2.1 Topics covered

- Algebraic topology
- Computational topology

2.1.1 Brief review of items from the previous lecture

- Simplicial complex K
- Underlying space of simplicial complex $|K|$ (piece of Euclidean space the simplicial complexes occupy)

2.1.2 Triangulation, Betti number

Definition: A triangulation of a topological space \mathbb{X} is a simplicial complex K together with a homeomorphism between \mathbb{X} and $|K|$.

Betti number: (also notated b_{i})
β_{0} : counting the number of connected components
β_{1} : counting the number of tunnels
β_{2} : counting the number of voids
β_{k} : counting the number of higher-order voids

The Betti rank of some objects

Notation	Object	β_{0}	β_{1}	β_{2}
\mathbb{S}^{1}	circle	1	1	0
\mathbb{S}^{2}	sphere	1	0	1
\mathbb{T}^{2}	torus	1	2	1
\mathbb{P}^{2}	projective plane	1	0	0
\mathbb{K}^{2}	klein bottle	1	1	0
-	double torus	1	4	1
-	g ("genus")-hole torus	1	$2 \times g$	1

Definition: The genus of a connected orientable surface is an integer representing the maximum number of cuttings possible along simple closed curves without disconnecting the resulting manifold.
Examples:

Notation	Object	Genus
\mathbb{T}^{2}	torus	1
-	double torus	2
\mathbb{S}^{2}	sphere	0
-	"pretzel"	3

Any further cuts would separate the manifolds into more than one piece.

2.1.3 Homology groups

Notation:

$$
\begin{array}{ll}
H_{0} & \text { 0-dimension homology group } \\
H_{1} & \text { 1-dimension homology group }
\end{array}
$$

Groups and abelian groups

Definition: A group is a set G with an operation, such that:

1. $a, b \in G \Rightarrow a \cdot b \in G$ (closure)
2. $a, b, c \in G \Rightarrow(a \cdot b) \cdot c=a \cdot(b \cdot c)$ (associativity)
3. $\exists e \in G$ s.t. $\forall a \in G, e \cdot a=a \cdot e=a$ (identity element)
4. $\forall a \in G, \exists b \in G$, s.t. $a \cdot b=b \cdot a=e$

Additionally, for an abelian group:
$\forall a, b \in G, a \cdot b=b \cdot a$
Example 1: integers under the addition operation

1. $a, b \in \mathbb{Z} \Rightarrow a+b \in \mathbb{Z}$
2. $(a+b)+c \Rightarrow a+(b+c)$
3. $0+a=a+1=a$; that is, $e=0$
4. $(-a)+a=0$

Example 2: group of integers, modulo 2, with addition (that is, \mathbb{Z}^{2} or the set $\{0,1\}$)

- $1+1=2=0$ (closure)
- $(1+1)+1=1+(1+1)=3=1$ (associativity)
- $0+1=1$ (identity element, 0)
- $\forall a \in\{0,1\}, a+a=e$ (inverse)
- $1+0=0+1=1$ (commutativity)

Homology

Let K by a simplicial complex and p a number of dimensions.
Definition: modulo 2 coefficient
$a \in \mathbb{Z}_{2}, a=0$ or $a=1$
This is also known as the \mathbb{Z}_{2} coefficient.
Definition: A p-chain is a formal sum " + " of p -simplices in K.
$c=\sum a_{i} \sigma_{i}$
Here, $a_{i}=0$ or 1 (in our context). Basically, just add them together.
For example:

$K=\{1,2,3,4,12,24,14,23,34,124\}$
Summing 3 vertices would make a 0 -dimension chain (or 0-chain):
$c_{0}=1+2+3$
To make a 1-chain:
$c_{1}=12+23+34+41+0 * 24$
(The last term multiplied by zero can just be ignored.)
A 2-chain is a linear combination of 2-simplices.
$c_{2}=124$
An n-chain is a linear combination of n-simplices. That is, we use chain addition, done via component-wise addition.
$c=\sum a_{i} \sigma_{i}$ plus $c^{\prime}=\sum b_{i} \sigma_{i}$ becomes $c+c^{\prime}=\sum\left(a_{i}+b_{i}\right) \sigma_{i}$
Example:

$$
\begin{aligned}
& c_{1}=12+23+34+14 \\
& c_{1}^{\prime}=23+34+24 \\
& c_{1}+c_{1}^{\prime}=12+23+34+14+23+34+24=12+14+24
\end{aligned}
$$

Above, repeating numbers get cancelled out. The result is the boundary of the shaded triangle.
Definition: Chain group
The p-chain together with the addition operation from the group of p -chains.
Notation: $\left(c_{p},+\right)$ or $c_{p}=c_{p}(K)$
$c_{0}=0$-chain group
$c_{1}=1$-chain group
$c_{2}=2$-chain group

2.1.4 Homology

A homology group has the following attributes:

1. $c, c^{\prime} \in C_{p} \Rightarrow c+c^{\prime} \in C_{p}$
2. $\left(c+c^{\prime}\right)+c^{\prime \prime}=c+\left(c^{\prime}+c^{\prime \prime}\right)$
3. $0+\mathrm{c}=\mathrm{c}+0=\mathrm{c}$
4. $\mathrm{c}+\mathrm{c}=0($ recall the $\bmod 2$ coefficient $)$

Definition: The boundary of a p-dimensional simplex is the sum of its (p-1)-dimensional face.
$\sigma=\left[u_{0}, \ldots u_{p}\right]$
$\partial_{p} \sigma=\sum_{j=0}^{p}\left[u_{0}, \ldots u_{j} \ldots u_{p}\right]$
Example:

$\sigma=[1,2,3]$

For chain addition:
$\partial\left(c+c^{\prime}\right)=\partial c+\partial c^{\prime}$
And for a chain $c=\sum a_{i} \sigma_{i}$,
$\partial=\sum a_{i}\left(\partial \sigma_{i}\right)$

Example:

$c=12+23+34$
$\partial c=1+2+2+3+3+4=1+4$

Example:

$c=12$
$\partial c=1+2$

Example:

$c=124$
$\partial c=12+24+41$ (all of its edges)

Applying a boundary to itself yields zero.
$\partial(\partial c)=1+2+2+4+1+4=0$
Definition: A p-cycle is a p-chain with an empty boundary.
$\partial c=0$

A group of p-cycles is called a p-dimensional cycle group.
$Z_{p}=Z_{p}(K)$
(subgroup of $C_{p}(K)$)
Definition: A p-dimensional boundary is a p-chain that is the boundary of a ($\mathrm{p}+1$)-dimensional chain.
$c=\partial d$ with $d \in c_{p+1}$
A group of p-boundary is denoted:
$B_{p}=B_{p}(K)$

Example:

$c \in B_{1}(K)$
$c=12+24+14$
$c=\partial(124)$

2.1.5 Homology group

Definition: The p-th homology group is the p-th cycle group mod the p-th boundary group.
$H_{p}=Z_{p} / B_{p}$

Example:

$c=H_{1}$
$c=23+34+24$

Here, c is a 1-chian. It is not bounding a higher-dimensional thing, so it's not a boundary. It is a tunnel.

$$
c^{\prime}=12+23+34+14
$$

This is a 1-d chain. It's a cycle (closed loop) and not a boundary, because there is no 2-d chain it is bounding.

