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1Institute of Nuclear Sciences Vinča, Belgrade 11001, Serbia,
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Abstract. Long lived topological features are distinguished from short lived ones

(considered as topological noise) in simplicial complexes constructed from complex

networks. A new topological invariant, persistent homology, is determined and

presented as a parametrized version of a Betti number. Complex networks with

distinct degree distributions exhibit distinct persistent topological features. Persistent

topological attributes, shown to be related to robust quality of networks, also reflect

defficiency in certain connectivity properites of networks. Random networks, networks

with exponential conectivity distribution and scale-free networks were considered for

homological persistency analysis.
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1. Introduction

Complex systems consisting of large number of highly interconnected dynamic units,

whose structure is usually irregular have been the subject of intense research efforts

in the past few years [1]. The complexity of such systems is reflected not only in

their structure but also in their dynamics. The usual representation of a wide range of

systems of this kind in nature and society uses networks as the concept appropriate for

the study of both the topology and dynamics of complex systems. The usual approach

to study networks is via graph theory which was well developed for regular and random

graphs both of which have been found to be exceptional cases of limited use in real world

realizations and applications. Recently, along with the discovery of new types of network

structures such as the small-world [2] and scale-free networks [3], the tools of statistical

mechanics have been successfully implemented offering explanations and insights into

the the newly recognized properties of these systems. In spite of many advances based

on statistical mechanics approaches to various issues involving networks, from biology to

social sciences, it is our opinion that there is a need for more versatile approach which

would rely on new topological methods either separately or in combination with the

techniques of statistical mechanics. In particular, the program is to encode the network

into a simplicial complex which may be considered as a combinatorial version of a

topological space whose properties may now be studied from combinatorial, topological

or algebraic aspects. The motivation stems from the Q-analysis introduced by R. Atkin

[4], [5] who advocated its use in various areas of physics and social systems analysis in the

70’s. The methods of Q-analysis were extended further into a combinatorial homotopy

theory, called A-theory [6]. Consequently, the invariants of simplicial complexes may

be defined from three different points of view (combinatorial, topological or algebraic)

and each one of them provides completely different measures of the complex and,

by extension, of the graph (network) from which the complex was constructed. In

[7], for several standard types of networks we constructed vector valued quantities

representing topological and algebraic invariants and showed, among other issues, that

their statistical properties perfectly match their corresponding degree distributions.

Such an approach provided a link between topological properties of simplicial complexes

and statistical mechanics of networks from which simplicial complexes were constructed.

In the present exposition we focus on simplicial complexes (obtained from random,

scale- free networks and networks with exponential conectivity distributions) and their

homological properties. In most general terms, algebraic topology offers two methods

for gauging the global properties of a particular topological space X by associating with

it a collection of algebraic objects. The first set of invariants are the homotopy groups

πi(X), i = 1, 2, ..., the first one (i.e. for i = 1), known as the fundamental homotopy

group being well known. Homotopy groups contain information on the number and kind

of ways one can map a k-dimensional sphere Sk into X, with two spheres in X considered

equivalent if they are homotopic (belonging to a same path equivalence class) relative

to some fixed basepoint. Computational demands of such an approach are in general
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extremely high and for that reason the second set of invariants, the homology groups, is

of more practical interest. Homology groups of dimension k, Hk(X), provide information

about properties of chains formed from simple oriented units known as simplices. The

elements of homology groups are cycles (chains with vanishing boundary) and two k-

cycles are considered homologous if their difference is the boundary of (k + 1)-chain.

In more general terms Hk(X) determines the number of k-dimensional subspaces of X

which have no boundary in X and themselves are not boundary of any k+1-dimensional

subspace. In contrast to homotopy groups, homology groups can be computed using

the methods of linear algebra and the ease of these methods are counterbalanced by

obtained topological resolution. It should be remarked that these computations can

be quite time consuming in spite of recent advances in computational techniques [8].

Although homology groups are computable and provide insight into topological spaces

and maps between them, our interest is in discerning which topological features are

essential and which can be safely ignored, similar to signal processing procedure when

signal is removed from noise. One of the important informations about the topological

space is the number and type of holes it contains and going beyond standard homological

approaches one could be interested in finding out which holes are essential and which are

unimportant. This is the subject of persistence and persistent homology, as introduced

by Edelsbrunner, Letscher and Zomorodian [9], whose aim is to extract long-lived

topological features (topological signal) which persist over a certain parameter range

and which are contrasted with short-lived features (topological noise).

With networks encoded into simplicial complexes we are interested in topological

features which persist over a sequence of simplicial complexes of different sizes. This

sequence reflects the formation of the network or the change of the existing network when

new node or nodes are introduced or removed. Here we focus on recognizing persistent

and non persistent features of random, modular and non modular scale-free networks

and networks with exponential connectivity distribution. In the following exposition our

main topic will be homology and although it is self contained an elementary knowledge

of homology would be helpfull, as may be found for example in Chapter 2 of [10].

Our main motivation is to show that each of these different types of networks have

different persistent homological properties although here we do not attempt to present

these features as generic. Moreover, long-lived topological attributes reveal new and

important information related to connectivity of the network which could not be inferred

using any other conventional methods.

The outline of the exposition is as follows: In Section 2 we review concepts

from algebra and simplicial homology while in Section 3 we present the methods of

constructing simplicial complexes from graphs. In Section 4 we introduce the concept of

persistent homology and discuss computational aspects. Section 5 contains description

of graphical representation of persistent homology groups. In Section 6 we present the

results of persistent homology calculations for random networks while in Section 7 and 8

persistent homologies are determined for networks with exponential degree distribution

and three types of scale-free networks respectively. Concluding remarks are given in
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Section 9.

2. Algebraic Topology

2.1. Simplicial complexes

Any subset of V = {vα0
, vα1

, ..., vαn
} determines an n-simplex denoted by

〈vα0
, vα1

, ..., vαn
〉 . The elements vαi

of V are the vertices of the simplex denoted by

〈vαi
〉 , and n is the dimension of the simplex. Any set of simplices with vertices in V

is called a simplicial family and its dimension is the largest dimension of its simplices.

A q-simplex σq is a q-face of an n-simplex σn, denoted by σq . σn, if every vertex

of σq is also a vertex of σn. A simplicial complex represents a collection of simplices.

More formally, a simplicial complex K on a finite set V = {v1, ..., vn} of vertices is a

nonempty subset of the power set of V , so that the simplicial complex K is closed under

the formation of subsets. Hence, if σ ∈ K and ρ.∈ σ, then ρ.∈ K.

Two simplices σ and ρ are q − connected if there is a sequence of simplices

σ, σ1, σ2, ..., σn, ρ, such that any two consecutive ones share a q-face,.implying that they

have at least q + 1 vertices in common. Such a chain is called a q-chain. The complex

K is q-connected if any two simplices in K of dimensionality greater or equal to q are

q-connected. The dimension of a simplex σ is equal to the number of vertices defining it

minus one. The dimension of the simplicial complex K is the maximum of the dimensions

of the simplices comprising K. In Fig. 1 we show an example of a simplicial complex

and its matrix representation. In this example V = {1, 2, ..., 11, 12}, and the simplicial

complex K consists of the subsets {1, 2, 3, 4}, {3, 4, 5}, {5, 8}, {3, 6, 7}, {7, 8, 9, 10, 11}

and {9, 10, 11, 12}. Its dimension is 4, as there is a 4-dimensional simplex, in addition to

two 3-dimensional ones, two 2-dimensional and one 1-dimensional simplex. A convenient

way to represent a simplicial complex is via a so called incidence matrix, whose columns

are labeled by its vertices and whose rows are labeled by its simplices, as shown

also in Fig. 1. The multifaceted property (algebraic, topological and combinatorial)

of simplicial complexes makes them particularly convenient for modelling complex

structures and connectedness between different substructures.

2.2. Chains, Cycles and Boundaries

Chains and cycles are simplicial analogs of paths and loops in the continuous domain.

The set of all k-chains together with the operation of addition forms a group Ck. A

collection of (k − 1)-dimensional faces of a k-simplex σ, itself a (k − 1)-chain, is the

boundary ∂k(σ) of σ. The boundary of k-chain is the sum of the boundaries of the

simplices in the chain. The boundary operator ∂k is a homomorphism ∂k : Ck → Ck−1

and ∂k’s for k = 0, 1, 2.... connect the chain groups into a chain complex,

∅ → Cn
∂n→ Cn−1

∂n−1

→ .... → C1

∂1→ C0

∂0→ ∅,

with ∂k∂k+1 = ∅ for all k. The kernel of ∂k is the set of k-chains with empty boundary

while a k-cycle, denoted by Zk, is a k-chain in the kernel of ∂k. The image of ∂k is the
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set of (k − 1)-chains which are boundaries of k-chains with a k-boundary, denoted by

Bk, being a k-chain in the image of ∂k+1.

ker ∂k = {z ∈ Ck : ∂k(z) = ∅} ,

im ∂k = {b ∈ Ck−1 : ∃b ∈ Ck : b = ∂k(z)} .

The collection of Zk’s and Bk’s together with addition form subgroups of Ck while the

property ∂k∂k+1 = 0 shows that Bk ⊆ Zk ⊆ Ck, i.e. these groups are nested as illustrated

in Figure 2.

2.3. Homology groups

The k-th homology group is

Hk = ker∂k/im∂k+1 = Zk/Bk. (1)

If z1 = z2 + Bk, (z1, z2 ∈ Zk) then the difference between z1 and z2 is the boundary

and z1 and z2 are homologous. The k-th Betti number of a simplicial complex K is

β(Hk), the rank of the k-th homology group, βk = rank Hk. or βk = dim Hk From

expression (1),

βk = rankHk = rankZk − rankBk. (2)

Due to an Alexander Duality property [10], there is an intuitive depiction of the first

three Betti numbers nicely explained in [11]. Since a non-bounding 0-cycle represents

the set of components of complex K, there is one basis element per component so that

consequently β0 represents the number of components of K. Hence, rank H0 = 1 for

connected complex K so that the notion of connectivity is reflected in H0. A non-

bounding 1-cycle represents a collection of non-contractible closed curves in K, or based

on duality property, a set of tunnels formed by K. Each tunnel can be represented as

a sum of tunnels from the basis so that β1 represents the dimension of the basis for the

tunnels. These tunnels may be perceived as forming graph with cycles [11]. A 2-cycle

which itself is not a boundary represents the set of non-contractable closed surfaces in

K, or based on duality principle, a set of voids which exist in the complement of the

simplicial complex , i.e. R
3 − K. The dimension of the basis for voids, equal to the

number of voids is represented by β2.

3. Construction of Simplicial Complexes from Graphs

Simplicial complexes may be constructed from undirected or directed graphs (digraphs)

in several different ways. Here we only consider two of them: the neighborhood complex

and the clique complex. The neighborhood complex N (G) is constructed from the graph

G, with vertices {v1, ..., vn} in such a way that for each vertex v of G there is a simplex

containing the vertex v, along with all vertices w corresponding to directed edges v → w.

The neighborhood complex is obtained by including all faces of those simplices and in

terms of matrix representation, the incidence matrix is obtained from the adjacency
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matrix of G by increasing all diagonal entries by 1. An example of the construction

of a neighborhood complex is represented in Fig. 3. The clique complex C(G) has

the complete subgraphs as simplices and the vertices of G as its vertices so that it is

essentially the complete subgraph complex. The maximal simplices are given by the

collection of vertices that make up the cliques of G. In literature, a clique complex is

also referred to as flag complex. An example of a clique complex is presented in Fig. 4.

These two methods are not the only ones that may be used for constructing

simplicial complexes from graphs. Actually, any property of the graph G that is

preserved under deletion of vertices or edges may be used for construction purposes. A

detailed account of the methods for obtaining simplicial complexes from graphs, among

many other issues related to the relationship between graphs and simplicial complexes,

may be found in [12].

4. Persistent homology

4.1. Filtration

The basic aim of persistent homology [9] is to measure life-time of certain topological

properties of a simplicial complex when simplices are added to the complex or removed

from it. Usually the evolution of the complex considers its creation starting from

the empty set, hence the assumption is that simplices are added to the complex

(corresponding to the growing network). The sequence of subcomplexes constructed in

the process is known as filtration. In more formal terms the filtration of the simplicial

complex K is a sequence of complexes Ki, such that:

∅ = K0 ⊂ K1 ⊂ ... ⊂ Kn = K.

The simplices in K are indexed by their rank in a filtration sequence and each prefix of

the sequence is a subcomplex. Two filtration constructions are usually considered when

the history of the complex is studied. The first one is formed when at each stage of the

filtration only one simplex is added (i.e. Ki/Ki−1 consists of one simplex σi for each i).

In the second case a simplex σi is added to the sequence, say to subcomplex Kj , when

all its faces are already parts of some Ki (i ≤ j). Hence, the second case does not require

only one simplex to be added at each stage of filtration. These two filtrations contain

complete orderings of its simplices and Figure 5 illustrates the two progressive sequences.

Naturally, other filtrations may also be applied in practice including ”irregular” ones

when simplices are removed or disappear in the sequence. For these filtrations the main

aspect of change is not only growth but decrease as well.

4.2. Algebraic formulation of persistent homology

Following the expositions in the pioneering paper on persistent homology [9] and in

reference [11] we give here some basic notions and concepts. Persistence is defined in

conjunction with cycle and boundary groups of complexes in filtration i.e. with respect
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to homology groups and associated Betti numbers. Since homology captures equivalent

classes of cycles by factoring out the boundary cycles, the focus is on the count of non-

bounding cycles whose life-span lasts beyond a chosen threshold (say represented by

number p of next complexes in the filtration sequence) and which determine persistent

or long lasting topological properties of the complex. These cycles persist through p

phases of the sequence, hence they are important. In a complementary manner our

interest also lies in cycles with short life-spans which convert to boundaries during

filtration. Algebraically, it is relatively simple to perform the count of persistent non-

bounding cycles. Let Z l
k and Bl

k represent the k-th cycle group and the k-th boundary

group, respectively, of the l-th complex K l in filtration sequence. In order to obtain the

long-lasting non-bounding cycles, the k-th cycle group is factored by the k-th boundary

group of the K l+p complex, p complexes later in the filtration sequence. Formally, the

p-persistent k-th homology group of K l is

H l,p
k = Z l

k/(Bl+p
k ∩ Z l

k). (3)

Clearly Bl+p
k ∩ Z l

k is a group itself being an intersection of two subgroups of C l+p
k . The

p-persistent k-th Betti number, βl+p
k of the l-th complex K l in filtration is the rank of

H l,p
k :

βl+p
k = rankH l,p

k .

Hence, βl+p
k counts homological classes in the complex Kp which were created during

filtration in the complex K l or earlier. There is a Betti number for each dimension p

and for every pair of indices (k, p), 0 ≤ k ≤ p ≤ n. To get a more intuitive illustration

of persistence concept let us consider a non-bounding k-cycle created at time (step) i as

a consequence of the appearance of the simplex σ in the complex so that the homology

class of z is an element of H i
k, i.e. [z] ∈ H i

k. The simplex σ will be labelled as a creator

simplex, or σ+(positive simplex). Consider the appearance of another simplex τ at time

j ≥ i which turns a cycle z′ in [z] into a boundary, so that z′ ∈ Bj
k. This causes the

decrease of the rank of the homology group since the class [z] is joined with the older

class of cycles. The simplex τ will be labelled as an annihilator simplex, τ−(negative

simplex) since it annihilates both z′ and [z]. The persistence of z and its homology class

[z] is then j − i − 1. As p increases by one step (assuming full ordering of simplices),

persistence of all non-bounding cycles is decreased by one so that while p increases,

negative simplices cancel positive ones which appeared earlier in the filtration. For p

large (long enough), the topological noise may be removed from pertinent information

about homology groups and Betti numbers.

4.3. Computational remarks

High quality algorithms exists for the computation of homology groups with respect

to various applications. A comprehensive introduction to the subject of computational

homology is [8] (and the associated COmputational HOmology project CHOMP [14])

while the algorithms for persistent homology are given in [9] and [13]. Various practical
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issues related to these algorithms and computational methods for evaluating Betti

numbers are covered in [15]. The Matlab-based program ”Plex” [16], designed for the

homology analysis of point cloud data set converted into a global simplicial complex

(Rips, Čech or other) offers a wealth of possibilities for various operations with simplicial

complexes and simplicial homology calculations. Also, a package ”Simplicial Homology”

[18], requiring ”GAP” [17], a system for computational discrete algebra with special

emphasis on computational group theory, provides numerous functionalities related to

simplicial homology. Both Plex and Simplicial Homology have been extensively used in

our calculations presented here.

5. Visualization of persistence homology: Barcodes

Since persistent homology represents an algebraic invariant that detects the birth and

death of each topological feature as the complex evolves in time, it is advantageous

to encode the persistent homology in the form of a parametrized version of the rank of

homology group i.e. its Betti number [19]. One possible choice for the parameter is time

as it encompasses both the case of simplex growth (addition of simplex or simplices)

and of its decrease (removal of simplex or simplices). The other choice is to use intervals

whose endpoints are filtration complexes essentially representing the filtered simplicial

complex at times when the addition (or removal) of simplices takes place. During its

temporal existence, each topological attribute plays a part in the formation of some

Betti number and our interest lies in those properties with long lifetimes (persistent

properties). The parameter intervals represent lifetimes of various stages of filtration

and they may be represented on the horizontal axis while arbitrary ordered homology

generators Hk may be represented on the vertical axis. Figure 6 shows an example of

filtration and the barcode for Hk(k = 1, 2, 3).

The rank of persistent homology group H i→j
k equals the number of intervals in the

barcode of homology group Hk within the limits of the corresponding parameter range

or lifetime [i, j]. Here i and j may denote filtration times ti and tj or filtration complexes

Ki(ti) and Kj(tj). Clearly, barcodes do not provide information on delicate structure

of the homology however the information about persistent parametrized rank (since

βk = rank Hk a barcode reflects the persistent properties of Betti numbers) enables

clear distinction between topological noise and topological ”signal”.

6. Persistent homology of random networks

For the purpose of illustrating persistent homology we first consider random (Erdös-

Rényi) networks G(n, p) for which the number of nodes, n, is fixed and with each

link inserted with the same probability p. As is well known, a random network has a

characteristic scale in its node connectivity reflected by the peak of the distribution

which corresponds to the number of nodes with the average number of links. We have

constructed the clique complex C(G) of a random network so that the obtained complex
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is a random simplicial complex C(G(n, p)). The filtration F of the complex is

F = {K0, K1, ...Kn} such that K0 ⊂ K1 ⊂ ... ⊂ Kn = K. (4)

Then the i-th complex in the filtration is given by

Ki =

i∑

j=1

Sj, (5)

where Sj is the j-th skeleton of the clique complex (the set of simplices of dimension

less or equal to j).

The random network considered consists of 2000 nodes with the probability of two

nodes having a link equal to p = 0.005. The corresponding barcode is presented in Fig. 7.

Due to sparsity of the network the filtration steps are limited to complexes of dimension

3. It is evident that persistent H0 has Betti number β0 = 1 corresponding to one

line that persists through all stages of filtration. Since the zero dimensional homology

measures the connectivity of the underlying graph the graph is always connected and

this property remains for arbitrary choice of p (0 ≤ p ≤ 1) or n, as one would expect. In

addition β1 = rank H1 = 7847 while β2 = rank H2 = 0. The maximal rank of persistent

homology of this random network is 1. However, due to the short lifetime of H1 through

only two filtrations, it may be inferred that the content of topological noise dominates

the network for this choice of parameters p and n. The same results, from the aspect of

persistence, are obtained for the neighborhood complex (β0 = 1, β1 = 13503, β2 = 0).

Increasing the probability p or the number of nodes n leads to occurrence of higher

dimensional homology groups which though appear only as noise as illustrated in Fig.

8 for the case of p = 0.02 and n = 2000. There is an interval outside which homology

vanishes, and inside which only lowest ranked homologies persist, i.e. H0 and H1. This

conlcusion is in agreement with recent theoretical studies on clique and neighborhood

complexes of random graphs [20], [21].

7. Persistent homology of a network with exponential connectivity

distribution

In order to analyze the emergence of self-similar properties in a complex network, an

e-mail network was studied in [22]. Each e-mail address in this network represents

a node and links between nodes indicate e-mail communication between them. After

removal of bulk e-mails, the connectivity distribution of this network is exponential,

P (k) exp(−k/k∗) for k ≥ 2 and with k∗ = 9.2. The number of nodes (e-mail users) is

1700. Calculations were performed using both the clique and the neighborhood complex

and both showed consistent persistency property. The corresponding persistency

barcode is presented in Fig. 9 in which the rank of the homology group equals the

number of intervals in the barcode intersecting the dashed line which corresponds

to the filtration stage. The first three homology groups, i.e. H0, H1 and H2,

have long lived generators while higher dimensional homology groups appear only as
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topological noise. Although random networks analyzed earlier and the e-mail network

have comparable number of nodes, the number of higher dimensional homology groups

is considerably larger in the latter case. This is the consequence of an internal

organization of an e-mail network into a number of communities [22] which is an essential

prerequisite for emergence of higher dimensional complete graphs. Clearly, no such

organizational principle exists in random networks (random simplicial complexes) and

1-cycles dominate the complex. The fact that homology groups of dimension higher

than 2 have short lifetimes indicates that communications among certain groups of e-

mail users may not exist for a certain time during the growth of the network however

these communication channels are reestablished at later stages of the network evolution.

8. Persistent homology of scale-free networks

Among scale-free networks we consider scale-free models with modular structure

developed recently [23]. The model including preferential-attachement and preferential-

rewiring during the graph growth is generalized so that new modules are allowed to

start growing with finite probability. The structural properties of modular networks

are controlled by three parameters: the average connectivity M , the probability of

the emergence of a new modul P0 and the attractiveness of the node α. By varying

these parameters the internal structure of modules and the network connecting various

modules is kept under control. Detailed explanation of the role of each of these

parameters in the control process are discussed in [23]. Here we consider the persistent

homology of three scale-free networks developed using three diferent sets of parameters

(M, P0, α), chosen as paradigmatic for the type of network considered. The results

for both clique and neighborhood complexes were constructed and since the results do

not differ for the two cases the presented ones are obtained from the clique complex

filtration 4 and 5. All networks were generated with 1000 nodes.

8.1. Case 1. Clustered modular network

The average connectivity (number of links per node) is M = 5. The network has 1000

nodes and 7 modules so that P0 = 0.007. The attractiveness of the node is α = 0.6 which

enables stronger clustering effect, hence the label ”clustered modular network”. The

corresponding barcodes are presented in Fig. 10. There are unique persistent generators

for H0 and H1 while for H2 there are 2 persistent generators. H3 also has a persistent

generator which starts at stage 2 of filtration. It is interesting that once the homology

is generated at later stages of filtration it remains persistent for all Hi (i = 1, 2, 3) as

indicated by arrows. One aspect of existence of persistent homology groups is robustness

of the complex (network) with respect to addition or reduction of simplices (nodes). The

fact that four homology groups show persistence is a clear sign of robustness. Moreover,

practically there is no topological noise in this case.
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8.2. Case 2. Clustered non-modular network

The parameters for this type of network are M = 5, P0 = 0 (no modules) and α = 0.6

(strong clustering). The persistence barcodes for this network are presented in Fig. 11.

The most striking feature of these topological persistency representations is the existence

of H4. Another striking feature is that H3 does not exist for this particular value of

clustering parameter α showing that higher ranked persistency generators may not be

distributed continuously across dimensions. There are four generators for H4 however

they persist through five stages of filtration and there are several more generators with

shorter lifetime some of which may be considered as topological noise, such as the ones

whose lifetime is one or two filtration phases. The fact that H3 generators do not exist

shows that for this choice of parameters there are no 3-dimensional non-bounding cycles

in the complex.

8.3. Case 3. Modular non-clustered network

The average connectivity is M = 5. Modular probability is P0 = 0.007 and clustering

coefficient α = 1.0 so that there is only one link between each of the modules and

effectively there is non clustering. The corresponding barcodes are shown in Fig. 12.

There is only one generator for H0. For H1 there is a unique generator persistent from the

beginning of filtration however there are several generators which persist while occurring

with the slight delay in filtration sequence. The maximal persistent homology rank is

2 and H2 has relatively long lived generators with a slight noise. Of the three cases

considered this one has the smallest number of persistent homology groups, namely

three (H0, H1 and H2), and also the smallest number of generators for the homology

group H2.

8.4. Remarks on persistent homology of scale-free networks

Since both clustered modular and clustered non-modular networks have higher ranked

persistent homology (H3 and H4 respectively) then the non-clustered modular network

(H2), it is clear that clustered networks are more robust with respect to addition

(removal) of nodes (simplices). Moreover, clustering property is more important for

robustness then modularity as may be also inferred by comparison with the e-mail

network discussed in Sec. 7 which also shows modular structure. The fact that

only 1-dimensional and 2-dimensional cycles (voids) are persistently missing in non-

clustered simplices with respect to additional lack of 3 and 4-dimensional cycles in

modular simplices may convey important information depending upon the context of

the analysis and types of networks under study. In general the persistence of n-th

homology generators (n-th Betti numbers) means that somewhere in the complex n-th

dimensional subcomplex is missing through all stages of complex growth or reduction.

In other words an n-dimensional object formed by simplices of dimension at most n is

absent from the complex. This property may be translated to the ”network language”
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in terms of connectivity relations which depend on the context. In simplified terms, for

example for n = 2 the network lacks in dyadic (binary) relations; for n = 2 there are no

triadic (ternary) relations and so on where n-adic relations should be regarded not only

as the set of its node-to-node relations but in their relational entirety. As an example,

a face of a triangle represents a relational entirety (essentially a relationship of higher

order) of a three node relation.

9. Summary and concluding remarks

Construction of simplicial complexes from graphs (networks) creates a topological

setting which offers flexible tools for gauging various topological attributes. Here our

interest lies in detection of long lived homology groups of a simplicial complex (network)

during the course of its history which includes both addition and removal of simplices

(nodes). The method relies on visual approach of recognizing persistent features in the

form of a barcode which may be regarded as the persistence analogue of a Betti number.

The results show distinct persistency attributes for random networks, networks with

exponential degree distributions and for scale-free networks. Persistency includes the

two lowest dimensional homology groups H0 and H1 for random networks. For the

case of neworks with exponential degree distribution persistency includes H0, H1, and

H2 while for scale-free networks persistent homology groups are H0, H1, H2, H3 and

even H4. An obvious consequence of persistency is that it gives important information

about robust quality of the network so that scale-free networks, especially the ones

with clustering properties, exhibit the highest topological resilience to change in the

form of addition or removal of the nodes. However persistence of certain topological

attributes assumes also long lived defficiency in certain topological forms in simplicial

complexes corresponding to defficiency of certain relations in networks. In order to

reveal more about the sense of balance between these two properties we will use more

subtle topological methods in our future work.
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Fig. 1 An example of a simplicial complex and its incidence matrix representation.

Columns are labeled by its vertices and rows are labeled by its simplices.
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Fig.2 Chain, cycle and boundary groups and their mappings under boundary

operators.
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Fig. 3 A graph and its associated neighborhood complex. Simplices are labeled as

σ(i), where i denotes the vertex whose neighbors define the simplex.
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Fig. 4 An example of a graph and its associated clique-complex.

Fig. 5 The simplicial complex K and its two filtrations. In the filtration on the right

one simplex is added at each phase of the sequence.
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Fig. 6 An example of the barcode for an arbitrary simplicial complex. The rank of Hk

equals the number of parameter intervals traversed by the red barcode line.
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Fig 7. Barcode of G(n, p) random network with n = 2000 and p = 0.005.
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Fig. 8 Barcode of G(n, p) random network with n = 2000 and p = 0.02.
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Fig. 9 Barcode of the e-mail network with exponential degree distribution.
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Fig. 10 Barcode of the clustered modular network. Persistence of all homology groups

may be easily noticed.

0 1 2 3 4 5 6 7 8
0

5

10

H
0

0 1 2 3 4 5 6 7 8
0

1000

2000

H
1

0 1 2 3 4 5 6 7 8
0

50

H
2

0 1 2 3 4 5 6 7 8
0

1

H
3

0 1 2 3 4 5 6 7 8
0

10

H
4

K
i
 (i=0−8)

Fig. 11 Barcode of the clustered non-modular network. The rank of H3 is equal to

zero, however the rank of the highest persistent homology group is 4.
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Fig. 12 Barcode of the modular non-clustered network. The persistent homology

group with the highest rank is H2.
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