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Automatic fingerprint identification systems (AFIS) have been studied extensively and

are widely used for biometric identification. Given its importance, many well engineered
methods have been developed for the different stages that encompass those systems. The

first stage of any such system is the segmentation of the actual fingerprint region from

the background. This is typically achieved by classifying pixels, or blocks of pixels, based
on a set of features. In this paper, we describe novel features for fingerprint segmentation

that express the underlying manifold topology associated with image patches in a local

neighborhood. It is shown that fingerprint patches seen in a high-dimensional space
form a simple and highly regular circular manifold. The characterization of the manifold

topology suggests a set of optimal features that characterize the local properties of

the fingerprint. Thus, fingerprint segmentation can be formulated as a classification
problem based on the deviation from the expected topology. This leads to features that

are more robust to changes in contrast than mean, variance and coherence. The superior
performance of the proposed features for fingerprint segmentation is shown in the eight

datasets from the 2002 and 2004 Fingerprint Verification Competitions.

Keywords: fingerprint segmentation; manifold characterization; feature extraction; di-
mensionality reduction.

1. Introduction

Fingerprints are widely used biomarkers. Their uniqueness and near immutability

over life have been known for more than a century [31]. Because of their initial

importance in forensics and the recent need for automated biometric identification

systems, automatic fingerprint identification systems (AFIS) have been studied ex-

tensively and are still an highly active research topic [25, 7, 47, 37]. As a result,

many well engineered methods have been proposed for the different stages that

encompass such a system (Fig. 1).

The first stage of a fingerprint identification system is the segmentation of the

actual fingerprint region from the background. This pre-processing step allows the

subsequent steps to focus only on the actual fingerprint region, which typically
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Fig. 1. Diagram of the stages of a fingerprint matching system.

leads to savings in computation time. More importantly, it prevents extraction

of spurious features in the background because of noise. The next stage is image

enhancement, aimed at increasing the contrast and reducing noise in preparation for

feature extraction. The most commonly used approach for this stage is to filter the

fingerprint image with a directional Gabor filter using parameters chosen to match

the ridge/valley pattern of fingerprints [18]. Then, a set of features is extracted for

matching. The most relevant features are the ridges and minutiae. The ridge features

are generally used for fingerprint alignment [21] and for minutia detection [31].

Ultimately, the minutia points are used for fingerprint matching or identification

because the relative location of these points is unique to each fingerprint.

Fingerprint segmentation has received considerable attention in the literature.

This is understandable since this is the first stage of an AFIS, and any errors

at this stage will propagate to the following stages and inevitably decrease the

matching performance. Typically, fingerprint segmentation is achieved by classifying

pixels, or blocks of pixels, based on a set of features which quantifies an intuitive

understanding of how fingerprint regions appear [31, 5, 50]. Although these methods

achieve good results for high-quality / high-contrast fingerprints, their segmentation

performance is not consistent for low quality fingerprints.

In this paper we describe how a fingerprint can be described in terms of the

manifold topology of local patches and the implications of this for fingerprint seg-

mentation. We derive features based on the analysis of the intrinsic structure as-

sociated with the fingerprint pattern. This “intrinsic structure” is contained in the

manifold topology inherent from local image neighborhoods (i.e., “patches”), and

can be expressed in a low-dimensional space which reveals this structure. More

specifically, it is shown that fingerprint patches form locally a simple and highly

regular circular manifold. This observation suggests a natural set of features that

describe a fingerprint region. A key advantage is that the manifold topology derived
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from the fingerprint image is a more robust descriptor since it characterizes intrinsic

properties that invariant to translation, rotation and contrast. These features are

shown to yield better and more robust fingerprint segmentation results in images

from several datasets.

2. Background and previous work

Roughly speaking, there are two general approaches to fingerprint segmentation,

pixel-wise or block-wise, with the latter being the prominent. The methodology is

fundamentally the same, but the computation of the features, at every pixel versus

at every block, gives rise to significant differences.

Some pixel-wise fingerprint segmentation methods compute only one fea-

ture at every pixel location, and threshold this feature to obtain the segmenta-

tion [22, 20, 28, 3]. Typically, the features computed are limited to filtering opera-

tors, or combination thereof, to limit the computational complexity. Obviously, the

main drawback of using only one feature is that the results are directly tied to the

expressiveness of the feature, and given the ad-hoc selection or construction of fea-

tures in the literature, the results have tended to be unsatisfactory. Instead, and to

avoid these limitations, other methods compute several features and then each pixel

is classified independently either as part of the fingerprint or background [5, 40].

Using a classifier to combine features generally yields better results but the compu-

tation, to compute the input features and apply the classifier to each pixel, becomes

high. For this reason, most approaches are block-wise based, commonly using blocks

of 16 × 16 pixels. Block-wise approaches can have lower computation because the

classifier is applied only once, and allow for more robust estimation of the features

by averaging the features within each block. Moreover, because the classification is

simple, the focus can shift towards computing better and more expressive features.

Generally, the key distinguishing characteristic between fingerprint segmenta-

tion methods is which set of features are used. A number of features have been

proposed in the literature. Mehtre et al. [33] used information from the directional

image to segment fingerprint images. The premise of this approach is that fin-

gerprint regions have a well defined direction because of the ridge/valley pattern.

In Mehtre et al. [32], this was augmented into a ‘composite method’ by also using

the block variance, with the segmentation based on rule-based classification, empir-

ically determined. Instead of block variance, variance computed along the direction

orthogonal to the dominant ridge direction has also been utilized [38, 21]. Avoiding

the explicit computation of the directional image, Bazen and Gerez [5, 4] proposed

the use of coherence to determine whether local gradients are aligned along the

same orientation, in addition to the local mean and variance. This feature set has

also been used and extended in several other works [50, 39]. In particular, this fea-

ture set was extended in Zhao et al. [50] to include the contrast and mean energy

ratio. The contrast is defined as the ratio between local variance and mean, and

the mean energy ratio (MER) measures the ratio of energy in the main frequency
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component with regard to the local non-DC average energy. The main idea is that

the local frequency spectrum of a fingerprint has the energy concentrated onto two

main peaks, and therefore the MER should be high. An alternative computation of

the coherence was proposed in Wang et al. [44] using Gaussian-Hermite moments.

The advantage of Gaussian-Hermite moments is that higher-order moments can ex-

press the presence of multiple parallel ridges. The limitation, however, is the need

to carefully choose the scale parameter of the Gaussian-Hermite basis functions.

Instead of using coherence, Chen et al. [10] proposed the use of the pixel clustering

degree. The pixel clustering degree measures whether pixels with similar intensity

values are grouped nearby, as occurs within a ridge/valley pattern, but does not

depend on gradient direction. Also, Helfroush and Mohammadpour [17] proposed

the dominant ridge score as an alternative to coherence. The dominant ridge score

is the ratio of the number of pixels with the dominant gradient orientation, after

quantization to 8 orientations, with regard to all the pixels in an image window.

This idea is related to the use of the average gradient magnitude and variance of

the gradient orientation proposed by Qi and Mei [36]. Other features proposed in

the literature include the use the local binary pattern (LBP) operator [46, 45], and

complementary variance energy [19].

Intuitively, the features proposed for fingerprint segmentation are conceptually

similar in the sense that they attempt to quantify the observation that fingerprints

are formed by a succession of alternating ridge/valleys with approximately con-

stant orientation. Through these features, however, it is not entirely clear how the

intrinsic structure of fingerprint images is being characterized, and therefore how

these descriptors adapt to acceptable changes in the image. In contrast, the fea-

tures proposed in this paper describe the manifold structure of fingerprint images,

which remain invariant for a fingerprint region as long as the ridge/valley pattern

is clearly discernible, even if this pattern changes because of contrast or noise.

The feature sets proposed by Bazen and Gerez [5, 4] and Zhao et al. [50] are used

in the results section to establish a reference for evaluating the approach proposed

here.

3. Fingerprint manifold characteristic features

In this section we analyze the manifold associated with fingerprint patches, and

discuss how this knowledge can be utilized to derive features that characterize

fingerprint regions. A brief review of manifold learning is included.

3.1. Manifold learning

Manifold learning is a research topic that has received significant attention in re-

cent years, mainly fueled by developments in nonlinear dimensionality reduction

techniques, such as ISOMAP [43], local linear embedding [42], and Laplacian eigen-

maps [6], among others. Nevertheless, the concept has been around for quite some
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time [16, 26] and is also the core idea behind linear dimensionality reduction meth-

ods, such as principal component analysis (PCA) [11].

The primary aim of manifold learning is to infer or characterize the structure

of data by describing the manifold where the data lies. This means that, typically,

high-dimensional data (or some high-dimensional representation as obtained in ker-

nel methods or by embedding) actually lies in a relatively low-dimensional subspace

(i.e., the manifold) that can be described by only a few parameters, or features.

Indeed, for smooth manifolds with topology equivalent to the Euclidean topology

(that is, the distance in the manifold is a smooth function of the Euclidean distance

in the feature space), it can be shown that there exists an isomorphism between the

space of features and the manifold [12]. Put differently, the dimensionality of the

feature space is the number of parameters needed to parameterize the manifold, and

the isomorphism characterizes its topology. Hence, all information about the data

is expressed in this low-dimensional feature space, which can usually be related to

some characteristic of interest.

If the data lies in a linear manifold (i.e., a linear low-dimensional subspace) of the

high-dimensional data space, then principal component analysis (PCA) can be used

to characterize the data structure [11]. PCA finds the orthonormal set of vectors

{w1,w2, . . . ,wd} that maximizes the variance of the projections of the data onto

them. This means that projecting the high-dimensional data (say, of dimension D)

onto those vectors yields a lower-dimensional representation (of dimension d ≤ D)

with a covariance matrix that is diagonal (i.e., uncorrelated projections) and with

maximal entries. The vectors {w1,w2, . . . ,wd} are called the principal components

of the data. They are obtained by diagonalizing the covariance matrix of the data,

C =
1

N

N∑
i=1

(xi − µ)(xi − µ)T , (1)

where the xi’s, i = 1, 2, . . . , N , are the N data points and µ denotes their mean. The

principal components are given by the d eigenvectors of C corresponding to the d

largest eigenvalues, which equal to the variance of the projections. The eigenvalues

can also be used to estimate the manifold dimension d by guaranteeing that the

eigenvalues corresponding to the principal components account for most of the data

variance.

By deriving a low-dimensional characterization, manifold learning methods al-

low us to visualize high-dimensional data and understand the origin of its intrinsic

data structure. Manifold learning is often used to find a lower dimensional repre-

sentation of the data that is correlated with the perceived parameters. A typical

example is to consider a set of images of an object taken at different rotations, and

then attempt to verify the lower dimensional representation of the manifold formed

by these images in terms of the rotation angle [43]. Similar ideas have also been

applied, for example, to study sequences of images in movies [35], and to infer and

constrain the space of shapes for cardiac MRI [48].
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Fig. 2. PCA projection of 7 × 7 fingerprint patches in a small image. (Left) 30 × 30 window

from which the patches were obtained. The phase image of the 2D PCA projections is shown in
the bottom left. (Middle) Fingerprint patches projected onto the first two principal components

and colored according to their phase; that it, each point is the 2D PCA projection of the 7 × 7

fingerprint patches. The points’ colors match the colors of the corresponding center pixel as shown
in the phase image in the bottom left. (Right) Residual variance versus the number of embedding

dimensions.

3.2. Manifold topology of fingerprint patches

Unlike the example mentioned in the previous section, where a point corresponds

to an image, for classification of image pixels (or groups of pixels) and analyzing

the manifold structure arising from their interdependences, each pixel must have an

associated representation. Instead of the value in a single pixel, image points can

be embedded in a high-dimensional space by considering the pixel and its neigh-

borhood; that is, by taking patches centered at the pixel location. Specifically, for

an image I, an M ×M patch corresponding to image point (x, y) is the ordered

set of points {I(u, v) : |u− x| ≤ (M − 1)/2 ∧ |v − y| ≤ (M − 1)/2}. This embed-

ding has the advantage that it preserves local and contextual information, since it

completely characterizes the image joint distribution, up to the size of the neigh-

borhood. Statistically, this data-driven representation corresponds to a sampling of

the Markov Random Field model of the image.

Consider the patches extracted from a local region of a fingerprint, and their

embedding to 2-D using, for example, principal component analysis (PCA) [11],

as shown in Fig. 2. One can clearly observe the circular manifold formed by those

fingerprint patches. (Obviously, nonlinear dimensionality reduction methods can be

utilized for this analysis. However, because of their high computational complexity,

they are impractical for fingerprint analysis and will not be considered further.

Moreover, as discussed next, for image patches from local image windows, PCA

suffices and is computationally simpler.) As asserted by the residual variance plot in

Fig. 2(right),a most of the data variance is contained in the first two dimensions, as

is to be expected since a circle is a 1-D topological structure in 2-D space. Since the

points (i.e., fingerprint patches) form a circular manifold, they can be appropriately

aThe residual variance with regards to embedding dimension k is the ratio of the error variance over

total data variance when using k principal components for the embedding. Given the eigenvalues
λ1, λ2, . . . , λd of C (which correspond to the variance along the principal components), the residual

variance with regards to dimension k is obtained as rk =
∑d

i=k+1 λi/
∑d

i=1 λi.
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Fig. 3. Similar to Fig. 2, but for images containing a minutia point (a) and near the fingerprint

core (b).

Fig. 4. PCA projection of 7× 7 patches from an image with parallel but non-periodic lines. (Left)
Image from which the patches were obtained. (Middle) PCA projection of the patches projected

onto 2-D, with color coded phase. (Right) Corresponding phase image.

characterized by their phase, which can be related back to the fingerprint region

from where the patches were extracted. Note that the presence of minutiae in

the image window and relatively small changes in orientation, as shown in Fig. 3,

introduce additional variability in the linear projection of the manifold but the

circular structure of the manifold does not change significantly. This is because

the norm of the projections corresponds to the distance of the original fingerprint

patches to the “mean patch”, and thus captures primarily changes in contrast within

a patch. Furthermore, Fig. 4 also shows that the manifold does not require the

ridges to be parallel, unlike methods that “project” the image block along multiple

directions [24, 33, 32].

It is insightful to understand why the manifold has this topology. If one consid-

ers a relatively small window of a fingerprint image (as the one shown in Fig. 2(top
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left)), for most windows, we can observe a succession of ridges and valleys of ap-

proximately constant orientation. Hence, for these images, if one starts at a given

point and marches through the image in the direction orthogonal to the ridges’ ori-

entation, one soon comes to a position in which the point and the context are very

similar to those of the initial position. It is the repetition of ‘context’ that gives rise

to the circular topology. The image window can thus be approximated as a wave,

parameterized by a single argument θ corresponding to the phase of the wave. If

the ridge and valley widths are equal, the wave pattern is a sinusoid; however, this

does not need to be the case. Even if the ridge/valley pattern is aperiodic, i.e. not

a sinusoid, the topology will still be that of a circle, although the distribution of

phases will change (Fig. 4). In the case of fingerprint windows the manifold is ac-

tually a geometrical circle because the contrast is locally approximately constant

(recall that contrast defines the norm of the centered embedded patches, and thus

the radius of the circle). It must be remarked that we consider local windows such

that the orientation is approximately constant and does not need to be considered

explicitly as an argument in the parameterization. More specifically, we consider

local image blocks because locality in the image space translates into locality in

the embedding space, where the manifold is locally Euclidean [23, 41, 9]. In this

way, we avoid the nonlinearity of the manifold when the orientation is considered,

allowing for the use of PCA. On the other hand, if the orientation changes within

an image block, the manifold becomes nonlinear introducing variability in the pro-

jection. This is because we are trying to characterize a nonlinear manifold using

a linear method. This is noticeable in Fig. 3, where the nonlinearity of the mani-

fold raises the relevance of additional principal components. Nevertheless, as long

as changes in orientation are relatively small, the circular manifold structure will

remain clearly distinguishable.

Unlike a conventional pattern recognition approach based on a static set of fea-

tures, the approach just described has the advantage that the obtained features are

found from and depend only on the data. Moreover, since the mapping from the

data to features is found from a neighborhood of points, it incorporates character-

istics of the whole neighborhood. This follows because the context information is

included in the embedding of image points as patches and information about corre-

lations with neighboring pixels is preserved. This approach also shares similarities

to natural vision systems which extract information by contrasting a small region

with its context. Still, the most remarkable property of this approach is that it

allows us to focus on invariant descriptors on the data characteristics. Specifically,

since we know that image patches from a fingerprint window form a geometrically

circular manifold with near uniform phase distribution, we can simply measure the

difference with regards to such a manifold structure. Such descriptors are invariant

because they do not depend of the specific position or orientation of the sequence of

ridges, provided the orientation is approximately constant, because the underlying
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Fig. 5. Ratio and phase distribution features for fingerprint segmentation. The black circle has

radius equal to the average norm and the division of the plane in phase bins (in this case, with 8
bins) are shown for the projection of the points in Fig. 2. The ratio r−i corresponds to the number

of points inside the circle over the total number of points, and the values bk, utilized in (2), are

the ratio between the number of points within each phase bin to the total number of points.

manifold remains the same. Hence, if desired, it is possible to detect the fingerprint

pattern even under low contrast, as will shown in the next section.

3.3. Features for fingerprint analysis

Knowledge of the manifold topology can be utilized for fingerprint segmentation

since it characterizes the general distribution of the data embedded onto the fea-

ture space. Consequently, we can immediately suggest a set of features that best

describes the data. This means that deviations from the typical fingerprint pattern

can be easily captured since these points have a different manifold structure easily

noticeable in their embedding and projection. These differences can then be utilized

to distinguish a fingerprint region from background.

An obvious candidate feature would be to use an information-theoretic diver-

gence, such as the Kullback-Leibler divergence [15], between the observed distri-

bution and the distribution estimated from training. This approach, however, is

cumbersome and computationally demanding since it would require the explicit es-

timation of the distribution. Given that the circular manifold formed by fingerprint

patches is not too hard to characterize, we propose instead derived features that

can be utilized to measure differences between the observed data manifold and a

circle.

Two fundamental descriptors of the manifold geometry are the two leading

eigenvalues of the PCA projection, denoted λi1 and λi2, which correspond to the

variance along the first two principal components. These eigenvalues characterize

contrast and are related to the block variance, but provide additional information.

For example, if the first eigenvalue is significantly larger than the second, then the

image region primarily contains a gradient of intensities and is therefore unlikely to
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be a fingerprint region.b Another important feature is the ratio of samples with a

norm (distance from the origin in the projection) that is below the average norm,

denoted r−i (see Fig. 5). For a circle, this value should be close to 0.5. This is an

important descriptor since it allows us to easily discriminate from Gaussian noise,

since in the latter case the value tends to be larger. (Note that the ratio of points

with norm greater than the block mean norm could be utilized instead. Because

the two ratios sum to one, they contain exactly the same information, and yield

the same result.) Finally, one should check that the phase distribution is somewhat

uniform, since this indicates the presence of the alternating ridge/valley pattern.

This can be approximated by dividing the phase into a number of bins, say NB , and

computing the average difference magnitude to the expected value under a uniform

distribution. For block i, we define this divergence as,

pi =

NB∑
k=1

∣∣∣∣ 1

NB
− bk

∣∣∣∣ , (2)

where bk is the ratio between the number of data points with phase in the kth bin

and the total number of data points (cf. Fig. 5). Summarizing, for the ith block,

these features give rise to the feature vector,

xi =
[√

λi1,
√
λi2, r

−
i , pi

]T
. (3)

The proposed features can be utilized by a classifier to segment fingerprints.

If one does not have training data or intends to allow user interaction, then ap-

propriately weighting and combining these features is not a trivial task. In these

situations, it is best to have a single descriptor for which one only needs to set

an appropriate threshold. For example, this could allow for the use of automatic

threshold methods [44, 19]. Because we know the manifold topology, we can at-

tempt to define a divergence measure specifically for this problem that bypasses

the problems with an information-theoretic divergence as mentioned above.

As previously described, for fingerprint segmentation, a divergence is basically

a measure that quantifies how much the data distribution differs from the circular

manifold topology one expects for fingerprint regions. Let yi
j denote the 2D PCA

projection of the jth patch in the ith block, and let λi1 be the corresponding largest

eigenvalue of the PCA eigendecomposition. Then, a measure of divergence can be

defined as

fi =
1√
λi1

 1

N

N∑
j=1

exp

(
−
∥∥yi

j

∥∥2

2λi1

)[1− exp
(
−pi
α

)]
, (4)

bNote that this interpretation follows because these are eigenvalues of the covariance matrix and
should not be confused with the eigenvalues of the structure tensor matrix used in Bazen and

Gerez [4, 5].
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where N is the number of patches per window,
∥∥yi

j

∥∥ is the Euclidean norm of the

projected patch, and α is a user parameter. This divergence expresses various char-

acteristics of the projected patches: variance, non-Gaussianity, constant radius, and

uniform phase distribution. The variance of the projections onto the first principal

component is λi1. Therefore, windows with good contrast have high variance which

yields smaller values of fi. The second term measures how well projected points are

clustered around the origin, as one would get for windows containing unstructured

values, such as Gaussian noise. For fingerprint windows, the projected points form

a well defined circle on the tail of the exponential, and thus this term yields small

values. Basically, these two terms correspond to a Gaussian density function, with-

out the normalization by
√

2π. Approximate constant radius is enforced by the use

of only the first eigenvalue in the second term rather than a covariance matrix. If

the circle is distorted into an elongated ellipse, the second term yields higher val-

ues for points along the second principal component because they are closer to the

origin (since λi2 ≤ λi1). The third term checks for a uniform distribution of points

around the origin. This helps to exclude, for example, blocks from the edges of the

fingerprint (which yield spurious minutiae) and single lines since, in these cases,

the phase is skewed. The parameter α controls the allowable ratio of deviation from

the uniform distribution. A value of α = 0.25/NB seems reasonable for most cases,

and was used for the results shown.

Either the divergence or features can be utilized for fingerprint segmentation.

As mentioned, the use of the divergence has the advantage that one only needs to

set the threshold, and is therefore better suited for user interaction. On the other

hand, using the proposed feature vector has the advantage that the features can be

optimally combined by the classifier to achieve the best performance for fingerprints

captured using a specific condition, for example, the same sensor.

It must be noted that the segmentation obtained using either the proposed

feature vector or the divergence will depend on contrast. This is because of the use

of the projection eigenvalues, which corresponds to data variance, and thus contrast.

This prevents our approach from being contrast invariant. However, in practice

one needs a minimal contrast to ensure robust feature extraction and reject latent

fingerprints in the background. To highlight the invariance of the topology with

regards to contrast, consider the fingerprint image in Fig. 6a which contains a latent

fingerprint in the background. If the term 1/
√
λi1 is not included in the divergence,

one obtains comparable values for the blocks in both the high-contrast fingerprint

and the latent fingerprint in the background (Fig. 6c). Considering this term, as in

(4), one introduces contrast dependency making it possible to distinguish the two

regions, even though the divergence still yields relatively low values compared to

other parts of the background (Fig. 6d).
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Fig. 6. Divergence of a fingerprint image with a latent fingerprint in the background. For ease

of visualization, the contrast enhanced image is shown in (b). The divergence measures were
computed for each 16× 16 pixel block, using 7× 7 patches, for the image shown in (a).
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Fig. 7. Flowchart of the operations needed to segment a fingerprint image.

4. Fingerprint image segmentation

The features discussed in Sec. 3.3 can be utilized for fingerprint segmentation by

classifying image blocks into fingerprint regions or image background. The sequence

of operations to segment a fingerprint image is depicted in Fig. 7.

In this paper, we will utilize a linear classifier to classify each image block into

a fingerprint block or background. More specifically, a Fisher linear discriminant is

used because of its simple and consistent training, and because it has an analytical

solution [13]. A perceptron linear classifier could also be utilized, as in Bazen and

Gerez [5], but training requires the use of gradient decent, which depends on the

learning rate, can get trapped in local minima, and the result can be unstable [13].

Clearly, nonparametric and/or nonlinear classifiers could also be used with likely

benefits in performance [49]. The Fisher learning discriminant classifier is well suited

for our purpose, however, because the main point of this analysis is to convey the

better results due to the proposed improved features. Moreover, since most meth-

ods limit themselves to linear classifiers, this facilitates the comparison to earlier

approaches. Finally, good performance regardless of the classifier is important in

practice because AFIS systems typically have limited computational and memory
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capabilities, and thus the choice of the classifier might depend on the available

resources during system design.

The Fisher linear discriminant classifier finds a projection vector w such that

the separation between two classes is maximized [13]. Put differently, the projection

vector defines the hyperplane that best separates the two classes. Let Ω0 and Ω1

denote the background and fingerprint classes, respectively, and define the intra-

class and inter-class scatter matrices, SW and SB , as

SB = (m1 −m0)(m1 −m0)T ,

SW =
∑
x∈Ω1

(x−m1)(x−m1)T

+
∑
x∈Ω0

(x−m0)(x−m0)T ,

(5)

where x denotes the vector of features, and m1, m0 are the mean feature vectors

for each class. The projection vector is obtained as

w = (SW + εI)−1(m1 −m0), (6)

where I is the identity matrix and ε is a small constant to ensure that (SW + εI) is

invertible. Then, an image block is classified based on the projection value,

vi = wTxi, (7)

using a decision threshold and direction (i.e., which, vi > threshold or vi < thresh-

old, corresponds to fingerprint) chosen to minimize the error in the training set.

Note that situations in which the segmentation is achieved using only one fea-

ture, such as the divergence proposed earlier, are special cases. In these situations,

learning the classifier simplifies to that of finding the decision direction and thresh-

old.

5. Results

The proposed approach was tested on the datasets of the 2002 and 2004 Fingerprint

Verification Competitions (FVC 2002 [1] and FVC 2004 [2]). A total of 8 datasets

were included, corresponding to six different fingerprint scanners and two synthetic

fingerprint datasets [29, 30, 31]. Each dataset contains 80 fingerprints (only the

“part B” of the datasets was used), consisting of 8 fingerprints/subject from 10

subjects, captured under multiple conditions (e.g., normal, “dry” and “wet”). All

fingerprints were manually segmented, with each 16×16 block being classified as fin-

gerprint or background. A block was considered to be a fingerprint if the ridge/valley

pattern was present and fully contained within the block. This means that blocks

containing ridge terminations due to the boundary of the fingerprint area were

not considered. This criteria was chosen because minutiae detection methods could

easily confuse ridge terminations for minutia.

Segmentation results were computed using the features and the divergence pro-

posed in Sec. 3.3 and the classifier detailed in Sec. 4. For comparison, segmentation
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Table 1. Ratio of correctly segmented fingerprint image blocks using the MVC, xMVC, and the

proposed feature set. The values are averages over 100 different pairs of randomly selected train-
ing/testing sets. The value within brackets corresponds to the worst segmentation accuracy in

a fingerprint in the testing set, averaged over different training/testing sets. All differences in

the results are statically significant (t-test, p < 0.01), except of course in between the proposed
features and divergence in Dataset 4 of FVC 2002. The best result is shown in boldface.

MVC xMVC Proposed features Proposed divergence

F
V

C
2
0
0
2 Dataset 1 0.907 [0.741] 0.944 [0.854] 0.972 [0.895] 0.960 [0.897]

Dataset 2 0.916 [0.755] 0.917 [0.747] 0.956 [0.847] 0.948 [0.823]

Dataset 3 0.912 [0.763] 0.911 [0.764] 0.929 [0.774] 0.923 [0.739]

Dataset 4 0.925 [0.731] 0.913 [0.719] 0.960 [0.881] 0.960 [0.877]

F
V

C
2
0
0
4 Dataset 1 0.952 [0.884] 0.957 [0.896] 0.973 [0.937] 0.958 [0.895]

Dataset 2 0.834 [0.501] 0.848 [0.541] 0.934 [0.755] 0.869 [0.585]

Dataset 3 0.964 [0.866] 0.963 [0.867] 0.961 [0.874] 0.957 [0.833]

Dataset 4 0.917 [0.718] 0.891 [0.599] 0.950 [0.814] 0.945 [0.804]

results were computed using the feature set proposed by Bazen and Gerez [5], which

consists of the block mean, variance and coherence. We shall refer to this as the

“MVC feature set.” In addition, we computed segmentation results using the ex-

tended MVC features set used in Zhao et al. [50], which further includes the block

contrast and mean energy ratio (MER) (see Sec. 2 for details), henceforth denoted

as the “xMVC feature set.” In all experiments, the Fisher linear discriminant clas-

sifier described in Sec. 4 was utilized.

The results for the segmentation accuracy (without post-processing) are pre-

sented in Table 1. The blocks were 16 × 16 pixels, and 7 × 7 image patches were

used for the embedding in the computation of the proposed features and diver-

gence. These results show that the proposed feature set yields a consistently better

segmentation. The improvement in overall segmentation accuracy ranges from 1.6%

to 8.4%, except for dataset 3 of FVC 2004 in which using the proposed features

performs 0.3% worse. From analyzing the segmented fingerprint images, it seems

that the classifier using the MVC feature set marked these blocks as fingerprint due

to their high variance, even though they have no discernible fingerprint pattern.

Using the proposed features, such blocks were marked as background precisely be-

cause of the absence of the ridge/valley pattern. Such image blocks were labeled as

fingerprint in the manual segmentation because they arise isolated in the middle of

the fingerprint, but this choice is arguable. The relevance of the proposed features

becomes even more evident when considering the worst segmentation accuracy in a

testing fingerprint, in which case the difference can be as high as 21.4% (dataset 2 of

FVC 2004). This demonstrates that using the proposed features yields much more

consistent segmentation results.

The results using the proposed divergence are slightly worse that using the pro-

posed features, but still better overall than using either the MVC or xMVC feature
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Fig. 8. Segmentation results for fingerprint images from FVC 2002.

sets. The fact that the divergence, which nonlinearly combines several elementary

features, did not surpass the performance of an optimal linear classifier with the

proposed features was not surprising. This is due to the ability of the latter to

fine tune the weights for each dataset. On the other hand, this suggests that the

segmentation accuracy using the proposed features can be further improved using

a nonlinear classifier.

The better behavior of the proposed features and divergence can be verified

visually in the segmented fingerprint images shown in Figs. 8 and 9. It can be
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Fig. 9. Segmentation results for fingerprint images from FVC 2004.

seen that although the segmentation using the MVC and extended MVC feature

sets is successful for relatively high-quality / high-contrast fingerprint regions, its

performance drops significantly if these characteristics change, yielding very poor

segmentations for some fingerprint images. In contrast, the proposed features and

divergence show a much more robust and consistent behavior. This is due to the

use of the manifold topology, which remains noticeable even in the presence of faint

lines, as explained in Sec. 3.3 (see Fig. 6). This robustness is further observed in

Fig. 10 which showcases the worst segmentation result using the proposed features.

Although the results are clearly unsatisfactory, the segmentation using the proposed
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Fig. 10. Fingerprint image for which we observed the worst segmentation results using the proposed
features (from FVC 2002, Dataset 2).

features or divergence is still reasonable (compare with the MVC or xMVC results

in Dataset 4 shown in Fig. 9) and much better than the result obtained using the

MVC or xMVC feature sets.

It must be remarked that these results could be improved further through pre-

or post-processing, or by using a different classification strategy. Pre-processing

could be used to remove some noise and potentially mitigate variations in contrast

between images. Likewise, post-processing could be used to compensate for minor

errors in the block segmentation due to image noise, variability, and limitations of

the classifier. Although, for the purpose of this paper, post-processing was not used,

the results clearly suggest that, if post-processing is employed, the errors obtained

with the proposed approach would seem much more manageable. The results could

be further improved by providing block context to the classifier (e.g., the classifier

observes the features from its block and neighboring blocks) for example. Moreover,

utilizing a nonlinear classifier (e.g., AdaBoost or SVM [8]) might be able to amplify

the context of the features to the point of compensating for extreme variations in

contrast, such as those shown in Fig. 10. Additionally, these improvements to the

classifier may be suplemented with approaches such as adaptive thresholding [14].

6. Discussion

At first glance, the computational complexity of the proposed features seems much

higher than that required to compute the MVC or extended MVC features. Indeed,

in our Matlab implementation, computing the proposed features required about 4

to 5 times more CPU time in single-thread mode than the features with which we

compared (cf. Table 2). However, while computation of the comparison features

uses inherently optimized routines, such as filtering and fast Fourier transforms,

the computation of our features does not. Although intricate, it is relatively easy to
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reduce the computational complexity for the calculation of the covariance matrix

of image neighborhoods and its eigendecomposition, which are the two most time

consuming operations in the computation of the proposed features and divergence.

Because the same spatial relationship is encountered between different pixels within

an image neighborhood, most elements of the covariance matrix are repeated. As

an example, note that the diagonal elements of the covariance matrix are all equal

and thus need to be computed only once. This is similar to the Toeplitz structure

of covariance matrices of vectors from 1-D data but, for image patches, one has to

further handle the relationships between pixels in the edges of the patches. It can

be easily shown that, for n× n image patches, the number of unique entries of the

covariance matrix that need to be computed is only n2 + (n− 1)2, compared to n4

in a naive implementation. This represents a reduction in computation complexity

greater than n2/2. For 7×7 patches, the savings in computational complexity would

be about 28×. Moreover, the computational complexity of the eigendecomposition

can also be significantly reduced because it is known before hand that only the first

two eigenvectors are needed in this case.

In the results shown, we tacitly considered 16×16 image blocks and 7×7 image

patches. Clearly, the performance of our approach depends on these settings since, in

a sense, these parameters define the scale one uses to interpret the image. However,

we have found empirically their choice not to be critical (cf. Table 3). Generally

speaking, the block size should be big enough such that the alternating ridge/valley

pattern can be observed, while small enough to avoid having major changes in the

orientation of the ridges, which introduces nonlinearities in the manifold structure.

Hence, for a fingerprint image of typical resolution, block sizes between 16 × 16

to 24 × 24 pixels should yield similar results. Likewise, the patch size represents

a trade-off, albeit between context information and computational complexity. On

one hand, the patch size should be large to include as much context information as

possible in the embedding. On the other hand, the patch size should be small enough

to avoid computation of large covariance matrices and their eigendecomposition. In

our experiments, we found that 7× 7 image patches presents a good trade-off. For

example, using 9 × 9 image patches the segmentation accuracy only improved at

most 0.5%. However, it more than doubled the computation time.

7. Conclusion

This paper describes an alternative approach to fingerprint segmentation. The core

idea is the use of the manifold topology of fingerprint image patches as a descriptor

of the intrinsic structure of fingerprint images. Indeed, it is shown that an embed-

ding of fingerprint image “points” in a high-dimensional space, in the form of image

patches, forms a simple and highly regular circular manifold. This perspective is

very useful since this insight allows us to naturally derive or suggest a number of

features that characterize the intrinsic properties of a fingerprint. Hence, in this

approach, fingerprint segmentation can be formulated as the problem of classify-
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ing a fingerprint region (e.g., image block) based on a deviation from the expected

topology.

The improved performance and robustness was shown in eight datasets from

FVC 2002 and FVC 2004. In spite of the diverse characteristics of the fingerprint

images in terms of contrast, noise and conditions (e.g., “wet” vs. “dry”) across and

within each dataset, the approach presented yielded more a robust and consistent

segmentation. This is very important in actual applications where the capture con-

ditions may vary tremendously. The robustness follows from the use of the manifold

topology, which is invariant to contrast, orientation and robust to noise as long as

the alternating ridge/valley pattern is noticeable.

From a different perspective, it is interesting to verify that utilizing the manifold

structure to infer information about the image shares similarities to visual systems.

This is because visual systems are capable of extracting salient features just by

contrasting these points with their local context and/or with the perception of the

image structure at a broader level [27]. Roughly speaking, this is precisely what

is obtained by embedding the image points and locally computing the manifold

topology.

The knowledge and use of the manifold topology was utilized here to character-

ize fingerprint images for segmentation, but the same concept may have potential

implications in many other problems, such as texure classification and segmenta-

tion, for example. By characterizing and studying the manifold topology of embed-

ded points from images, one gains an understanding of the images’ characteristic

structure [34]. Given a problem, this knowledge can then be utilized to naturally

suggest or derive descriptors that best characterize the structure of the image for

that problem, as shown here.

Appendix

Table 2. Average computation time (in seconds) to compute the features for each image on an
Intel Xeon X7350 at 2.93GHz with Matlab restricted to a single-thread.

MVC xMVC Proposed features Proposed divergence

FVC 2002 Dataset 1 0.162 0.223 0.606 0.545

Dataset 2 0.183 0.256 0.848 0.780

Dataset 3 0.102 0.143 0.498 0.461

Dataset 4 0.124 0.173 0.576 0.532

FVC 2004 Dataset 1 0.364 0.493 1.114 0.976

Dataset 2 0.138 0.193 0.636 0.585

Dataset 3 0.155 0.216 0.739 0.682

Dataset 4 0.124 0.173 0.561 0.516
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