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Topological Structures

global, multi-scale, independent to geometry

0 dim 1 dim 2 dim
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Topological Structures of Data

For a dataset, what are the components and loops of the data?

TDA: detect these structures in a robust way.
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Persistent Homology: A Robust Way to Extract
Topological Structures

Input: a (density) function, f

Output:
topological structures & their persistence

Def: given threshold t, the superlevel set f −1[t,+∞) := {x |f (x) ≥ t}
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Persistent Homology (continued)

the true structures are hidden in superlevel sets

consider the whole stack of superlevel sets

identify structures that often appear (high persistence)

Output: persistence diagram – dots representing all structures

Diagram
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Why Topological Structures: Cardiac data (Demo)

Thresholding Advanced

Thresholding: local evidence, minimize energy E (y)

E (y) =
∑
v

Ev (yv ), yv ∈ {BG ,FG}

Advanced: pairwise local evidence

E (y) =
∑
v

Ev (yv ) +
∑
(u,v)

Eu,v (yu, yv )
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Why Topology Data Analysis?
Recovering missing trabeculae:

[Gao, Chen , et al. IPMI’13]

C. Chen (CUNY) Topological Structures in the Analysis of Images and Data 8 / 43



Why Topology Data Analysis?
Recovering missing trabeculae:

[Gao, Chen , et al. IPMI’13]

C. Chen (CUNY) Topological Structures in the Analysis of Images and Data 8 / 43



Morphological Analysis

Endocardial Surface [ISBI’14]
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Follow-up Questions (Ongoing)

Validation on a specimen

Homology localization problem

Ground Truth Simulation

Bad Generator

Good Generator
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Topological Information as Constraints in Segmentation

[Chen et al. CVPR 2011]

Input Stencil 1 2 3 4 Final

[Jain, Chen , et al. , Computer & Graphics, 2015]
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Additional Application: Multi-Layer Stencil Creation
Canvas/wall result:

Website, interactive

[Jain, Chen , et al. , Computer & Graphics, 2015]
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Topological Structures for High Dimensional Data
Plenty have been done: data centric, simplicial complex, mapper, etc.

My focus: density function.
I Need a good model: high dim, flexibility, computation

– graphical model
I Locations that contribute to major topological events, critical points
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Graphical Model

Markov Random Field (MRF)

D dimension; values/labels L = {1, . . . , L}
configurations/labelings: X = LD = {1, · · · , L}D

V1

V2 V4 V6

V3

V5
V7

V8

θij(0, 0)

xi
xj

0 1

0

1

θij(0, 1)

θij(1, 1)θij(1, 0)

Binary Potentials θij(xi, xj)

Energy: E (x) =
∑

(i ,j)∈E θij(xi , xj)

Probability: P(x) = exp (−E (x))/Z
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What can we do with a graphical model?
Previously:

Computing the maximum a posteriori (MAP):
argmaxx∈X P(x) = argminx∈X E (x)

marginals, sampling, etc.

P (x)

MAP

New Question:

How about modes (local maxima)?
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Why modes?
A concise description of the probabilistic landscape

mode

mode

P (x)

MAP

Multiple predictions
I model is not perfect, ambiguity
I multiple hypotheses, diverse, highly possible

Other applications: biology, NLP
Previous: mean-shift
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Definitions

Given a distance function d(·, ·) and a scalar δ
I Neighborhood: Nδ(x) = {x ′ | d(x , x ′) ≤ δ}
I x is a mode if it has a bigger prob. than all its neighbors
I Mδ : the set of all modes for a given scale δ
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Definitions

D the dimension; L = {1, . . . , L} the label set; X = LD the domain

Given a distance function d(·, ·) and a scalar δ
I Neighborhood: Nδ(x) = {x ′ | d(x , x ′) ≤ δ}
I x is a mode if it has a bigger prob. than all its neighbors
I Mδ : the set of all modes for a given scale δ

X =M0 ⊇M1 ⊇ · · · ⊇ M∞ = {global maximum (MAP)}

δ = 1 δ = 4 δ = 7δ = 0
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Problem

Problem (MModes)

Given a scale δ, compute the top M elements in Mδ.

Challenge: exponential domain, exponential neighborhood

Contributions

Algorithms (chains, trees):
I Dynamic programming (DP)
I Heuristic search
I Local neighborhood search

Applications

[AISTATS 2013, NIPS 2014, IJCAI 2016, ICML 2016]
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Algorithm: Chains

1 2 3 D

xD = 0

xD = 1

x1 = 0

x1 = 1

configurations/labelings = paths

MAP: the optimal path (dynamic programming), O(DL2)
I from right to left
I each step: best energy for subchain [i ,D] with given label on i

MBest: best M configurations/labelings

x1 = argminx∈X E (x)

xm = argminx∈X\{x1,··· ,xm−1} E (x)

Nilsson’98 (fancy DP)
O(DL2 + MDL + MD log(MD))
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Algorithm: Modes on Chains [AISTATS 2013]

Key Idea

The whole chain [1,D] → subchains [i , j ] of a fixed length

Global modes → local modes

A partial labeling xi :j · · · · · ·

i j

xi :j is a local mode iff for any yi :j s.t. yi = xi , yj = xj E (xi :j) < E (yi :j)

Lemma

any [i , j ] has L2 local modes, computable in polynomial time
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Algorithm: Modes on Chains

Theorem (local-global)

x is a mode iff any length δ + 2 partial labeling xi :j is a local mode

An example: D = 7, δ = 3

1 2 3 5 6 74

1 2 3 5 6 74

x1:5 x2:6 x3:7
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Algorithm: Modes on Chains

Intuition
I Combinations of local modes → global modes
I Consistent: agree at common vertices

[1, 5] [2, 6] [3, 7]

Step 1: construct a new chain,
I supernodes [i , j ]
I labels {local modes of [i , j ]}
I feasible only if consistent
I preserve the energy of the

original graph

Fact

New chain labeling space: X̂ =Mδ
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Algorithm: Modes on Chains

Step 1: construct a new chain,
I Configuration space:
X̂ =Mδ

I Energy: Ê (x̂) = E (x)

[1, 5] [2, 6] [3, 7]

Step 2: M-Modes is reduced to M-Best in the new chain
I M-Best: compute the top M configurations
I Use Nilsson’98

Total Complexity O(DL3δ + MDL2 + MD log(MD))
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Trees

Chains

· · · · · ·

i j

Subchain of δ plus two adjacent
nodes

Local modes (L2)

Trees

Subtree of size δ plus all
adjacent nodes

Local modes (exponential to the
number of adjacent nodes)

Theorem (local-global)

x is a mode iff within any subchain/subtree it is a local mode.

Can extend to any graph!
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General Situations

Extending the Algorithm

Trees (DP) [NIPS’14]

Systematic search [IJCAI’16]

Local neighborhood search [ICML’16]

Model Unknown

Input: samples

Algorithm:
I Step 1: estimate a tree distribution (Chow-Liu algorithm)
I Step 2: compute modes

Theoretical guarantee P(M̂δ =Mδ)→ 1 as S →∞
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Application: Multiple Predictions

High Probability; Diversity

Image Partitioning Task (Berkeley, Stanford
Datasets)

Ground Truth 1st Mode 2nd Mode 3rd Mode

Standford RI Berkeley RI Standford VOI Berkeley VOI
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Application: Video Analysis

Gesture recognition:

[Chen et al. AISTATS]

Pic from [Liu, Chen et al. CVIU]
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Clustering Discrete Data [ICML 2016]

Start from each data, local search until stops at a mode

Synthetic data: D = 110, L = 4, 4 clusters
randomly perturb 5% and 10% attributes

Visualized in 2D (using MDS)

GT/Ours ROCK AP kmodes

Performance (in NMI)
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Clustering Discrete Data [ICML 2016]

DNA Barcoding data ([Kuksa & Pavlovic BMC Bioinformatics])

600 to 900 dimension

Alignment free

Also UCI datasets.
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Application: User Interaction (Ongoing)

Electron Microscopy (EM) Images of Fly/Mouse Brains

Input: 2D or 3D EM images; boundary likelihood map

Output: partitioning of the image

EM Images Likelihood Results

Pic from Takemura et al.

Nature’13

[Uzunbaş, Chen and Metaxas, MICCAI’14, MedIA’15]
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Application: User Interaction (Ongoing)

Multiple proposals for user to select and modify
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Conclusion

Topological structures: global structure/prior/information

Individual data/images

Whole dataset
I New perspective to the model: inference and more

Thank You! Questions?
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Appendix

Convergence rate for modes estimation

d dimension, L label set size, n sample size
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Trees: Idea 1, Fancy DP [NIPS 2014]

Build a new tree
I Supernodes ← subtrees
I Labels ← local modes
I M-Best configurations ← M-Modes

Issue: number of local modes can be exponential to the tree-degree,
even for small δ
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Trees: Idea 1, Fancy DP [NIPS 2014]

Complexity

O
(
D2dLδ2(L + δ)(Ld + λd) + Dλ2 + MDλ+ MD log(MD)

)

d tree degree

λ max # of local modes for any ball

In practice (bounded tree degree)
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Trees: Idea 2, Heuristic Search [IJCAI 2016]

Compute all local modes → only compute when necessary

Heuristic search:
I For each state, verify whether one local pattern is a local mode

F if not, prune the whole subtree

I Many states (and thus local modes) may never be reached
I A*, Death First Search Branch and Bound (DFBnB)

V1 V2 V3

xxx

0xx 1xx

00x 01x 10x 11x

Caveat:
I Not any cheaper in the worst case senario
I Needs the MAP computation
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Trees: Idea 2, Heuristic Search [IJCAI 2016]

Also UCI datasets.
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Also UCI datasets.
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Trees: Idea 3, Local Search

Pic from Nowozin and Lampert
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Trees: Idea 3, Local Search
Each step: to compute the best neighbor in Nδ(y),

argminz∈Nδ(y)\{y} E (z)

Complexity O(DdLδ2(L + δ))
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