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Abstract. We propose a technique for analyzing longitudinal imaging
data that models individual changes with diffeomorphic geodesic regres-
sion and aggregates these geodesics into a nonparametric group average
trend. Our model is specifically tailored to the unbalanced and sparse
characteristics of longitudinal imaging studies. That is, each individual
has few data points measured over a short period of time, while the study
population as a whole spans a wide age range. We use geodesic regression
to estimate individual trends, which is an appropriate model for captur-
ing shape changes over a short time window, as is typically found within
an individual. Geodesics are also adept at handling the low sample sizes
found within individuals, and can model the change between as few as
two timepoints. However, geodesics are limited for modeling longer-term
trends, where constant velocity may not be appropriate. Therefore, we
develop a novel nonparametric regression to aggregate individual trends
into an average group trend. We demonstrate the power of our method to
capture non-geodesic group trends on hippocampal volume (real-valued
data) and diffeomorphic registration of full 3D MRI from the longitudinal
OASIS data.

1 Introduction

Quantifying anatomical shape changes due to disease progression is an important
step towards improving early disease detection, tracking treatment efficacy, and
generally understanding disease processes. While cross-sectional studies have
yielded some insights into disease progression, such as understanding atrophy in
Alzheimer’s, these methods cannot explain the changes that individuals undergo.
Longitudinal studies, on the other hand, measure changes within individuals by
repeating measurements for each participant over time. This allows estimation
of individual trajectories, as well as the average trajectory for a group.

Semiparametric mixed effect models have been used to analyze longitudinal
data such as height changes over time [3]. These mixed effect models have been
used to analyze longitudinal neuroimaging data by looking at summary measures
like volume of the brain or its various substructures. However these summaries
cannot give a detailed picture of where or how the shape changes over time.
Other methods have extended this analysis to look at longitudinal change of
substructure surfaces [12, 17]. This requires segmenting the structures of interest
beforehand and finding correspondences between points on the surface. Work



has also been done to analyze longitudinal change of measures like fractional
anisotropy along DTI fiber tracts [18]. Allowing the measures to vary along the
tracts is valuable, but it requires measurements along the length of the tract
and alignment of tracts across subjects. In fact, many of the existing methods
are designed to work with this kind of balanced data where all subjects have
measurements across the entire duration of the period of interest.

Some analysis has been done on longitudinal univariate manifold data, in
particular trying to find alignment of time of disease onset [14]. We want to
go beyond the univariate measures and characterize shape changes over time.
Methods for looking at shape change over time [4, 10, 5, 8] look for geodesic group
trends and geodesic subject trends. However, as pointed out in [7], a geodesic
model is not sufficient to explain shape change during periods of significant
growth or atrophy. This is because a geodesic must be constant velocity, whereas
anatomical shape changes typically exhibit acceleration or deceleration.

We develop a longitudinal data analysis that has the flexibility to model com-
plex, non-constant speed trends at the group level. At the same time, we can
handle individual data that is sparsely sampled in time, and unbalanced, that is,
individuals are not sampled at the same timepoints, and may even have different
numbers of measurements. To do this, we model the individual trends with a
geodesic, which is adept at sparsely sampled, short-term shape trends. Next, we
develop a novel method called Aggregation of Longitudinal Geodesics (ALG) for
averaging the geodesic trends into a nonparametric group trend that can cap-
ture accelerating or decelerating shape changes. We perform experiments with
3D brain MRI and associated univariate measurements to show that the group
trends are not constant speed and that our approach captures these complexities.

2 Methods

We consider longitudinal data lying on a Riemannian manifold M . In the present
paper, we will analyze univariate measurements (M = R), as well as 3D MR
images under the LDDMM metric. However, our method is generally applicable
to other manifolds. Let yij ∈ M denote the jth measurement from the ith
subjects, taken at time tij , and let N be the number of subjects, each with
Pi measurements. The full data set spans an age range, [tmin, tmax], while each
individual subject spans a much smaller age range, i.e., ti,Pi− ti,1 � tmax− tmin.

Individual Geodesic Trends. We start by modeling the subject-specific tra-
jectories as geodesic curves, γi : [ti1, tiPi ]→M . These geodesic trends are fit to
the subject data, (tij , yij) using geodesic regression. A geodesic can be param-
eterized by its initial position p = γi(ti1) ∈ M and velocity v = γ′i(ti1) ∈ TpM
(tangent space to p). Geodesic regression [6] solves the least-squares problem:

(p̂i, v̂i) = arg min
(p,v)∈TM

d(yij ,Expp (tijv))
2
,

where Exp is the Riemannian exponential map, which converts an inital posi-
tion and velocity into a geodesic curve, i.e., γ(t) = Expp(tv), and d(·, ·) is the
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Fig. 1: Illustration showing the contributions from one subject’s longitudinal
measurements, weighted by the kernel function wi(t).

Riemannian distance on M . The end result, for each subject i, is an estimated
geodesic trend γ̂i, parameterized by its initial position p̂i and velocity v̂i.

For univariate data, a geodesic is a straight line, and geodesic regression
is simply ordinary least-squares regression. Whereas, for images, we use diffeo-
morphic geodesic regression [11]. For this work, we used the vector momenta
formulation [15] of LDDMM to perform the geodesic regression. In order to de-
fine kernel-weighted averaging of trends, we need a definition of an individual’s
trend over time extending for the full support of the kernel, which will generally
extend beyond the time interval of a subject. To do this, we define a constant
extension of the data at the endpoints for a subject. Thus, the ith subject’s trend
is given by

ŝi(t) =


γ̂i(ti1) if t < ti1,

γ̂i(t) if ti1 ≤ t ≤ tiPi ,
γ̂i(tiPi) otherwise.

(1)

Nonparametric Group Trend. We build a group trend of age-specific atlases
as a nonparametric kernel regression of the subject-specific models’ predictions.
We then compute a weighted average of the data (univariate or images) at that
age where the weight for a subject’s interpolated image is 1 when the age falls
between the time of the first and last measurement for that subject. Outside of
that window, the weight for an age, t, decreases according to a Gaussian kernel
of the form

Kl(t, i) = e
−(t−ti,1)2

2σ2 ,Kr(t, i) = e
−(t−ti,Pi )

2

2σ2 (2)



where Kl(t, i) is used when age t < ti,1 and Kr(t, i) is used when the age t > ti,Pi .
These kernels are used to compute the weight function, wi for each subject:

wi(t) =


Kl(t, i) if t < ti,1,

1 if ti,1 ≤ t ≤ ti,Pi ,
Kr(t, i) otherwise.

(3)

To construct an age atlas, at, at age t, we compute the weighted Fréchet
mean:

at = arg min
a∈M

N∑
i=1

wi(t)d(ŝi(t), a)2. (4)

For univariate data (M = R), the solution to this minimization problem is the
weighted average. For images under the LDDMM metric, we follow the approach
in [2], by constructing the weighted diffeomorphic atlas at by gradient descent
optimization. In Figure 1, we illustrate how one subject would contribute to the
age atlases constructed every year between 71 and 76.

3 Experiments

3.1 Simulated Univariate Data

Before applying ALG to real data, we wanted to understand how well it can
reconstruct a known nonlinear group trend in longitudinal data. We start by
simulating univariate data with a ground truth group trend of y = 4x2 − 8x+ 4
in the range [0, 1] with slope y′ = 8x − 8. We simulate longitudinal data for
N = 100 subjects by generating Pi = 3 time points for each subject that follow
a noisy y-shifted version of the group trend. We draw the middle age for a
subject, ti,2 ∼ Unif(0, 1), and compute the group slope and intercept at this
point. We then choose a random first and last age not too far away in time,
ti,1 = ti,2 − δi,1, ti,3 = ti,2 + δi,2 where δi,j ∼ N(0, 0.05). From these time points
we generate the associated measurements mi,j = y′(ti,2)∗ ti,j +y(ti,2)−y′(ti,2)∗
ti,2 + ηi + εi,j where ηi ∼ N(0, 1) and εi,j ∼ N(0, 0.1).

We apply ALG with σ = 0.1 for 10 equally spaced age atlases, at. Figure 2
shows all 100 subjects and the age atlases showing the estimated group trend.
Notice that the estimated group trend closely follows the nonlinear ground truth
trend.

3.2 Simulated Images

We tested ALG with simulated images by creating a longitudinal version of the
cross-sectional bulls-eye experiment from [2]. We generate 256x256 2D bulls-eye
images at 4 different time points for each of 173 individuals where the 3 radii that
define each bulls-eye evolve in time according to known processes. The innermost
radius, R1, follows a logistic decay process from 18 pixels at age 65 to 12 at age
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Fig. 2: Left: longitudinal data simulated to follow a nonlinear group trend. Right:
atlas values computed by ALG recover the ground truth trend.

95. The middle radius, R2, grows logistically from 25 to 45 pixels over the same
time, and the outer radius, R3, grows linearly from 70 to 90 pixels.

The starting age for the i-th subject is drawn from ti,0 ∼ Unif(0, 1). The ages
for each of the subsequent 3 time points for that subject are ti,j+1 = ti,j + δi,j
where δi,j ∼ N(1, 0.5). The radii for the i-th subject at the j-th time point are
calculated as

R1,i,j(ti,j) = f1(ti,j) + η1,i + ε1,i,j (5)

R2,i,j(ti,j) = f2(ti,j) + η2,i + ε2,i,j (6)

R3,i,j(ti,j) = f3(ti,j) + η3,i + ε3,i,j , (7)

where the k-th radius has a subject-specific noisy shift, ηk,i ∼ N(0, 2), and
also timepoint-specific noise, εk,i,j ∼ N(0, 1). Once the images are created, zero-
mean Gaussian noise with standard deviation = 0.03 is added to the image
intensities.

Figure 3 shows the results of univariate ALG with σ = 3 performed separately
on each of the radii measurements to create an age atlas for each year between
65 and 95. We then apply ALG with the same sigma value to the 173 sets
of 4 longitudinal 2D images (see Figure 4 for a representative selection of these
images). As shown in Figure 5, we compared the estimated atlases and associated
momenta with the ground truth atlases and found that the original atlases are
recovered and that the momenta between atlases change nonlinearly over time.

To quantify the dynamics of the shape change, we looked at two properties of
the estimated paths: the norm of the momenta at each time point and also the
deviation of the velocity from a geodesic (see Figure 6). A geodesic satisfies the
equation, dv

dt + ad†
vv = 0. So, if we compute the left-hand side, we can measure

how “non-geodesic” the path is, and we call this value the curvature of the path.
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Fig. 3: Univariate ALG analysis of bulls-eye radii.

This is the covariant derivative of the velocity along the path, i.e., ∇v(t)v(t). If
the norm is nearly constant and the curvature is nearly 0 everywhere then the
longitudinal trend is linear. Notice that our results have a large increase in both
the norm and curvature around age 80, consistent with the logistic processes
for R1 and R2 that change the fastest at their halfway point. ALG successfully
models this nonlinear group trend in the image data and provides atlases for
each age that match the ground truth image for that age.

3.3 Real Data

We used T1 MRIs for 142 adults with and without Alzheimer’s disease from
the longitudinal OASIS database [9] with 72 Nondemented (Clinical Dementia
Rating, CDR = 0) subjects between the ages of 60 and 93, 56 Demented (CDR
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Fig. 4: A representative selection of individuals from the longitudinal bulls-eye
data.

≥ 0.5) subjects between the ages of 61 and 96 and 14 Converted subjects (CDR
changed from 0 to 0.5 over course of the study) between the ages of 65 and 87.
The subjects had between 1 and 5 MRI scans taken with a time between first
and last scans of between 1 and 7 years.

All images were processed using longitudinal Freesurfer to do skull strip-
ping and intensity normalization and to measure left and right hippocampal
volumes [13]. Geodesic regression was then performed on the processed images
for each subject individually as described in [16]. We use the vector momenta
implementation of geodesic shooting to shoot the initial momenta from the indi-
vidual geodesic regressions in order to find an image for a subject at a particular
age. We chose to use the “Goldie Locks” sigma of 6 years for the kernel which
was also used by [2].

First, we look at the left and right hippocampal volumes computed by longi-
tudinal Freesurfer. Figure 7 shows the results of ALG applied to left hippocampal
volumes normalized by inter-cranial volume (ICV). Similar results were found
for the right hippocampus. Note in particular that our method captures the
nonlinear nature of the volume change over time.

Now let’s look how the diffeomorphisms change over time. In Figure 8, we
show the age atlases overlaid with the initial momenta at each age. Notice that



Fig. 5: Columns 1-6: 2D bullseye atlases at a selection of ages. First row: Ground
truth images. Second row: Estimated atlases. Third row: Estimated atlases with
initial momenta overlaid as red arrows. Last row: Estimated atlases with the log
jacobian determinant of the deformations from one atlas to the next overlaid.
Blue is contraction (negative values), white is 0 and red is expansion (postive
values).
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Fig. 6: Momenta norm and curvature of estimated bulls-eye atlases.
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Fig. 7: Left hippocampal volumes normalized by inter-cranial volume (ICV).

the location and magnitude of the shape change changes over time, especially
around the ventricles and hippocampi. This is consistent with the literature [1,
12, 17]. We quantified this nonlinearity by computing the norm and curvature of
the momenta between estimated atlases as shown in Figure 9. Since the norm is
nonconstant and the curvature is nonzero, the shape change of these images is
nonlinear. The age-specific atlases generated by ALG capture this acceleration
and deceleration in shape change over time.

4 Discussion

We presented ALG, a method that can aggregate longitudinal measurements
across subjects, where the measurements for an individual span a small time
window compared to the aggregated time window. ALG works for any manifold
data that can be modelled by a geodesic regression.

We applied ALG to simulated univariate and image data and were able to
recover the underlying group trend in both cases. We then applied ALG to
the longitudinal OASIS data and saw that the group trends for atrophy are
nonlinear, with different structures atrophying at different rates and different
times in the disease progression, which is consistent with the literature [1]. This
demonstrates that ALG is indeed able to capture accelerating and decelerating
anatomical shape changes.



Fig. 8: Columns 1-4: atlases of 3D OASIS data at a selection of ages. Rows 1-3:
2D axial view of Nondemented, Demented and Converted atlases respectively.
Rows 4-6: 2D sagittal view of Nondemented, Demented and Converted atlases
respectively. The log jacobian determinant of the deformations from one atlas
to the next are overlaid with a colormap, where blue is contraction, white is 0
and red is expansion.
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Fig. 9: Momenta norm and curvature of OASIS atlases.

Acknowledgements This work was supported by NIH grant R01EB022876.
The OASIS data was provided by the following grants: P50 AG05681, P01
AG03991, R01 AG021910, P20 MH071616, U24 RR021382. Thanks to Nikhil
Singh for providing the preprocessed Freesurfer data and subject-specific geodesic
regressions.



References

1. Braak, H., Braak, E.: Evolution of the neuropathology of alzheimer’s disease. Acta
Neurologica Scandinavica 94(S165), 3–12 (1996)

2. Davis, B., Fletcher, P., Bullitt, E., Joshi, S.: Population shape regression from
random design data. International journal of computer vision 90(2), 255–266 (2010)

3. Durbán, M., Harezlak, J., Wand, M., Carroll, R.: Simple fitting of subject-specific
curves for longitudinal data. Statistics in medicine 24(8), 1153–1167 (2005)
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