\left(H_{1}\right)=2$ not 3 . Consider

$$
\begin{aligned}
& c_{1}=12+23+13 \\
& c_{2}=23+34+24 \\
& c_{3}=12+13+34+24
\end{aligned}
$$

It is easy to check that the smallest set of H_{1} is $\left\{c_{1}, c_{2}\right\}$ or $\left\{c_{2}, c_{3}\right\}$ or $\left\{c_{1}, c_{3}\right\}$. This example also shows that the smallest generating set may not be unique.

Recall that all p-th chain C_{p} are connected by boundary operator ∂.

$$
C_{2} \xrightarrow{\partial} C_{1} \xrightarrow{\partial} C_{0}
$$

If $123 \in C_{2}$, then

$$
\begin{aligned}
\partial(123) & =12+13+23 \in C_{1} \\
\partial(12) & =1+2 \in C_{0}
\end{aligned}
$$

More generally,

$$
\cdots \rightarrow C_{p+1} \xrightarrow{\partial_{p+1}} C_{p} \xrightarrow{\partial_{p}} C_{p-1} \rightarrow \ldots
$$

Figure 12.4: Illustration of boundary map

12.2 Reduced homology

Consider the augmentation map $\mathcal{E}: C_{0} \rightarrow \mathbb{Z}_{2}$ defined by $\mathcal{E}(u)=1$ for every vertex u.

$$
\cdots \rightarrow C_{1} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\varepsilon} \mathbb{Z}_{2}=C_{-1} \xrightarrow{0} 0
$$

Definition 12.7. The p-th reduced homology group \tilde{H}_{p} is defined as following.

$$
\tilde{H}_{p}=\operatorname{ker} \partial_{p} \backslash \operatorname{im} \partial_{p+1}=H_{p}
$$

In particular,

$$
\tilde{H}_{0}=\operatorname{ker} \mathcal{E} \backslash \operatorname{im} \partial_{1}
$$

Definition 12.8. The p-th reduced Betti number $\tilde{\beta}_{p}$ is the rank of \tilde{H}_{p}. That is, $\tilde{\beta}_{p}=\operatorname{rank}\left(\tilde{H}_{p}\right)$.

If K is not empty, then

$$
\left\{\begin{array}{l}
\tilde{\beta}_{p}=\beta_{p} \quad, \text { for } p \geq 1 \\
\tilde{\beta}_{0}=\beta_{0}-1
\end{array}\right.
$$

If $K=\emptyset$, then $\tilde{\beta}_{-1}=1$

12.3 Algorithm

This is the algorithm for computing $\tilde{\beta}_{p}$.

Input: p-th boundary matrix ∂_{p} for all p where the column represent p-simplices, η_{p} and the row represent $(p-1)$-simplices, η_{p-1}
Use row and column operation to reduce ∂_{p} to Smith normal form (SNF) N_{p} return $n_{0}-n_{1}$
where n_{0} is number of zero column in N_{p}
and n_{1} is number of non-zero row in N_{p+1}

Recall that a matrix is SNF if

- all non-diagonal element are zero
- all non-zero row are above all zero row

Indeed, we can prove that $n_{0}=\operatorname{rank}\left(Z_{p}\right)$ and $n_{1}=\operatorname{rank}\left(B_{p}\right)$ and therefore the output is exactly $\tilde{\beta}_{p}$.
Recall that column and row operation consist of the following.
Column operation:

- exchange column k with column l
- add column k to column l

Row operation:

- exchange row k with row l
- add row l to row k

Therefore, $N_{p}=U_{p-1} \partial_{p} V_{p}$ where U_{p-1} represent the row operation and V_{p} represent the column operation.
Here is the example. The following K is called triangulated 3-ball which consists of all possible combination. That is, $K=\{a, b, c, d, a b, a c, a d, b c, b d, c d, a b c, a b d, a c d, b c d, a b c d\}$.

Figure 12.5: Triangulated 3-ball
It is easy to check $\tilde{\beta}_{0}=\beta_{0}-1=0, \tilde{\beta}_{1}=\beta_{1}=0, \tilde{\beta}_{2}=\beta_{2}=0$. Now, we can compute this by the above algorithm. $\partial_{0}:$

$$
\begin{array}{lllll}
& a & b & c & d \\
1 & 1 & 1 & 1 & 1
\end{array}
$$

Adding column 1 to column 2, 3 and 4:

$$
\begin{array}{lllll}
& & a & b & c \\
\\
1 & 1 & 0 & d \\
0
\end{array}
$$

N_{0} :

$$
\begin{array}{lllll}
& & a & b & c \\
\\
1 & 1 & 0 & d \\
0 & 0
\end{array}
$$

Therefore, $\operatorname{rank}\left(Z_{0}\right)=3$ and $\operatorname{rank}\left(B_{-1}\right)=1$. $\partial_{1}:$

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	1	1	1	0	0	0
b	1	0	0	1	1	0
c	0	1	0	1	0	1
d	0	0	1	0	1	1

Adding row 1 to row 2:

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	1	1	1	0	0	0
b	0	1	1	1	1	0
c	0	1	0	1	0	1
d	0	0	1	0	1	1

Adding column 1 to column 2 and 3 :

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	1	0	0	0	0	0
b	0	1	1	1	1	0
c	0	1	0	1	0	1
d	0	0	1	0	1	1

Adding row 2 to row 3 :

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	1	0	0	0	0	0
b	0	1	1	1	1	0
c	0	0	1	0	1	1
d	0	0	1	0	1	1

Adding column 2 to column 3, 4 and 5:

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	1	0	0	0	0	0
b	0	1	0	0	0	0
c	0	0	1	0	1	1
d	0	0	1	0	1	1

Adding row 3 to row 4 :

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	1	0	0	0	0	0
b	0	1	0	0	0	0
c	0	0	1	0	0	0
d	0	0	0	0	0	0

N_{1} :

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	1	0	0	0	0	0
b	0	1	0	0	0	0
c	0	0	1	0	0	0
d	0	0	0	0	0	0

Therefore, $\operatorname{rank}\left(Z_{1}\right)=3$ and $\operatorname{rank}\left(B_{0}\right)=3$. Also, $\tilde{\beta}_{0}=0$.
∂_{2} :

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	1	0	0
$a c$	1	0	1	0
$a d$	0	1	1	0
$b c$	1	0	0	1
$b d$	0	1	0	1
$c d$	0	0	1	1

Adding row 1 to row 2 and 4 :

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	1	0	0
$a c$	0	1	1	0
$a d$	0	1	1	0
$b c$	0	1	0	1
$b d$	0	1	0	1
$c d$	0	0	1	1

Adding column 1 to column 2:

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	0	0	0
$a c$	0	1	1	0
$a d$	0	1	1	0
$b c$	0	1	0	1
$b d$	0	1	0	1
$c d$	0	0	1	1

Adding row 2 to row $3,4,5$ and 6 :

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	0	0	0
$a c$	0	1	1	0
$a d$	0	0	0	0
$b c$	0	0	1	1
$b d$	0	0	1	1
$c d$	0	0	1	1

Adding column 2 to column 3 :

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	0	0	0
$a c$	0	1	0	0
$a d$	0	0	0	0
$b c$	0	0	1	1
$b d$	0	0	1	1
$c d$	0	0	1	1

Exchanging row 3 with row 4 :

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	0	0	0
$a c$	0	1	0	0
$b c$	0	0	1	1
$a d$	0	0	0	0
$b d$	0	0	1	1
$c d$	0	0	1	1

Adding row 3 to row 5 and 6 :

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	0	0	0
$a c$	0	1	0	0
$b c$	0	0	1	1
$a d$	0	0	0	0
$b d$	0	0	0	0
$c d$	0	0	0	0

Adding column 3 to column 4:

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	0	0	0
$a c$	0	1	0	0
$b c$	0	0	1	0
$a d$	0	0	0	0
$b d$	0	0	0	0
$c d$	0	0	0	0

$N_{2}:$

	$a b c$	$a b d$	$a c d$	$b c d$
$a b$	1	0	0	0
$a c$	0	1	0	0
$b c$	0	0	1	0
$a d$	0	0	0	0
$b d$	0	0	0	0
$c d$	0	0	0	0

Therefore, $\operatorname{rank}\left(Z_{2}\right)=1$ and $\operatorname{rank}\left(B_{1}\right)=3$. Also, $\tilde{\beta}_{1}=0$.
$\partial_{3}:$

$$
\begin{array}{ll}
& a b c d \\
a b c & 1 \\
a b d & 1 \\
a c d & 1 \\
b c d & 1
\end{array}
$$

Adding row 1 to row 2, 3 and 4 :

	$a b c d$
$a b c$	1
$a b d$	0
$a c d$	0
$b c d$	0

$N_{3}:$

$$
\begin{array}{ll}
& a b c d \\
a b c & 1 \\
a b d & 0 \\
a c d & 0 \\
b c d & 0
\end{array}
$$

Therefore, $\operatorname{rank}\left(Z_{3}\right)=0$ and $\operatorname{rank}\left(B_{2}\right)=1$. Also, $\tilde{\beta}_{2}=0$.
Here is another example. This example is same as the previous one except that the center is hollow. That is, $K=$ $\{a, b, c, d, a b, a c, a d, b c, b d, c d, a b c, a b d, a c d, b c d\}$.

Figure 12.6: Hollow triangulated 3-ball

In this case, ∂_{3} doesn't exist. Therefore, $\tilde{\beta}_{2}=1-0=1$.

