CS 6170 Computational Topology: Topological Data Analysis Spring 2017 University of Utah School of Computing

Lecture 12: Feb 16, 2017

Lecturer: Prof. Bei Wang <beiwang@sci.utah.edu>

Scribe: Waiming Tai

This lecture's notes illustrate the concept of computing homology.

12.1 Review of definitions

For any simplicial complex K, we have the following definitions.

Definition 12.1. The p-th cycle group $Z_p(K)$ is a set of p-th chain $C_p(K)$ with empty boundary. That is, $Z_p(K) = \{c \mid \partial c = 0, c \in Z_p(K)\}$

Definition 12.2. The *p*-th boundary group $B_p(K)$ is a set of *p*-th chain $C_p(K)$ that is the boundary of a (p+1)-th chain. That is, $B_p(K) = \{c \mid c = \partial d \text{ for some } d \in C_{p+1}(K)\}$

Definition 12.3. The p-th homology group $H_p(K)$ is the p-th cycle group $Z_p(K)$ modulo the p-th boundary group B_p . That is, $H_p(K) = Z_p(K)/B_p(K)$

From now on, we simplify the notation $Z_p(K) = Z_p$, $B_p(K) = B_p$ and $H_p(K) = H_p$ when K is apparent.

Roughly speaking, H_p is the group of cycles that don't bound. Here is an example.

Figure 12.1: The first example

Let c = 13 + 34 + 14. c is a cycle which means $c \in Z_1$. However, there is not a $d \in C_2$ such that $c = \partial d$ and so $c \notin B_1$. Therefore, c is a non-identity element of H_1 .

Let c' = 12 + 23 + 13. $c' \in Z_1$. Also, $c' = \partial d'$ where d' = 123 and so $c' \in B_1$. That means c' is an identity in H_1 . Let c'' = 12 + 23 + 34 + 14. We can express c'' as (13 + 34 + 14) + (12 + 23 + 13) = c + c'. It means that $c'' \approx c$ in H_1 .

Here is another example.

Figure 12.2: The second example

Consider 12 + 25 + 35 + 34 + 14. Is this cycle an identity in H_1 ? The answer is yes. We can express it as (13 + 34 + 14) + (12 + 23 + 13) + (23 + 35 + 25). It is easy to see that 12 + 23 + 13 and 23 + 35 + 25 are in B_1 but 13 + 34 + 14 is not.

Definition 12.4. A generating set of a group G is a subset of G such that every element in G can be expressed as the combination (under group operation) of finitely many elements of the subset and their inverses.

Definition 12.5. Rank of a group $G \operatorname{rank}(G)$ is the smallest cardinality of a generating set of G. That is, $\operatorname{rank}(G) = \min_{S \subset G} |S|$ where minimum is over all generating set of G.

Definition 12.6. The *p*-th Betti number β_p is the rank of H_p . That is, $\beta_p = \operatorname{rank}(H_p)$.

Figure 12.3: Generating set example

In the above example, $rank(H_1) = 2$ not 3. Consider

$$c_1 = 12 + 23 + 13$$

$$c_2 = 23 + 34 + 24$$

$$c_3 = 12 + 13 + 34 + 24$$

It is easy to check that the smallest set of H_1 is $\{c_1, c_2\}$ or $\{c_2, c_3\}$ or $\{c_1, c_3\}$. This example also shows that the smallest generating set may not be unique.

Recall that all p-th chain C_p are connected by boundary operator ∂ .

$$C_2 \xrightarrow{\partial} C_1 \xrightarrow{\partial} C_0$$

If $123 \in C_2$, then

$$\partial(123) = 12 + 13 + 23 \in C_1$$

 $\partial(12) = 1 + 2 \in C_0$

More generally,

$$\cdots \to C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \to \dots$$

Figure 12.4: Illustration of boundary map

12.2 Reduced homology

Consider the augmentation map $\mathcal{E}: C_0 \to \mathbb{Z}_2$ defined by $\mathcal{E}(u) = 1$ for every vertex u.

 $\cdots \to C_1 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\mathcal{E}} \mathbb{Z}_2 = C_{-1} \xrightarrow{0} 0$

Definition 12.7. The *p*-th reduced homology group \tilde{H}_p is defined as following.

$$\tilde{H}_p = \ker \partial_p \setminus \operatorname{im} \partial_{p+1} = H_p$$

In particular,

$$\tilde{H}_0 = \ker \mathcal{E} \setminus \operatorname{im} \partial_1$$

Definition 12.8. The *p*-th reduced Betti number $\tilde{\beta}_p$ is the rank of \tilde{H}_p . That is, $\tilde{\beta}_p = \operatorname{rank}(\tilde{H}_p)$.

If K is not empty, then

$$\left\{ \begin{array}{l} \tilde{\beta}_p = \beta_p \quad \text{, for } p \geq 1 \\ \tilde{\beta}_0 = \beta_0 - 1 \end{array} \right.$$

If $K = \emptyset$, then $\tilde{\beta}_{-1} = 1$

12.3 Algorithm

This is the algorithm for computing $\tilde{\beta}_p$.

Input: *p*-th boundary matrix ∂_p for all pwhere the column represent *p*-simplices, η_p and the row represent (p-1)-simplices, η_{p-1} Use row and column operation to reduce ∂_p to Smith normal form (SNF) N_p **return** $n_0 - n_1$ where n_0 is number of zero column in N_p and n_1 is number of non-zero row in N_{p+1} Recall that a matrix is SNF if

- all non-diagonal element are zero
- all non-zero row are above all zero row

Indeed, we can prove that $n_0 = \operatorname{rank}(Z_p)$ and $n_1 = \operatorname{rank}(B_p)$ and therefore the output is exactly $\hat{\beta}_p$. Recall that column and row operation consist of the following.

Column operation:

- exchange column k with column l
- add column k to column l

Γ	÷	÷]	[:	÷] 1			:	
	÷	:		:	÷		·.	(row <i>k</i>)	1	
	$\operatorname{col} k \cdots$	$\operatorname{col} k + \operatorname{col} l$	··· =	$ \cdots \operatorname{col} k $	\cdots col l			·	$(\operatorname{col} l)$	
	÷	÷		:	÷				·	
	÷	÷			÷				•	1

Row operation:

- exchange row k with row l
- add row l to row k

Therefore, $N_p = U_{p-1}\partial_p V_p$ where U_{p-1} represent the row operation and V_p represent the column operation.

Here is the example. The following K is called triangulated 3-ball which consists of all possible combination. That is, $K = \{a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd\}$.

It is easy to check $\tilde{\beta}_0 = \beta_0 - 1 = 0$, $\tilde{\beta}_1 = \beta_1 = 0$, $\tilde{\beta}_2 = \beta_2 = 0$. Now, we can compute this by the above algorithm. ∂_0 :

			a	b	c	d	
			1 1	1	1	1	
Adding column 1 to column 2, 3 and 4:							
e ,			a	b	c	d	
			1 1	0	0	0	
N_0 :							
			a	b	c	d	
			1 1	0	0	0	
Therefore, $\operatorname{rank}(Z_0) = 3$ and $\operatorname{rank}(B_{-1})$	= 1	L.					
∂_1 :							
.1.		ab	ac	ad	bc	bd	cd
	a	1	1	1	0	0	0
	b	1	0	0	1	1	0
	c	0	1	0	1	0	1
	d	0	0	1	0	1	1
Adding row 1 to row 2:							
-		ab	ac	ad	bc	bd	cd
	a	1	1	1	0	0	0
	b	0	1	1	1	1	0
	c	0	1	0	1	0	1
	d	0	0	1	0	1	1
Adding column 1 to column 2 and 3:							
		ab	ac	ad	bc	bd	cd
	a	1	0	0	0	0	0
	b	0	1	1	1	1	0
	c	0	1	0	1	0	1
	d	0	0	1	0	1	1

Adding row 2 to row 3:							
		ab	ac	ad	bc	bd	cd
	a	1	0	0	0	0	0
	b	0	1	1	1	1	0
	c	0	0	1	0	1	1
	d	0	0	1	0	1	1
Adding column 2 to column 3, 4 and 5:							
		ab	ac	ad	bc	bd	cd
	a	1	0	0	0	0	0
	b	0	1	0	0	0	0
	c	0	0	1	0	1	1
	d	0	0	1	0	1	1
Adding row 3 to row 4:							
C		ab	ac	ad	bc	bd	cd
	a	1	0	0	0	0	0
	b	0	1	0	0	0	0
	c	0	0	1	0	0	0
	d	0	0	0	0	0	0
N_1 :							
		ab	ac	ad	bc	bd	cd
		1	0	0	0	0	0
	b	0	1	0	0	0	0
	c	0	0	1	0	0	0
	d	0	0	0	0	0	0
Therefore, $rank(Z_1) = 3$ and $rank(B_0) =$	= 3.	Also	$\beta, \tilde{\beta}_0$	= 0.			
∂_2 :							
· 2·			abc	abd	acc	l be	cd
	0	ab	1	1	0	0	
	0	ac	1	0	1	0	
	6	ad	0	1	1	0	
	ł	bc	1	0	0	1	
	ł	bd	0	1	0	1	
	0	cd	0	0	1	1	
Adding row 1 to row 2 and 4:							
			abc	abd	acc	l be	cd
	0	ab	1	1	0	0	
	0	ac	0	1	1	0	
	0	ad	0	1	1	0	
	t	bc	0	1	0	1	
	t	bd	0	1	0	1	
	0	cd	0	0	1	I	
Adding column 1 to column 2:			,	, ,		, ,	7
		. 1	<i>abc</i>	abd		t be	cd
	0	<i>ab</i>	1	0	0	0	
	0		0	1	1	0	
	1	ia	0	1	1	1	
	1		0	1 1	U	1	
	t	na 2d	0	1	U 1	1	
	(u	U	U	T	1	

Adding row 2 to row 3, 4, 5 and 6:

7 Idding 10w 2 to 10w 0, 4, 0 and 0.					
		abc	abd	acd	bcd
	ab	1	0	0	0
	ac	0	1	1	0
	ad	0	0	0	0
	bc	0	0	1	1
	bd	0	0	1	1
	cd	0	0	1	1
Adding column 2 to column 3:					
		abc	abd	acd	bcd
	ab	1	0	0	0
	ac	0	1	0	0
	ad	0	0	0	0
	bc	0	0	1	1
	bd	0	0	1	1
	cd	0	0	1	1
Exchanging row 3 with row 4:					
Exchanging fow 5 with fow 4.		abc	abd	acd	bcd
	ab	1	0	0	0
	ac	0	1	0	0
	bc	0	0	1	1
	ad	0	0	0	0
	hd	0	0	1	1
	cd	0	0	1	1
	ea	0	0	-	-
Adding row 3 to row 5 and 6:		aha	abd	and	had
	ah	1 auc	0	$\frac{ucu}{0}$	0000
	ao	1	1	0	0
	uc ha	0	1	1	1
	oc ad	0	0	1	1
	uu hd	0	0	0	0
	ou ad	0	0	0	0
	cu	0	0	0	0
Adding column 3 to column 4:					
	_	abc	abd	acd	bcd
	ab	1	0	0	0
	ac	0	1	0	0
	bc	0	0	1	0
	ad	0	0	0	0
	bd	0	0	0	0
	cd	0	0	0	0
N_2 :					
		abc	abd	acd	bcd
	ab	1	0	0	0
	ac	0	1	0	0
	bc	0	0	1	0
	ad	0	0	0	0
	bd	0	0	0	0
	cd	0	0	0	0

Therefore, $\operatorname{rank}(Z_2) = 1$ and $\operatorname{rank}(B_1) = 3$. Also, $\tilde{\beta}_1 = 0$.

 ∂_3 : abcdabc1 abd1 acd1 1 bcdAdding row 1 to row 2, 3 and 4: abcdabc1 0 abdacd0 bcd0 N_3 : abcdabc1 abd0 0 acdbcd0

Therefore, $\operatorname{rank}(Z_3) = 0$ and $\operatorname{rank}(B_2) = 1$. Also, $\tilde{\beta}_2 = 0$.

Here is another example. This example is same as the previous one except that the center is hollow. That is, $K = \{a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd\}$.

Figure 12.6: Hollow triangulated 3-ball

In this case, ∂_3 doesn't exist. Therefore, $\tilde{\beta}_2 = 1 - 0 = 1$.