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Overview: Applications of (co)homology in visualization

Part 1: Robustness of critical points for vector field data

A Visualizing robustness of critical points for 2D time-varying vector fields
B Vector field simplification
C Interpreting feature tracking through the lens of robustness

Part 2: Detecting branching and circular structures in data

A Branching and circular structure detection
B Application in software visualization



Part 1-A: Robustness

Visualizing Robustness of Critical Points
for Time-Varying Vector Fields

Joint work: Primoz Skraba, Paul Rosen, Harsh Bhatia, Valerio Pascucci

[Wang, Rosen, Skraba, Bhatia and Pascucci 2013]



Motivation

Vector fields (VFs) represent an important and ubiquitous class of
data that arise in many scientific disciplines

Analyzing critical points and their temporal evolutions plays a crucial
role in understanding the behavior of VFs.

A key challenge is to quantify the stability of critical points: more
stable points may represent more important phenomena.

[Video: 2D time-varying VF, combustion dataset]



Robustness [Chazal, Patel and Skraba 2011, 2012]

Quantify rigorously the stability of critical points.

Intuitively, the robustness of a critical point is the minimum amount
of perturbation necessary to cancel it within a local neighborhood,
measured under an appropriate metric.



Contributions

Interactive exploration of robustness of critical points for 2D
time-varying vector fields

Investigate how the stability of a critical point evolves over time:
depends heavily on the global properties of the VF and that structural
changes can correspond to interesting behavior

Study stable and unstable features in real world datasets: combustion
and ocean eddie simulation

[Videos: Combustion interactive]



Background Via Example:
Degree Theory, Merge Tree, Robustness, Well Groups

Well groups [Edelsbrunner, Morozov, Patel 2010, 2011]
Merge tree, robustness [Chazal, Patel and Skraba 2011, 2012]



Degrees

In 2D, deg(x) of a critical point x equals its Poincaré index.

Source +1, sink +1, saddle −1.

A path-connected component (c.c.) C, deg(C) =
∑

i deg(xi).

If C in R2 has degree zero, then it is possible to replace the VF inside C
with a VF free of critical points
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Merge tree

Given f : R2 → R2, define its Euclidean norm f0 : R2 → R as

f0(x) = ||f(x)||2

For some r ≥ 0, define the sublevel set of f0 as

Fr = f−10 [0, r].

A value r > 0 is a regular value of f0 if

Fr is a 2-manifold;

∀ sufficiently small ε > 0, f−10 [r − ε, r + ε] d.r. to f−10 (r);

o.w. it is a critical value.



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

α1

α2 α3 α4

α1 α2 α3 α4
x1
+1

x2
−1

x3
+1

x4
−1



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2 β3β1 β2

β3



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2 β3β1 β2

β3

0"



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2 β3β1 β2

β3

0"



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

0"

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2

β3

γ2

γ1

γ2γ1



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

0"

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2

β3

γ2

γ1

γ2γ1+1#



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

0"

+1"

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2

β3

γ2

γ1
ω1

ω1



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

0"

+1"

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2

β3

γ2

γ1
ω1

ω10"



Merge tree of f0

Track c.c. of Fr as they appear and merge, as r increases from −∞.
# of c.c. = the rank of 0-dim homology groups for some r, H(Fr).

0"

+1"

x1
+1

x2
−1

x3
+1

x4
−1

β1 β2

β3

γ2

γ1
ω1

ω10"



Robustness [Chazal, Patel and Skraba 2011]

The (static) robustness of a critical point is the height of its lowest degree
zero ancestor in the merge tree.
Interpretation: robustness is the min amount of pert. necessary to cancel a
critical point.
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Robustness: rb(x1) = rb(x2), rb(x3) = rb(x4).



r-perturbation

Let f, h : R2 → R2 be two continuous 2D vector fields. Define the distance
between the two mapping as

d(f, h) = sup
x∈R2

||f(x)− h(x)||2.

We say h is an r-perturbation of f , if d(f, h) ≤ r.

h(u, v)

f(u, v)

p

r



Well group (Technical)

Suppose h is an r-perturbation of f .
H0 = h−1(0) is the set of critical points of h. We have inclusion:

i : H0 → Fr

i induces linear map:
jh : H(H0)→ H(Fr)

The well group, U(r), is the subgroup of H(Fr), whose elements belong to
the image of each jh, for all r-perturbation h of f :

U(r) =
⋂
h

im jh

Intuitively, an element in U(r) is considered a stable element in H(Fr) if it
does not disappear with respect to any r-perturbation

Rank of U(0) = # critical points of f .



Well diagram Dgm(f0) of f0

A point r ∈ (0,∞) belongs to the well diagram of f0, Dgm(f0), with
multiplicity k if the rank of the well group drops by k at r.

The augmented merge tree is sufficient to derive its well diagram.
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(Static) Robustness Properties



Intuition

Robustness quantifies the stability of a critical point with respect to pertur-
bations of the vector fields.



Critical Point Cancellation Lemma

Lemma

Suppose a critical point x of f has robustness r. Let C be the c.c.
of Fr+δ containing x, for an arbitrarily small δ > 0. Then, there
exists an (r + δ)-perturbation h of f , such that h−1(0) ∩ C = ∅
and h = f except possibly within the interior of C.

Key: need (r + δ)-pert. to cancel critical point of robustness r.

x

C ✓ Fr+�

f

h: (r + �)-pert s.t. h�1(0) \ C = ;rb(x) = r

h



Degree and Critical Points Preservation Lemma

Lemma

Suppose a critical point x of f has robustness r. Let C be the
connected component of Fr−δ containing x, for some 0 < δ < r.
For any ε-perturbation h of f where ε ≤ r − δ, the sum of the
degrees of the critical points in h−1(0) ∩ C is deg(C). If C
contains only one critical point x, we have
deg(h−1(0) ∩ C) = deg(x). That is, x is preserved as there is no
ε-perturbation that could cancel it.

Key: (r − δ)-pert. is not enough to cancel crit. pt. of robustness r.

x

f

rb(x) = r

h
C ✓ Fr��

h: ✏-pert, ✏  r � � s.t.
deg(h�1(0) \ C) = deg(C)



Example revisited
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Results
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Visualization

3D visualization uses time as the 3rd dimension

Critical points tracked and connected through tubes

Sequential color map for robustness

Categorical color map for pairing information
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Datasets

Combustion: homogenous charge compression ignition (HCCI)
engine, 640× 640 field consisting of 299 time steps
[Hawkes, Sankaran, Pebay, Chen 2006]

Ocean Eddie: Top layer of global oceanic eddy simulation for 2002
[Maltrud, Bryan, Peacock 2010]

Central Atlantic Ocean - 60× 60, 350 days
South Atlantic Ocean - 100× 100, 350 days



Combustion



Combustion



Ocean Eddies
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Discussions

Robustness of components in the sublevel sets (over time) [Video]

Visual clutter

Better version of robustness-like measure for time-varying VFs



Part 1-B: Robustness

Vector Field Simplification based on Robustness

Joint work: Primoz Skraba, Paul Rosen and Guoning Chen.

[Skraba, Wang, Chen and Rosen 2013 (to appear)]



Motivation

Gap between increasing size and complexity of VF data and limited
bandwidth of our visual perception channel

Challenge for domain experts: interpret the data (locally or globally)

e.g. 2D turbulence flows (features are everywhere and feature sizes
differ by a few orders of magnitude)

VF simplification:

Reducing the complexity of the flow by removing features in
order of their relevance and importance

Revealing prominent behavior

Obtaining a compact representation for interpretation

Giving a consistent and multi-scale view of the flow dynamics



Topological-skeleton-based simplification

Merging/canceling nearby critical points based on separatrices
(dividing domain into regions of uniform flow behavior)

Swirling jet simulation, courtesy of [Tricoche, Scheuermann and Hagen 2001]



Topological-skeleton-based simplification

Creation and cancellation of fixed points and periodic orbits via Morse de-
composition/Conley theory.

Computational fluid dynamics simulation [Chen, Mischaikow, Laramee, Pilarczyk,

Zhang 2007]



Conley indices

[Zhang, Mischaikow and Turk 2006]



Topological-skeleton-based simplification

Rely on the stable extraction of the topological skeleton: can be difficult due
to instability in numerical integration, especially when processing highly ro-
tational flows. (a) Near Hopf-bifurcations; diff separatrices intersect/switch.

(a) (b)

(c)

Sink, saddle-sink, saddle, source, saddle-source



Contributions: Robustness-based simplification

Pruning critical points based on stability

Encodes flow magnitude, naturally hierarchical, precise ordering of
critical points cancellations, quantifies the amount of perturbation that
is needed at each level.

A complementary view to topological-skeleton-based simplification.

Efficient computation for large data/when separatrices are difficult to
integrate; handle general cases

A novel simplification algorithm for zero-degree components. Handle
more general boundary configurations w/o requirements on the Conley
Index. Potential generalization to higher dimensions.



Robustness-based simplification in a nutshell

Our method finds, in the space of all vector fields, the one that is closest
to the original vector field with a particular set of critical points
removed, according to a metric based on the L∞ norm (the maximum
point-wise modification to the vector field).

Our results are optimal in this norm, that is, there exists no
simplification with a smaller perturbation.
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Some teaser results: synthetic A
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Some teaser results: synthetic B
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Some teaser results: synthetic B
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Some teaser results: synthetic B
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Some teaser results: synthetic C
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Some teaser results: synthetic C
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Robustness-Based Simplification Algorithm



Image space im (C) of a zero-degree component C ⊆ Fr
f : C → R2, im (C) ⊂ R2 is constructed by mapping each p ∈ C to its
vector coordinates vp = f(p).
Origin in im (C): critical points (0 vectors) in C.
Since ∀p ∈ C, ||vp||2 ≤ r, im (C) ⊂ a disc of radius r (with boundary S).
S is uncovered if im (∂C) ⊂ S, o.w. covered.

S
im(C) im(C)

S

C

(b)(a)

C



PL Image space

f : K → R2, K is a triangulation of C
Linear interpolation: edges and triangles in K map to edges and triangles
in im (C).

p
s

vp

vq

vs

vm

m
q



Our simplification algorithm consists of four operations

Smoothing(C): Perform Laplacian smoothing on C

Cut(C): Deform the vector field in its image space im (C) to remove
critical points in C

Unwrap(C): Modify the vector field in its image space im (C) so
part of its boundary is uncovered

Restore(C): Set the boundary to its original value



The Algorithm

CH∗(C): Conley index.

Case (a): If CH∗(C) is trivial, return C1 = Smoothing(C).

Case (b): If CH∗(C) is non-trivial and the boundary of im (C) is
uncovered, then C1 = Cut(C), and return C2 = Smoothing(C1).

Case (c): If CH∗(C) is non-trivial and the boundary of im (C) is
covered, then C1 = Unwrap(C), C2 = Cut(C1),
C3 = Restore(C2) and return C4 = Smoothing(C3).



(Laplacian) Smoothing

Given a vector field f and an isolating neighborhood C, a modified vector
field f inside C can be found by solving a constrained optimization problem.

f(vi) =
∑
j

ωijf(vj)

No guarantee of a critical point free field!
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Given a vector field f and an isolating neighborhood C, a modified vector
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Cut

Deform im (C) s.t. there is a small nbhd surrounding the origin that is not
covered by im (C) (i.e. there is no critical point in C after the deformation).
c∗: cut point

vq

ε

vp

c∗

v′p v′qs

`

O

vyvx

`′ ε
s

`

O

c∗

By construction: amount of perturbation < r + ε



Cut: finding the cut point

Via phase plot (angle-valued function)



Unwrap

c∗: unwrap point

By construction: amount of perturbation < r + ε



Restore

Restore the boundary to its original values, which again covers the boundary
but keeps the origin uncovered.
Perturbation < r + ε: internal nodes move by less than r + ε, while the
boundary has the original values.



Example revisited: Synthetic A trivial Conley index
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Example revisited: Synthetic B non-trivial Conley index

(a) (b) (c)

(a) original, (b) after Cut and Smoothing, (c) only Smoothing does not give

critical point free field



Example revisited: Synthetic C

(a) (b) (c)

(a) original, (b) after Unwrap, (c) after Cut and (d) final output after Restore



Results
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Ocean Eddie dataset B



Ocean Eddie dataset B: Challenging Scenarios

A region with non-trivial Conley index and uncovered boundary, where direct
smoothing does not remove its critical points.



Ocean Eddie dataset C
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Ocean Eddie dataset C



Combustion dataset
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Combustion dataset



Combustion dataset



Combustion dataset discussed

Incompressible flow and has high resolution.

Topological-skeleton-based method: potentially difficult, as
separatrices either do not exist or require many integration steps
before reaching the sink/source-like critical points (due to numerical
instabilities). This makes the pairing of the critical points challenging.

One standard solution in 2D: compute topological-skeleton of the
dual VF(rotation by 90◦). Not straight forward in 3D and
computationally expensive for large data.

Robustness-based method does not require the computation of
topology, and its sublevel set computation is fast and can be
augmented using parallel computation. Maybe more practical for
processing large datasets.



Discussions

Scalability: large datasets; merge tree (near linear time) encodes all
information needed for simplification; cut/unwrap point detection
occur on the boundary

Generality: require only degree-zero component; apply to highly
rotational data (e.g. centers) as well as cases where critical points are
not connected by separatrices

Other metrics for merge tree / robustness computation

Time-varying: consistency simplification across time-slices

3D challenge: few existing simplification techniques; finding an
uncovered boundary point and computing an unwrapping



Part 1-C: Robustness

Interpreting Feature Tracking through the Lens of Robustness

Joint work: Primoz Skraba

[Skraba, Wang 2013]



Feature tracking from vector field data

Feature tracking: resolve correspondences between features in successive
time steps and to analyze the dynamic behaviors of such features.
Commonly tracked features: volume, areas, contours, boundaries, vortices,
shock waves, critical points and sublevel sets...



Feature tracking from vector field data: an incomplete view

Feature extractions at individual time slices and feature matching via
region/attribute correspondence [Post et al. 03] correspondence
based on distance proximity / spatial overlap [Samtaney et al. 94]
[Silver et al. 99].

Temporal interpolation, time as the 4th dim, iso-surface extraction in
4D space-time [Weigle et al. 98] vortex tracking [Bauer et al. 02].
For for critical points, Reeb graphs [Edelsbrunner et al. 02] & Jacobi
sets; 2D/3D linear interpolation [Tricoche et al. 02][Garth et al. 04].

Feature flow fields, integrated persistence [Theisel el al. 03] [King et
al. 08]] [Reininghaus et al. 11] [Weinkauf et al. 11]



Take home message

Fresh interpretation of the notion of critical point tracking, through
the lens of robustness. (Cute :-)

Relate critical points tracking with their stability: stable critical
points could be tracked more easily and more accurately.

Robustness help us understand the sufficient sampling conditions
under which we can resolve correspondences based on region overlap.

Theoretical basis for visualizing PL critical paths.

Note: results in Rn, use R2 for illustration/explanations.



Robustness: combustion dataset



Robustness Vis Revisisted



An Illustrative Guide to Main Results:
Correspondence Under Robustness Setting



Assumptions

Time-varying vector field is c-Lipschitz.
We have an ε-sample in space and time.

f : X× R→ R2, X ⊆ R2, ft(x) = f(x, t) : X→ R2 for t ∈ R.

||ft(x)− ft+ε(x)||2 ≤ cε, ∀x ∈ X

Better error bound for approximating the underlying vector fields (function),
better interpolation, and better constants in the theoretical guarantees.



Definition: Sublevel set of Euclidean norm of a time slice

Sublevel set of ||ft(x)||2 for any δ > 0 whose degree is non-zero:

Ct(δ) = {x ∈ X | ||ft(x)||2 ≤ δ}

ft

Ct(�)



Lemma 1: Critical Points Containment

For two adjacent time steps of the vector field ft, ft+ε : X→ R2, the critical
points in both time steps belong to int (Ct(δ) ∩ Ct+ε(δ)) for all δ > cε.

ft ft+✏

Ct(�) Ct+✏(�)

Intuition: Critical points are contained in intersections across time steps,
although this does not imply correspondence.



Definition: δ-bounded homotopy between ft and fε

H : X× [0, 1]→ R2, s.t ∀x ∈ X, H(x, 0) = ft(x), H(x, 1) = ft+ε(x).
Intermediate time slices: hs(x) = H(x, s) : X→ R2 (s ∈ [0, 1]),
based on straight-line homotopy.
H is δ-bounded, if ∀x ∈ X and ∀s, s′ ∈ [0, 1],

||hs(x)− hs′(x)||2 ≤ δ

ft ft+✏

[0, 1]

hs0(x)

hs
hs0

hs(x)



Definition: δ-correspondence

A δ-correspondence between a pair of critical points is defined s.t. there
exists a δ-bounded homotopy which maps the points to each other.

There is a δ-correspondence between critical points x at t and y at t+ ε if
there exists a δ-bounded homotopy H between ft and ft+ε, s.t. H−1(0)
contains a continuous path embedded in X × [0, 1] ⊂ R3 that connects x
with y.

We refer to such a path as the critical path.



Lemma 2:
Critical Points Correspondence Under Unique Intersection

For δ > cε, let Cit(δ) and Cjt+ε(δ) be components of the δ-sublevel sets
with a unique intersection. If there exists a unique δ-robust critical point in
each component, then they are in correspondence.

ft ft+✏

Cj
t+✏(�)

Ci
t(�)

y
x



Lemma 2 Cont.

Main idea: Construct a (δ+cε)-bounded homotopy that maps x to y. Con-
sider tubular neighborhood surrounding the parametrized curve connecting
x and y

x

y

ft ft+✏

[0, 1]



Lemma 3: Robust Critical Points Correspondence

There exists a (δ + cε)-bounded homotopy between δ-robust critical points
between time slices, from which a correspondence could be obtained.

(a) (b)

Main idea: Consider (a) with unique intersection condition, however there
may be multiple δ-robust critical points in each component; (b) without
unique intersection condition.



Lemma 3 Cont.

Case (a): choose the desired correspondence by constructing critical paths
(which are no longer unique).

(a)

ft ft+✏

[0, 1]

Case (b): Require a path exists between critical points. Many choices of
correspondences, homotopy construction works for any of them (under the
restriction that the corresponding points are distinct).



Definition: δ-tube

A δ-tube is defined as a component in
⋃
s∈[0,1]Cs(δ).

(also defined for PL version)

ft ft+✏

[0, 1]



Lemma 4: Critical Paths Containment

For any δ > cε, if a critical path between two δ-robust critical points exists,
it will be completely contained within a δ-tube between the two time slices
ft and ft+ε.

x

y

ft ft+✏

[0, 1]



Lemma 5: Sublevel Set Unique Correspondence

For δ > cε, if there are no merge events in [δ− cε, δ+ cε] (within the merge
trees) between times t and t+ ε, the correspondences between c.c. in Ct(δ)
and Ct+ε(δ) whose intersections contain critical points are unique.

ft ft+✏

Ct(�)
Ct+✏(�)

� � c✏

� + c✏



Conclusion and Discussion

Infer correspondence between critical points based on their closeness
in stability, measured by robustness, instead of just distance
proximities within the domain.

Robustness framework gives correspondence a natural sense of scale:
if we allow larger perturbations, more correspondences are possible.

How to visualize possible correspondences?

How to choose the best correspondence between a set of possible
correspondences?

Construct a δ-bounded homotopy with a controlled Lipschitz
constant?



Part 2-A: Branching and Circular Structure in Data

Branching and Circular Structure Detection Joint work: Valerio

Pascucci, Brian Summa, Mikael Vejdemo-Johansson

[Wang, Summa, Pascucci, Bhatia and Vejdemo-Johansson 2011]



Background

Persistent cohomology and circular coordinates [de Silva, Morozov,
Vejdemo-Johansson 2009]



Circular structure detection

For topological spaces with the homotopy type of a cell complex:

H1(X;Z) ∼= [X,S1]

.

If X has a non-trivial 1-dimensional cohomology class [α] ∈ H1(X;Z),
we can construct a continuous function θ : X → S1 from a
representative α.



Circular structure detection

Describe a topological procedure that enlarges the class of coordinate
functions for dimensionality reduction to include global circle-valued
functions, mapping the point cloud to a closed circle.

(a) (b)

(c) (d) (e)

Courtesy [de Silva, Morozov, Vejdemo-Johansson 2009]



Branching Structure Detection



Local version of persistent cohomology

w x

w w

x

w

x

w

x



Local parametrization: branching detection



Local parametrization: branching detection



Local parametrization: fake branching detection

(a) (b) (c)

(e) (f) (g)



An Example



Motion capture data: Walk/Hop/Walk

[Video]



Motion capture data: Walk/Hop/Walk



Part 2-B: Branching and Circular Structure in Data

Circular Structures in Memory Reference Traces

Joint work: Paul Rosen, Valerio Pascucci, A.N.M. Imroz Choudhury

[Choudhury, Wang, Rosen, Valerio 2012]



Overview

Phenom II CPU combined with DirectX 11 GPU 

Complex Behavior 

Image courtesy techgenie.com 

Image courtesy of http://wingolog.org 



Example



System pipeline

Exe. app. to generate memory reference trace → PCD → TDA
→ Visualization

Write 0x7fffac539ed8 

Write 0x7fffac539ed0 

Write 0x7fffac539ecc 

Write 0x7fffac539ec8 

Read 0x7fffac539ecc 



Capture a memory reference trace

Write 0x7fffac539ed8 

Write 0x7fffac539ed0 

Write 0x7fffac539ecc 

Write 0x7fffac539ec8 

Read 0x7fffac539ecc 

Read 0x7fffac539ec8 

Write 0x7fffac539eb8 

Write 0x7fffac539eb0 



Results



Visualization

Parameterization 

Time 
Memory Event 



Datasets

Four algorithms:

bubble sort

näıve and blocked matrix multiplication

material point method

Identified 2 major classes of structure:

Data dependent vs. algorithm dependent

Loop-based vs. non loop-based



Data dependent structure



Data dependent structure



Data dependent structure



Data dependent structure



Algorithm dependent structure



Algorithm dependent structure



Algorithm dependent structure
N

aï
ve

 M
at

rix
 

M
ul

tip
ly

 
B

lo
ck

ed
 M

at
rix

 
M

ul
tip

ly
 



Non loop-based structure

g->S(…) 
S_x(…) 

S_y(…) 

compute_shape_function(…) 

compute_shape_function(…) 

g->S(…) 
S_x(…) 

S_y(…) 

compute_shape_function(…) 

compute_shape_function(…) 

…
 



Discussions

Introduced a new domain for exploring software behavior using
topological analysis

Identified some basic classes of structure that appear in software

Performance analysis? The current connection to performance is
loose, but we hope to strengthen that connection through additional
study

Branching structures? Branching in code



Thank you!
beiwang@sci.utah.edu
www.sci.utah.edu/∼beiwang


