Topological Structures in the Analysis of Images and Data

Chao Chen

City University of New York (CUNY)

Oct. 2016

Outline

High Dimensional Data

- Algorithms
- Applications

Topological Structures

• global, multi-scale, independent to geometry

Topological Structures of Data

- For a dataset, what are the components and loops of the data?
- TDA: detect these structures in a robust way.

Topological Structures of Data

- For a dataset, what are the components and loops of the data?
- TDA: detect these structures in a robust way.

Persistent Homology: A Robust Way to Extract Topological Structures

- Input: a (density) function, f
- Output:

topological structures & their persistence

Persistent Homology: A Robust Way to Extract Topological Structures

- Input: a (density) function, f
- Output: topological structures & their persistence

• Def: given threshold t, the superlevel set $f^{-1}[t, +\infty) := \{x | f(x) \ge t\}$

C. Chen (CUNY)

Persistent Homology (continued)

- the true structures are hidden in superlevel sets
- consider the whole stack of superlevel sets
- identify structures that often appear (high persistence)
- Output: persistence diagram dots representing all structures

Persistent Homology (continued)

- the true structures are hidden in superlevel sets
- consider the whole stack of superlevel sets
- identify structures that often appear (high persistence)
- Output: persistence diagram dots representing all structures

Why Topological Structures: Cardiac data (Demo)

Why Topological Structures: Cardiac data (Demo)

Thresholding

• Thresholding: local evidence, minimize energy $E(\mathbf{y})$

$$E(\mathbf{y}) = \sum_{\mathbf{v}} E_{\mathbf{v}}(y_{\mathbf{v}}), \quad y_{\mathbf{v}} \in \{BG, FG\}$$

Why Topological Structures: Cardiac data (Demo)

• Thresholding: local evidence, minimize energy $E(\mathbf{y})$

$$E(\boldsymbol{y}) = \sum_{v} E_{v}(y_{v}), \quad y_{v} \in \{BG, FG\}$$

• Advanced: pairwise local evidence

$$E(\mathbf{y}) = \sum_{v} E_{v}(y_{v}) + \sum_{(u,v)} E_{u,v}(y_{u}, y_{v})$$

Why Topology Data Analysis?

Recovering missing trabeculae:

[Gao, Chen , et al. IPMI'13]

C. Chen (CUNY)

Why Topology Data Analysis? Recovering missing trabeculae:

[[]Gao, Chen, et al. IPMI'13]

Morphological Analysis

Endocardial Surface [ISBI'14]

Follow-up Questions (Ongoing)

- Validation on a specimen
- Homology localization problem

Topological Information as Constraints in Segmentation

[Chen et al. CVPR 2011]

Topological Information as Constraints in Segmentation

[Chen et al. CVPR 2011]

C. Chen (CUNY)

Fopological Structures in the Analysis of Im

Additional Application: Multi-Layer Stencil Creation Canvas/wall result:

Website, interactive

[Jain, Chen, et al., Computer & Graphics, 2015]

C. Chen (CUNY)

Topological Structures in the Analysis of Im

Outline

1 Topological Structures

2 High Dimensional Data

- Algorithms
- Applications

Topological Structures for High Dimensional Data

• Plenty have been done: data centric, simplicial complex, mapper, etc.

Topological Structures for High Dimensional Data

• Plenty have been done: data centric, simplicial complex, mapper, etc.

- My focus: density function.
 - Need a good model: high dim, flexibility, computation
 - graphical model

Topological Structures for High Dimensional Data

• Plenty have been done: data centric, simplicial complex, mapper, etc.

- My focus: density function.
 - Need a good model: high dim, flexibility, computation – graphical model
 - Locations that contribute to major topological events, critical points

Graphical Model

Markov Random Field (MRF)

- *D* dimension; values/labels $\mathcal{L} = \{1, \dots, L\}$
- configurations/labelings: $\mathcal{X} = \mathcal{L}^D = \{1, \cdots, L\}^D$

Graphical Model

Markov Random Field (MRF)

- *D* dimension; values/labels $\mathcal{L} = \{1, \dots, L\}$
- configurations/labelings: $\mathcal{X} = \mathcal{L}^D = \{1, \cdots, L\}^D$

Binary Potentials $\theta_{ij}(x_i, x_j)$

x_i	0	1
0	$\theta_{ij}(0,0)$	$\theta_{ij}(0,1)$
1	$\theta_{ij}(1,0)$	$\theta_{ij}(1,1)$

• Energy: $E(x) = \sum_{(i,j)\in\mathcal{E}} \theta_{ij}(x_i, x_j)$ • Probability: $P(x) = \exp(-E(x))/Z$

What can we do with a graphical model?

Previously:

- Computing the maximum a posteriori (MAP): argmax_{x∈X} P(x) = argmin_{x∈X} E(x)
- marginals, sampling, etc.

What can we do with a graphical model?

Previously:

- Computing the maximum a posteriori (MAP): argmax_{x∈X} P(x) = argmin_{x∈X} E(x)
- marginals, sampling, etc.

New Question:

• How about modes (local maxima)?

C. Chen (CUNY)

Why modes?

• A concise description of the probabilistic landscape

Why modes?

- A concise description of the probabilistic landscape
- Multiple predictions
 - model is not perfect, ambiguity
 - multiple hypotheses, diverse, highly possible

Other applications: biology, NLP

Previous: mean-shift

C. Chen (CUNY)

- Given a distance function $d(\cdot, \cdot)$ and a scalar δ
 - Neighborhood: $N_{\delta}(x) = \{x' \mid d(x, x') \leq \delta\}$
 - x is a mode if it has a bigger prob. than all its neighbors
 - \mathcal{M}^{δ} : the set of all modes for a given scale δ

• Given a distance function $d(\cdot, \cdot)$ and a scalar δ

- Neighborhood: $N_{\delta}(x) = \{x' \mid d(x, x') \leq \delta\}$
- x is a mode if it has a bigger prob. than all its neighbors
- \mathcal{M}^{δ} : the set of all modes for a given scale δ

• Given a distance function $d(\cdot, \cdot)$ and a scalar δ

- Neighborhood: $N_{\delta}(x) = \{x' \mid d(x, x') \leq \delta\}$
- x is a mode if it has a bigger prob. than all its neighbors
- \mathcal{M}^{δ} : the set of all modes for a given scale δ

• Given a distance function $d(\cdot, \cdot)$ and a scalar δ

- Neighborhood: $N_{\delta}(x) = \{x' \mid d(x, x') \leq \delta\}$
- x is a mode if it has a bigger prob. than all its neighbors
- \mathcal{M}^{δ} : the set of all modes for a given scale δ

- D the dimension; $\mathcal{L} = \{1, \dots, L\}$ the label set; $\mathcal{X} = \mathcal{L}^D$ the domain
- Given a distance function $d(\cdot, \cdot)$ and a scalar δ
 - Neighborhood: $N_{\delta}(x) = \{x' \mid d(x, x') \leq \delta\}$
 - x is a mode if it has a bigger prob. than all its neighbors
 - \mathcal{M}^{δ} : the set of all modes for a given scale δ

$$\mathcal{X} = \mathcal{M}^0 \supseteq \mathcal{M}^1 \supseteq \cdots \supseteq \mathcal{M}^\infty = \{ ext{global maximum (MAP)}\}$$

Problem

Problem (MModes)

Given a scale δ , compute the top M elements in \mathcal{M}^{δ} .

Challenge: exponential domain, exponential neighborhood

Problem

Problem (MModes)

Given a scale δ , compute the top M elements in \mathcal{M}^{δ} .

Challenge: exponential domain, exponential neighborhood Contributions

- Algorithms (chains, trees):
 - Dynamic programming (DP)
 - Heuristic search
 - Local neighborhood search
- Applications

[AISTATS 2013, NIPS 2014, IJCAI 2016, ICML 2016]

Outline

Applications

Algorithm: Chains

- configurations/labelings = paths
- MAP: the optimal path (dynamic programming), $O(DL^2)$
 - from right to left
 - each step: best energy for subchain [i, D] with given label on i

Algorithm: Chains

- configurations/labelings = paths
- MAP: the optimal path (dynamic programming), $O(DL^2)$
 - from right to left
 - each step: best energy for subchain [i, D] with given label on i
- MBest: best *M* configurations/labelings

$$x^{1} = \operatorname{argmin}_{x \in \mathcal{X}} E(x)$$
$$x^{m} = \operatorname{argmin}_{x \in \mathcal{X} \setminus \{x^{1}, \dots, x^{m-1}\}} E(x)$$

Nilsson'98 (fancy DP) $O(DL^2 + MDL + MD \log(MD))$ Algorithm: Modes on Chains [AISTATS 2013]

Key Idea

- The whole chain $[1, D] \rightarrow$ subchains [i, j] of a fixed length
- $\bullet \ \ {\sf Global} \ \ {\sf modes} \rightarrow \ {\sf local} \ \ {\sf modes}$

Algorithm: Modes on Chains [AISTATS 2013]

Key Idea

- The whole chain $[1, D] \rightarrow$ subchains [i, j] of a fixed length
- $\bullet \ \ {\sf Global} \ \ {\sf modes} \rightarrow \ {\sf local} \ \ {\sf modes}$

• $x_{i:j}$ is a local mode iff for any $y_{i:j}$ s.t. $y_i = x_i$, $y_j = x_j E(x_{i:j}) < E(y_{i:j})$

Algorithm: Modes on Chains [AISTATS 2013]

Key Idea

- The whole chain $[1, D] \rightarrow$ subchains [i, j] of a fixed length
- $\bullet \ \ {\sf Global} \ \ {\sf modes} \rightarrow \ {\sf local} \ \ {\sf modes}$

• $x_{i:j}$ is a local mode iff for any $y_{i:j}$ s.t. $y_i = x_i$, $y_j = x_j E(x_{i:j}) < E(y_{i:j})$

Lemma

any [i, j] has L^2 local modes, computable in polynomial time

Theorem (local-global)

x is a mode iff any length $\delta + 2$ partial labeling $x_{i:j}$ is a local mode

An example: D = 7, $\delta = 3$

- Intuition
 - Combinations of local modes \rightarrow global modes
 - Consistent: agree at common vertices

- Intuition
 - \blacktriangleright Combinations of local modes \rightarrow global modes
 - Consistent: agree at common vertices

• Step 1: construct a new chain,

- supernodes [i, j]
- ▶ labels {local modes of [*i*, *j*]}
- feasible only if consistent
- preserve the energy of the original graph

Fact

New chain labeling space: $\widehat{\mathcal{X}} = \mathcal{M}^{\delta}$

- Step 1: construct a new chain,
 - Configuration space: $\widehat{\mathcal{X}} = \mathcal{M}^{\delta}$
 - Energy: $\widehat{E}(\widehat{x}) = E(x)$

- Step 2: M-Modes is reduced to M-Best in the new chain
 - M-Best: compute the top M configurations
 - Use Nilsson'98
- Total Complexity $O(DL^3\delta + MDL^2 + MD\log(MD))$

Trees

- Subchain of δ plus two adjacent nodes
- Local modes (L²)

Theorem (local-global)

x is a mode iff within any subchain/subtree it is a local mode.

Can extend to any graph!

- Subtree of size δ plus all adjacent nodes
- Local modes (exponential to the number of adjacent nodes)

General Situations

Extending the Algorithm

- Trees (DP) [NIPS'14]
- Systematic search [IJCAI'16]
- Local neighborhood search [ICML'16]

General Situations

Extending the Algorithm

- Trees (DP) [NIPS'14]
- Systematic search [IJCAI'16]
- Local neighborhood search [ICML'16]
- Model Unknown
 - Input: samples
 - Algorithm:
 - Step 1: estimate a tree distribution (Chow-Liu algorithm)
 - Step 2: compute modes
 - Theoretical guarantee $P(\widehat{\mathcal{M}^{\delta}}=\mathcal{M}^{\delta}) o 1$ as $S o \infty$

Outline

Applications

Application: Multiple Predictions

Image Partitioning Task (Berkeley, Stanford Datasets)

0.9

Ground Truth

2nd Mode

3rd Mode

Application: Video Analysis

Gesture recognition:

[Chen et al. AISTATS]

apply eye makeup

lipstick

body weight squats

bowling

punching bag

crawling

boxing Speed bag

beam

breast stroke

band marching

brushing

teeth

clean and jerk

Pic from [Liu, Chen et al. CVIU]

Clustering Discrete Data [ICML 2016]

• Start from each data, local search until stops at a mode Synthetic data: D = 110, L = 4, 4 clusters randomly perturb 5% and 10% attributes

• Visualized in 2D (using MDS)

• Performance (in NMI)

Synthetic Data									
	K-Means	DPGMM	AP	SC	MPD	TMode	K-Modes	ROCK	Ours
5% Corrupted	0.75	0.75	0.73	0.08	0.72	0.63	0.74	0.47	1.00
10% Corrupted	0.75	0.74	0.72	0.05	0.70	0.63	0.74	0.47	0.90

Clustering Discrete Data [ICML 2016]

- DNA Barcoding data ([Kuksa & Pavlovic BMC Bioinformatics])
- 600 to 900 dimension
- Alignment free

DNA Barcoding									
	K-Means	DPGMM	AP	SC	MPD	TMode	K-Modes	ROCK	Ours
ACG G	0.60	0.49	0.53	0.42	0.63	0.42	0.75	0.76	0.79
ACG S	0.80	0.50	0.61	0.62	0.84	0.49	0.86	0.88	0.89
Bats G	0.81	0.79	0.82	0.39	0.84	0.49	0.82	0.72	0.82
Bats S	0.91	0.79	0.89	0.48	0.92	0.79	0.87	0.80	0.89
Birds G	0.61	0.35	0.48	0.40	0.78	0.16	0.80	0.82	0.82
Birds S	0.79	0.45	0.58	0.56	0.82	0.19	0.88	0.90	0.89
Fish G	0.88	0.44	0.89	0.59	0.84	0.77	0.90	0.84	0.88
Fish S	0.94	0.44	0.75	0.89	0.91	0.81	0.91	0.92	0.94
Hesp. G	0.61	0.43	0.45	0.47	0.70	0.13	0.75	0.78	0.81
Hesp. S	0.80	0.48	0.57	0.61	0.87	0.15	0.87	0.89	0.90
Average Running Time (seconds)									
	K-Means	DPGMM	AP	SC	MPD	TMode	K-Modes	ROCK	Ours
	30.2	138.9	112.4	1689.7	1872.5	829.5	473.9	2013.0	540.6

Also UCI datasets.

Application: User Interaction (Ongoing)

- Electron Microscopy (EM) Images of Fly/Mouse Brains
- Input: 2D or 3D EM images; boundary likelihood map
- Output: partitioning of the image

Application: User Interaction (Ongoing)

• Multiple proposals for user to select and modify

Conclusion

Topological structures: global structure/prior/information

- Individual data/images
- Whole dataset
 - New perspective to the model: inference and more

Thank You! Questions?

Appendix

• Convergence rate for modes estimation

$$\mathbb{P}(\widehat{\mathcal{M}}^{\delta} = \mathcal{M}^{\delta}) \ge 1 - L^2 d(d-1) \exp\left\{-n\Delta_{\min}^2 / (18L^4c_0^2)\right\} - 3(d-1)L^2 \exp\left\{-n\Delta_{\mathcal{M}}^2 / (18d^2c_1^2)\right\}$$

d dimension, L label set size, n sample size

Trees: Idea 1, Fancy DP [NIPS 2014]

- Build a new tree
 - ► Supernodes ← subtrees
 - ► Labels ← local modes
 - M-Best configurations \leftarrow M-Modes
- \bullet Issue: number of local modes can be exponential to the tree-degree, even for small δ

Trees: Idea 1, Fancy DP [NIPS 2014] Complexity

$$O\left(D^2 dL \delta^2 (L+\delta) (L^d+\lambda^d) + D\lambda^2 + MD\lambda + MD\log(MD)
ight)$$

- *d* tree degree
- $\lambda \max \#$ of local modes for any ball

Trees: Idea 1, Fancy DP [NIPS 2014] Complexity

$$O\left(D^2 dL \delta^2 (L+\delta) (L^d+\lambda^d) + D\lambda^2 + MD\lambda + MD\log(MD)\right)$$

- *d* tree degree
- $\lambda \max \#$ of local modes for any ball

In practice (bounded tree degree)

- $\bullet\,$ Compute all local modes $\rightarrow\,$ only compute when necessary
- Heuristic search:
 - ► For each state, verify whether one local pattern is a local mode
 - ★ if not, prune the whole subtree
 - Many states (and thus local modes) may never be reached
 - A*, Death First Search Branch and Bound (DFBnB)

- $\bullet\,$ Compute all local modes $\rightarrow\,$ only compute when necessary
- Heuristic search:
 - ► For each state, verify whether one local pattern is a local mode
 - ★ if not, prune the whole subtree
 - Many states (and thus local modes) may never be reached
 - A*, Death First Search Branch and Bound (DFBnB)

Caveat:

- Not any cheaper in the worst case senario
- Needs the MAP computation

Also UCI datasets. C. Chen (CUNY)

Topological Structures in the Analysis of Im

Trees: Idea 3, Local Search

- $\mathcal{N}_t: \mathcal{Y} \to 2^{\mathcal{Y}}$, neighborhood system
- Optimization with respect to $\mathcal{N}_t(y)$ must be tractable:

$$y^{t+1} = \operatorname*{argmax}_{y \in \mathcal{N}_t(y^t)} g(x, y)$$

Pic from Nowozin and Lampert

Trees: Idea 3, Local Search

Each step: to compute the best neighbor in $\mathcal{N}_{\delta}(y)$,

 $\operatorname{argmin}_{z \in \mathcal{N}_{\delta}(y) \setminus \{y\}} E(z)$

• Complexity $O(DdL\delta^2(L+\delta))$

