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Introduction
} Neurons essential to the functioning of life
} Neuronal morphology important in neuron functions
} Understanding 3D morphology of individual neurons

} Reconstruction from 2D/3D images
} Characterizing and comparing neuron structures

Image from https://en.wikipedia.org/wiki/Neuron

Based topological methods



This Talk

Topological methods for: 

} Part I:
} Neuron structures comparison

} Part II:
} Neuronal Morphology Reconstruction



Neuronal structure 101

soma

dendrite

axon

axon 
terminal

Can be considered as a tree structure with augmented information. 



Neuron Structures Comparison
} Large number of neuroanatomical data publically available

} e.g, FlyCircuit.org,  NeuroMorpho.org 

} Efficient algorithms to compare neuron structures 
} E.g, to organize / classify large collection of neurons, to 

understand variability within a cell type, or to identify features



Related Work

} L-measure tool
} [Scorcioni et al, 2008]

} Sholl-like analysis
} [Sholl 1953]

} Arbor density representation
} [Sümbül et al 2013]

} NBLAST
} [Costa et al 2016]

Our goal: 
• Simple representation to facilitate 

efficient comparison, 
• yet at the same time discriminative, 

capturing global tree structure

Develop a persistence-based feature-
vectorization and comparison framework. 



Vectorization Framework
} Persistence-based feature vectorization framework

A similar persistence-based vectorization method was proposed 
independently in 

[Kanari, Dlotko, Scolamiero, Levi, Shillcock, Hess, Markram, arXiv 2016]



Vectorization Framework
} Persistence-based feature vectorization framework

} Tree representation of neurons
} A set of tree nodes and arcs, where each arc is modeled by a 

polygonal curve. 
} Often assume rooted tree with root 𝑟 located at soma
} Tree nodes / arc may be associated with other information



Vectorization Framework
} Persistence-based feature vectorization framework

} Descriptor function(s) on 𝑇: 𝑓: 𝑇 → 𝑅
} Euclidean distance

} For any 𝑥 ∈ 𝑇 , 𝑓 𝑥 = | 𝑥	 − 𝑟 |	
} Geodesic distance 
} L-measure based and other morphological descriptors
} Electrophysiological measures



Vectorization Framework
} Persistence-based feature vectorization framework

} Given descriptor function 𝑓: 𝑇 → 𝑅
} Compute the persistence diagram induced by the sub-level set 

and super-level set filtrations of 𝑓 as its summary



Persistent Homology 101
} [Edelsbrunner, Letscher, Zomordian 2000], [Zomorodian and Carlsson 2005], 

Earlier developments: [Frosini 1990], [Robins 1999]

} Given a filtration of a space 𝑋
} 𝑋/ ⊂ 𝑋1 ⊂ ⋯𝑋3 ⊂ ⋯ ⊂ 𝑋4 ⊂ ⋯𝑋5 = 𝑋
} Consider this as a lens through which we inspect 𝑋

} Capture creation and death of ``features’’ by homology
} 𝐻∗ 𝑋/ → ⋯ → 𝐻∗ 𝑋3 → ⋯ → 𝐻∗ 𝑋4 → ⋯𝐻∗ 𝑋5 = 𝐻∗ 𝑋
} Summarize the birth/death of homological features in the 

persistence diagram 



Distance Field Filtration Example
} A filtration induced by distance field. 

Birth time

Death time



In Neuron Setting
} Assume 𝑓	is plotted as height function
} Filtration induced by the sub-level set filtration

} 𝑓8/ −∞, 𝑎; ⊆ 𝑓8/ −∞, 𝑎/ ⊆ ⋯ ⊆ 𝑓8/ −∞, 𝑎5 = 𝑇	
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Remarks
} Depending on the descriptor function 𝑓: 𝑇 → 𝑅,	a tree 

may have both down-forks and up-forks. 
} Also consider super-level sets filtration, and its induced 

persistence diagram 𝐷𝑔8?
} Given a descriptor function 𝑓, 

} Obtain persistence diagram summary 𝐷𝑔𝑓	 = 𝐷𝑔? ∪ 𝐷𝑔8?
} 𝐷𝑔	𝑓	serves as a summary of 𝑇 from the perspective of 

descriptor function 𝑓

} Persistence-summary intuitively more discriminative than 
simply statistics of morphological measures (eg. avg
branching angles)



Connection to Sholl-like Analysis
} Sholl function 𝑁:𝑅B → 𝑅B

} 𝑁 𝜆 ≔	number of intersection of 𝑇 with a circle (sphere) 
centered at the root 𝑟	with radius 𝜆



Connection to Sholl-like Analysis
} Sholl function 𝑁:𝑅B → 𝑅B

} 𝑁 𝜆 ≔	number of intersection of T with a circle (sphere) 
centered at the root 𝑟	with radius 𝜆

} One can recover full Sholl function from persistence 
diagrams induced by Euclidean distance function

𝑁 𝑟 =	total number of 
points in these two regions 



Vectorization Framework
} Persistence-based feature vectorization framework

} To facilitate efficient distance computation
} Convert persistence diagram 𝐷𝑔	𝑓	to a featue vector 𝑉F,?
} [Bubenik 2012], [Reininghaus et al 2015], [Adams et al 2015],…



Feature Vectorization

} Convert diagram 𝐷 to a 1D density field
}

} Discretize it to a 𝑚-vector
}



Vectorization Framework
} Persistence-based feature vectorization framework

} If there are multiple descriptor functions
} Concatenate their respective feature vectors
} Perform dimensionality reduction to reduce dimension



Remarks
} Versatile framework

} Can combine multiple type of information of neurons, 
morphological or electrophysiological measures

} Easy to add new measurements

} Discreminative features
} E.g, persistence features from Euclidean function contains more 

information than Sholl function
} E.g, persistence features from geodesic function encodes global 

morphological information

} Have certain stability guarantees





Three Test Datasets
} Dataset 1: 

} 379 neurons taken from neuromorpho.org category Drosophila-
Chklovskii, manually categorized into 89 types

} [Takemura et al, 2013]

} Dataset 2: 
} 127 neurons from four families: Purkinje, olivocerebellar neurons, Spinal 

motoneurons and hippocampal interneurons, downloaded also from 
neuronmorpho.org

} Dataset 3:
} 1268 neurons from Human Brian Project, downloaded from 

neuromorpho.org.  Two primary cell classes: interneurons and 
principal cells, known for 1130 cells

} [Markram et al 2015]



Preliminary Results
} Leave-one-out classification tests based on k-nearest neighbors



Preliminary Results
} Clustering for Dataset 2



Preliminary Results
} Clustering for Dataset 1

} Five largest families other than “Tangential” 



Preliminary Results
} An interactive visualization tool



This Talk

} Part I:
} Neuron structures comparison

} Part II:
} Neuronal Morphology Reconstruction



Neuronal Morphology Reconstruction
} Various imaging techniques produce large number of 

2D/3D images

Challenge: 
Automatic reconstruction of neuronal morphology from 

various imaging data. 



Related Work
} DIADEM challenge (2009—2010)

} Diginal Reconstruction of Axonal and Dendritic Morphology
} http://diademchallenge.org/

} BigNeuron (launched in 2015)
} Large-scale 3D single neuron reconstruction
} Sponsored by 14 neuroscience-related research organizations 

and international research groups
} https://www.alleninstitute.org/bigneuron/about/

} Many algorithms already integrated into platform Vaa3D
} [Peng et al., 2010] www.vaa3D.org.



The Problem
} On the high level:

} Given a 2D / 3D image data, the goal is to extract one (or 
multiple) tree-like structure(s) from it. 

} Some challenges: 
} Various types of background ``noise’’
} Non-homogeneous distribution of signal in raw data
} Mixture of multiple neurons



} On the high level:
} Given a 2D / 3D image data, the goal is to extract one (or 

multiple) tree-like structure(s) from it. 

} Previous methods:
} Often rely on local information for decision making, sensitive 

to noise
} Some thresholding involved, challenging in handling non-

uniform signal distribution 
} Junction nodes identification challenging

} E.g, ``growing” individual branches and ``gluing” them to obtain tree 
topology



Morse-based Reconstruction Framework

} Morse-based approach 
} uses global structure behind data
} junction nodes identification reliable w/o special processing
} robust against noise, small gaps, and non-uniformity in data
} conceptually clean, helps reducing pre-processing of data



Main Idea
} Assume input is a scalar field 

} 𝑓: 𝐼 → 𝑅	, where high value of 𝑓 indicates high signal value

} Consider graph 𝑓 as a terrain (mountain range) on 𝐼×𝑅
} 𝐼 can be 	 0,1 1 ⊂ 𝑅1	or 0,1 L ⊂ 𝑅L	
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Main Idea
} Assume input is a scalar field 

} 𝑓: 𝐼 → 𝑅	, where high value of 𝑓 indicates high signal value
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The neuron structure ``tends to’’ correspond to ridges of this terrain.

Use Morse theory to help identify ``mountain ridges”.



Morse Theory: Smooth Case
} Let 𝑓: 𝑅M → 𝑅 be a Morse function 

} Gradient of 𝑓 at 𝑥: 𝛻𝑓 𝑥 = O?
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} Critical points of 𝑓: 
} {	𝑥 ∈ 𝑅M ∣ 𝛻𝑓 𝑥 = 0	}	
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gradient of 𝑓 at every point of the path
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Morse Theory: Smooth Case
} Let 𝑓: 𝑅M → 𝑅 be a Morse function 

} Gradient of 𝑓 at 𝑥:  𝛻𝑓 𝑥 = O?
PQ
, O?PR , … ,

O?
PT

F

} Critical points of 𝑓:  {	𝑥 ∈ 𝑅M ∣ 𝛻𝑓 𝑥 = 0	}	
} An integral line 𝐿: 0, 1 → 𝑅M:

} a maximal path in 𝑅M whose tangent vectors agree with 
gradient of 𝑓 at every point of the path

} has origin and destination at critical points
} 𝐷𝑒𝑠𝑡 𝐿 = lim

_→/
𝐿(𝑝)

} 𝑂𝑟𝑖 𝐿 = lim
_→;

	 𝐿 𝑝 	 𝑥



Stable / Unstable Manifolds
} Given a critical point 𝑥 of 𝑓

} Stable manifold 𝑆 𝑥 = 	𝑦 ∈ 𝑅M 𝑑𝑒𝑠𝑡 𝑦 = 𝑥	
} Unstable manifold 𝑈 𝑥 = {	𝑦 ∈ 𝑅M ∣ 𝑜𝑟𝑖 𝑦 = 𝑥	}

} Morse complex, Morse-Smale complex 
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1-unstable Manifold
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1-unstable Manifold

1-unstable manifold (of index 𝑑 − 1 saddle points) => mountain ridges



Simplification

} How to decide which 
pair of critical points to 
simplify?
} Use persistence homology
[Edelsbrunner, Letscher, 
Zomorodian 2002], [Zomorodian, 
Carlsson 2005], …  



Simplification



Discrete Case
} Input:  a piecewise-linear (PL) function defined on a 

simplicial complex domain
} Given volumetric data (2D / 3D images), we can first 

triangulate it and convert it to a simplicial complex domain

} Leverage discrete Morse theory
} [Forman 1998, 2002]
} [Gyulassy, 2008], [Sousbie 2011] (DisPerSE)



Neuron Reconstruction Overview
} Input:  2D/3D image 𝑓: 𝐼 → 𝑅	with 𝑓 given at grid points in 𝐼

} (1) Triangulate 𝐼 to 𝐾, and potentially remove background cells 
to obtain PL function 𝑓: 𝐾 → 𝑅

} (2) Negate 𝑓 to 𝑓k = −𝑓
} (3) Compute 1-stable manifold for index-1 saddles
} (4) Simplify to remove noise
} (5) Output Neuron-graph 𝐺

} (6) Obtain a tree structure 𝑇 from 𝐺
} Assign weights to arcs in 𝐺 as integral of density 𝑓 along the arc
} Compute maximum spanning tree 𝑇



Neuron Reconstruction Overview



Preliminary Results
} Some DIADEM datasets

OP 1 OP 9



Preliminary Results
} Some DIADEM datasets

OP 1 OP 9

OP 9 input data



Diadem Dataset OP2
OP2 
Input

Our reconstruction receives similar DIADEM metric distance ([Gillette et al 
2011]) as APP2 (from Vaa3D) 



Diadem Dataset OP2

OP 2 



Preliminary Results
} Mouse brain LM images from an AAV viral tracer-injection

} from Mitra laboratory at CSHL



Remarks
} Other advantages of Morse-based framework

} Can be used to merge/integrate multiple reconstructions
} Can be used to provide correction ability



Summary and Remarks

} Two examples of topological methods for neuronal 
structure analysis
} Topological methods 

} general and robust
} capture / leverage global structures
} tend to be less ad-hoc

} Further develop these applications
} Provide more theoretical justification and understanding 


