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10.1 Introduction

The goal of persistent homology is to discover topological invariants in the data. The motivation is that the data may
have structural information that is only present when viewed in the appropriate dimension. For example, if the point
cloud of your data is circular in two dimensions, but you are looking at a projection onto a one-dimensional line, the
data will appear sporadic on a line and you lose the coherent structure it had in two dimensions. Tunnels, voids, and
higher dimensional topological features that are invariant in the data may be useful in making conclusions from it, and
the goal of persistent homology is to uncover these invariants.

Persistent homology will differentiate between noise and essential features of the data. The basic idea is to sample
points from continuous space (where computation is infeasible) and operate on the resulting point cloud using simpli-
cial complexes (where computation is feasible). Balls of a certain radius determine when a simplex is born, but it is
generally not known what radius should be used to accurately distinguish between a topological invariant of the data
and noise. Thus, persistent homology considers all possible radii and tracks when topological features are born and
die. This is visualized through persistence diagrams and persistence barcodes, which will be illustrated in examples
that follow.

10.2 Application: Persistent Homology and Brain Data

Paper discussed: [W2016]

Brain networks are generated from fMRI data and establish functional connections between regions of the brain. In
this paper 264 regions of interest (ROIs) were considered. A timeseries is associated with each ROI corresponding to
resting state brain activity of 30 control subjects and 57 subjects falling somewhere on the Autism Spectrum. There is
no existing diagnostic test for Autism Spectrum Disorder (ASD) and is typically evaluated behaviorally by a specialist
rating an individual using the Autism Diagnostic Observation Schedule (ADOS). The goal of the paper was to leverage
topological features present in the data to predict the ADOS classification for individuals with ASD.

TDA using persistent homology proceeds as follows:

1. Create a point cloud of the fMRI timeseries for each subject by allowing each point to correspond to a ROI (264
points in total).

2. Compute the pairwise distance between points as a function of the correlation between the corresponding time-
series associated with the ROIs:

d(x, y) =
√

1− corr(x, y)

where corr is Pearson Correlation and x and y are timeseries.
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3. Run filtration using radius r from 0 (minimum distance) to
√

2 (maximum distance) such that two points are
considered connected if the balls of radius r around the two points overlap.

4. Generate persistence diagrams and persistence barcodes for the filtration.

5. Do regression with persistence data as input to predict ASOD score.

Figure 10.1: Brain network to metric space

Regression in this case was done with Kernel Partial Least Squares Regression which uses the kernel trick with the
following kernel:

KTDA
σ (A,B) =

1

8πσ

∑
p∈A,q∈B

e−
||p−q||2

8σ − e−
||p−q̄||2

8σ

where A and B are barcodes and for q = (a, b) ∈ B, q̄ := (b, a).

The conclusion of this research was that the features from TDA alone were insufficient for predicting ADOS score
accurately, but when TDA information was used in conjunction with standard correlation information, classification
accuracy improved over using standard correlation information alone.

10.3 Persistent Cohomology

Persistent cohomology is a dual of persistent homology, in the sense that notions like chain and cycle in homology
have corresponding notions like cochain and cocycle in cohomology. Cohomology is often easier to compute than
homology which is one reason why it is often favored in some applications.

The elements in persistent cohomology are functions over simplicial complexes and serve as indicator functions for the
presence of an element. For example, for every vertex vi of a simplicial complex there exists a function v∗i : V→ Z2

such that

v∗i (vi) = 1
v∗i (vj) = 0 ∀i 6= j

The functions v∗i are the elementary 0-cochains of cohomology and are the dual notion corresponding to vertices which
are elementary 0-chains in homology. Similarly, for every edge ei of a simplicial complex there exists an indicator
function e∗i : E→ Z2 such that
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e∗i (ei) = 1
e∗i (ej) = 0 ∀i 6= j

The functions e∗i are the elementary 1-cochains of cohomology and are the dual notion corresponding to edges which
are elementary 1-chains in homology. Formally, we have for a simplicial complex X with X0, X1, and X2 denoting
the sets of vertices, edges, and triangles of X , respectively:

C0 = {β : X0 → Z2|β =
∑
i

giv
∗
i }

C1 = {α : X1 → Z2|α =
∑
i

gie
∗
i }

C2 = {γ : X2 → Z2|γ =
∑
i

gi∆
∗
i }

where gi ∈ {0, 1} and ∆ represents a triangle of the simplicial complex.

Definition 10.1. Coboundary maps δ0 : C0 → C1 and δ1 : C1 → C2 are defined as

(δ0β)(ab) = β(b)− β(a)

(δ1α)(abc) = α(bc)− α(ac) + α(ab)

Definition 10.2. A p-cocycle is an α ∈ Cp such that δpα = 0.

Definition 10.3. A p-coboundary is an α ∈ Cp such that there exists a β ∈ Cp−1 such that δp−1β = α.

Example: Consider the following simplicial complex:

We have the indicator functions e∗1 ∈ C1 and v∗1 , v
∗
2 ∈ C0 and

δ0β = e∗1 = β(∂e1) = β(v1 + v2) = β(v1) + β(v2) = v∗1 + v∗2
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10.4 Application: Persistent Cohomology and Circular Coordinates

Paper discussed: [D2011]

The paper regards the problem of non-linear dimensionality reduction (NLDR). The goal of NLDR is to reduce the
dimensionality of data while preserving its intrinsic structure. For point cloud data X ∈ Rd the data is to be mapped
into a lower dimension by a map φ : X → Rm such that m < d.

This paper dealt specifically with computing circular value coordinates for a statistical data set with φ : X → S1,
and this map is computed through the use of persistent cohomology. Their conclusion is that they are able to perform
NLDR analysis for a broader class of data sets than traditional techniques such as Isomap and Laplacian Eigenmaps.
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