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Abstract

In the context of long-range digital neural circuit reconstruction, this paper investigates an approach for registering axons across
histological serial sections. Tracing distinctly labeled axons over large distances allows neuroscientists to study very explicit rela-
tionships between the brain’s complex interconnects and, for example, diseases or aberrant development. Large scale histological
analysis requires, however, that the tissue be cut into sections. In immunohistochemical studies thin sections are easily distorted due
to the cutting, preparation, and slide mounting processes. In this work we target the registration of thin serial sections containing
axons. Sections are first traced to extract axon centerlines, and these traces are used to define registration landmarks where they
intersect section boundaries. The trace data also provides distinguishing information regarding an axon’s size and orientation within
a section. We propose the use of these features when pairing axons across sections in addition to utilizing the spatial relationships
amongst the landmarks. The global rotation and translation of an unregistered section are accounted for using a random sample
consensus (RANSAC) based technique. An iterative nonrigid refinement process using B-spline warping is then used to reconnect
axons and produce the sought after connectivity information.
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1. Introduction

1.1. Motivation

Many neuroscientists are interested in microscopic-level
brain connectivity and how variations in pathways that bridge
functional networks influence mental capacity and behavior.
Abnormalities in long-range pathways are thought to be directly
linked to disorders such as autism (Belmonte et al., 2004) and
schizophrenia (Lynall et al., 2010). Our long term goal is the
examination of Williams syndrome, a genetic disorder charac-
terized by impaired cognition and overly extroverted social ten-
dencies (Dai et al., 2009). Specifically, we would like to map
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the limbic system pathways exhibiting the genetic defects to ex-
plicitly identify the affected brain systems. Our current prelimi-
nary work, however, focuses on reconstructing long-range neu-
ral circuits in macaque monkeys by means of fluorescence con-
focal microscopy. We are targeting neurons in a 12 mm-deep re-
gion of interest and work with approximately 30 µm-thick slices
of tissue. The size of the complete dataset is an expected sub-
stantially large 400 sections. Reliably aligning structures across
many microscope slides in the digital representation is one of
the many challenges long-range connectivity studies must ad-
dress. The objective of this paper is to register several moder-
ately deformed sections consisting of predominantly axons in
an automated fashion.

1.2. Serial Section Registration Overview

The building block of our datasets is a section, as depicted in
Figure 1. We refer to a section as a thin slab of tissue mounted
on a microscope slide. In our case each section is ∼30 µm thick.
Sections are imaged using a confocal microscope, and we refer
to an image from a given focal plane as an optical slice. A tile
(or image stack) is the set of optical slices within one field of
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Figure 1: Illustration of a section, tile, and optical slice. Each section is cut approximately 30 µm thick, immunohistochemically
stained, and placed on its own microscope slide for fluorescence confocal imaging.

view of the microscope. Tiles are mosaicked together to recre-
ate a section. For this work all of the tiles are mosaicked for
each section prior to registration using the framework presented
in (Tasdizen et al., 2010).

The histological techniques used to image neurons of interest
in fluorescence confocal microscopy impose digital reconstruc-
tion challenges. Tracing centerlines accurately is non-trivial for
structures suffering from low signal-to-noise ratio (SNR) and
patchy staining. In applications where the image acquisition re-
quirements are on the order of several cubic millimeters, such
as our connectivity study, low magnification may be necessary
to capture the area of interest in a reasonable time frame at the
cost of making individual neuron differentiation even more dif-
ficult. Other data characteristics make section registration par-
ticularly challenging. Figure 2 shows a single channel of an
optical slice from the bottom of one section and the top optical
slice from the following section. The first obvious feature of the
images is that, generally speaking, only neurons are stained,
so the images are primarily low intensity background (auto-
fluorescence). A second noteworthy feature is that the overlap
of an axon pair occurs at the point where both axons exit their
respective section (ignoring any tissue losses). As a result, reg-
istration methods based on maximizing intensity correlation on
section boundary images are unsuitable, unlike an application
such as transmission electron microscopy (TEM) where there
is abundant overlap of intensity data (Tasdizen et al., 2010). A
third significant property is that because of tissue deformation
in thin sections, a particular region of axons may align well un-
der a rigid transformation but the neighboring areas may not.
These arbitrary deformations introduced when cutting, stain-
ing, and mounting the tissue must be accounted for during the
restoration of neuron continuity across sections.

1.3. Related Work

Pursuits in digital neural circuit reconstruction have primar-
ily focused on examining single sections of tissue (Lu, 2011).
Analysis of fiber projections on the scale ultimately envisioned

by neuroscientists entails reassembly of hundreds if not thou-
sands of serial sections, making the development of an auto-
mated registration process necessary. A conceptually relevant
work by (Oberlaender et al., 2007) proposed a framework for
reconstructing neural circuits across serial sections in bright-
field microscopy. However, following coarse alignment using
blood vessels, neurons in adjacent sections were relinked man-
ually. Our work aims to augment a degree of automation to
axonal section registration.

The characteristics of our datasets outlined in the previous
section have led us to approach section alignment using land-
marks as opposed to an intensity-driven method. For two-view
microscopy registration, (Al-Kofahi et al., 2003b) used den-
dritic branch points from centerline traces as landmarks, and an
extension of the widely used ImageJ tool called Fiji (Fiji Is Just
ImageJ) has a plugin for registering multi-view microscopy
datasets containing fluorescent bead landmarks (Preibisch et al.,
2009). However, the end applications do not target serial sec-
tion registration, which must account for arbitrary tissue defor-
mations. As previously mentioned, (Oberlaender et al., 2007)
used blood vessels for registration. We do not use blood vessels
to aid in coarse alignment because there is no explicit blood ves-
sel channel in our datasets. We instead derive landmarks from
traced axons due to the substantial research already invested
in 3-D neurite tracing (DIADEM, Donohue and Ascoli, 2011,
Al-Kofahi et al., 2003a, 2002, Meijering et al., 2004, Rodriguez
et al., 2009, Wang et al., 2011, Chothani et al., 2011, Zhao et al.,
2011, Turetken et al., 2011, Bas and Erdogmus, 2011), so our
landmark acquisition approach is similar to (Al-Kofahi et al.,
2003b). However, as opposed to using trace branch points as
landmarks, we propose to use the location a trace intersects a
section boundary for serial section registration.

Alternative methods attempt to simplify the registration
problem using block-face acquisition procedures. (Gerneke
et al., 2007) embedded tissue blocks in wax or resin and stained
the exposed top of the sample as it was repeatedly imaged and
sliced. (Roy et al., 2009) employed a cryo-imaging technique
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Figure 2: Example 20X axonal confocal microscopy images from the bottom of one section (left) and the top of the adjacent section
(center). The far right image shows a colored composite of the regions marked by the boxes. The x-y pixel spacings are 0.63 µm.

that also combined imaging with sectioning. These sectioning
methods attempt to minimize distortion of sections by elimi-
nating any handling that unnecessarily contributes to deforma-
tions. We do not utilize a block-face acquisition approach since
it would be unsuitable for our immunohistochemical staining
requirements.

Methods for serial thin section registration require correction
for both a global rotation and translation of the sample across
microscope slides as well as local distortions attributed to tis-
sue deformation and loss. Correspondences between the axons
of adjacent sections are initially unknown. For coarse (rigid)
alignment of TEM data, (Saalfeld et al., 2010) assigned corre-
spondences to feature points across images and then used ran-
dom sample consensus (RANSAC) (Fischler and Bolles, 1981)
when finding appropriate global transformation parameters.
This general methodology for identifying corresponding land-
marks has also been used in stereo vision applications (Zhang
and Negahdaripour, 2004). Another approach commonly used
for rigid point registration is the iterative closest point (ICP)
algorithm (Besl and McKay, 1992, Rusinkiewicz and Levoy,
2001). During each iteration point correspondences are cal-
culated based on smallest Euclidean distances to points in the
opposite set. These new correspondences dictate a transform
update. In a pipeline for finding rigid transformation parame-
ters for point sets both RANSAC and ICP are commonly ap-
plied. We opt to use a RANSAC-based technique since our
correspondence assignments are expected to contain some er-
rors (outliers), and we have no guarantee that the sections are
free of being grossly misaligned at capture time.

A nonrigid registration framework is needed to correct for
local deformations. This is not only necessary for visualization
purposes but more importantly for updating axon connectivity
assignments across sections. (Al-Kofahi et al., 2003b) present
a variant of the ICP algorithm for their two-view microscopy
application that incorporates the ability to fit an expanded set of

models such as parabolic transformations. Nonrigid point regis-
tration methods such as thin-plate spline robust point matching
(TPS-RPM) (Chui and Rangarajan, 2003) and coherent point
drift (CPD) (Myroneko et al., 2007) define energy functions
that enforce smoothness in the transformations. We utilize the
concept of motion coherence to register our datasets, meaning
tissue should be warped in a similar manner locally. Our re-
finement process is most similar to the method outlined in (Xie
and Farin, 2004), which combines coarse-to-fine basis spline
(B-spline) warping with the ICP algorithm.

2. Methods

2.1. Methods Overview
The goal of our method is to align axon endpoints at sec-

tion boundaries. Using an established neurite tracing algorithm
to identify where axons exit a section, we are able to define
point landmarks at the section boundaries. After calculating
landmark similarities based on local landmark spatial configu-
rations, we assign temporary correspondences between two sec-
tions using minimum weighted bipartite matching. In conjunc-
tion with RANSAC, the correspondences allow a suitable least-
squares solution for the global rotation and translation parame-
ters to be recovered. For refining the registration, i.e. aligning
axon endpoints, we iteratively update the correspondences and
apply nonrigid transformations with the intent of first correct-
ing for large landmark displacements and shifting towards mak-
ing more local corrections. When registering two sections we
use the common nomenclature of reference and moving enti-
ties. Specifically, a moving section is transformed to align with
a reference, or fixed, section.

2.2. Landmark Extraction
To extract axonal profiles, we traced our datasets using the

freely available software package NeuronStudio (Rodriguez
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Figure 3: Landmark information for the same traced axon
across a section boundary. The cyan line comes from the trace
data, and the red line represents the vector used to calculate the
angle information.

et al., 2006, 2007, 2009). Tracing with NeuronStudio is semi-
automatic in that a user must manually place seed points, but the
tracing itself does not require intervention. As discussed in (Ro-
driguez et al., 2009), neurites are thresholded locally and cen-
terline nodes are placed during a process called voxel scooping.
The output is a 3-D trace file (swc) commonly used by neuro-
computing applications, many of which are presented in (Mei-
jering, 2010).

Tracing serves as our landmark detection step. The centerline
endpoints near section boundaries indicate where axons exit a
section, so point landmarks are set at these locations. Land-
mark features in addition to position are also available, since
the axons in our datasets generally transition smoothly with re-
spect to orientation across section boundaries. Figure 3 depicts
the features associated with a point landmark located at some
x-y coordinate. These features include the angle at which each
axon approaches a section boundary, φ, the traversal angle of
each axon in the plane of the sample, θ, and the radius of each
axon, r.

2.3. Coarse Alignment
Global rotation and translation between two sections are

computed before connecting individual axons back together.
This is accomplished by first pairing landmarks according to a
simple criterion that considers the spatial relationships amongst
the axons. The equation for the correspondence measure is,

cm,n =
1
2

N∑
i=1

(hm[i] − hn[i])2

hm[i] + hn[i]
, (1)

where m and n are point indices, hm and hn are histograms of
distances to neighboring landmarks for points m and n, respec-
tively, and N is the number of bins in hm and hn. If both hm[i]
and hn[i] are zero, the summation term for the current i is set
to zero. This equation may be recognized as the Chi-square
measure for comparing two histograms (Belongie et al., 2001,
Bradski and Kaehler, 2008). For each point a local histogram
is constructed representing the distances to all neighboring ax-
ons from the current axon of interest within a specified distance
threshold. The number of histogram bins must also be spec-
ified. The term serves to provide local spatial information re-
garding an axon’s neighborhood and helps determine, for exam-
ple, whether or not the axon is in a sparse region. The angular
distributions of neighbors are not yet included since the global
rotation of the moving section is unknown.

Next we assign temporary correspondences to landmarks
such that the lowest total sum of correspondence measures
is produced, with the expectation that truly corresponding
landmarks have very similar neighborhood configurations and
hence the smallest c values. Assigning correspondences be-
tween the two datasets can be viewed as finding matches for
the nodes of a bipartite graph. A bipartite graph, G = {U,V, E},
consists of two disjoint sets, U and V , whose edges, E, only
bridge points belonging to different sets. Our two sets consist
of the landmarks of the sections to be registered. A weighted
graph is constructed by assigning the c values to the edges. Be-
cause the correspondence metric indicates the best match for a
point m to another point n when it is smallest, the problem is
that of determining the minimum weighted sum of edge links.
This is a standard minimum weighted bipartite matching task,
and we currently solve the matching problem using the Hungar-
ian algorithm (Jungnickel, 2005).

Having correspondences across two point sets allows param-
eters of a rotation/translation model to be calculated. As shown
in (2),

p(i)
reference = Rp(i)

moving + T + η(i) i ∈ 1, . . . ,M , (2)

the ith point in a moving dataset, p(i)
moving, can be rotated by the

rotation matrix, R, and translated by the vector, T, to align with
its corresponding point in the reference dataset, p(i)

reference, with

some mismatch dependent on the noise, η(i).
A 3-D formulation of this problem is presented in (Arun

et al., 1987), although the concepts are directly applicable to
our 2-D case. The solution for the rotation and translation of
two point sets with known correspondences is determined in a
least-squares sense. That is to say, we find the 2 × 2 rotation
matrix, R̂, and the 2 × 1 translation vector, T̂. The rotation can
be determined after evaluating (3),

M∑
i=1

q(i)
movingqT (i)

reference = H = UΛVT, (3)

where the q vectors for each of the datasets are simply the two
point sets with the centroids, creference and cmoving, subtracted
out. The q vectors are ordered so that corresponding points have
the same indices. The UΛVT term represents the singular value
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decomposition of H. Finally, a matrix X = VUT is calculated.
If the determinant of X is 1, then R̂ = X. If the points used
to calculate the rotation are colinear or have large amounts of
noise (e.g. do not really correspond), then det(X) = -1 and may
represent a reflection or is meaningless. For simplicity, both of
these cases can be categorized as model fitting failures and, if
possible, a different set of corresponding points can be tested.
The translation,

T̂ = creference − R̂cmoving, (4)

is obtained by finding the difference between the centroid of
the reference point set and the centroid of the moving dataset
after rotation. The conceptual understanding is that the aligned
point sets should have the same centroid. The reader is referred
to (Arun et al., 1987) for mathematical justifications for these
solutions.

The previous discussion briefly reiterates a way to determine
rotation and translation parameters from two sets of points with
specified correspondences. We still face the problem, how-
ever, that although correct correspondences are identified after
the minimum weighted bipartite matching procedure, they ex-
ist amidst numerous incorrect assignments. Ideally, global ro-
tation and translation parameters should be calculated based on
landmark correspondences that have been correctly assigned.
Because perfect assignments cannot be guaranteed, however,
we make use of RANSAC, a robust model fitting paradigm for
data containing outliers (Fischler and Bolles, 1981). Outliers
in this context refer to landmarks that have been incorrectly as-
sociated. Likewise, inliers refer to landmarks that have been
correctly matched within a tolerance level.

In our application RANSAC first randomly selects a subset
of points and attempts to fit a rotation/translation model based
on their correspondences. A potential rotation and translation
are calculated using the randomly sampled points and the least-
squares solution previously described. The remaining points
from the moving dataset are then transformed using these model
parameters. The points that transform within a specified dis-
tance threshold, ε, with respect to their corresponding point are
added to a consensus set. If the total number of inliers increases
for a particular set of transformation parameters, the parameters
are saved as the current best set. The process is repeated for
a specified number of iterations or until the internal iteration
limit, k, given in (5) is reached,

k =
log(1 − p)

log(1 − ωn)
, (5)

where p is the desired probability that at least one inlier is ran-
domly selected for model fitting, ω is the actual probability of
randomly selecting an inlier, and n is the number of points ran-
domly selected for the model fitting (Fischler and Bolles, 1981).
The ω term is updated each time a new best model has been
found and is assigned based on the number of current inliers
divided by the total number of points. Once the algorithm has
terminated all of the points marked as inliers are used to form a
final least-squares rotation and translation estimation. Figure 4
shows an example of two coarsely aligned landmark sets taken
from larger sections.

Figure 4: Example rough alignment of landmarks using the pro-
cess described in Section 2.3. The o’s represent axon intersec-
tions at the bottom boundary of a section while the x’s represent
the axon intersections at the top boundary of the adjacent sec-
tion. The size of the region is ∼1290 × 1290 µm with isotropic
x-y pixel spacings of 0.63 µm.

2.4. Refined Alignment
In a localized region, such as that illustrated in Figure 4, we

assume the inexact alignment of landmarks following coarse
registration are attributable to a combination of factors such
as small amounts of tissue loss, local shearing from the mi-
crotome, and section shrinkage/expansion. When examining
the entire section at once, larger stretching distortions intro-
duced during the sectioning and mounting are also apparent.
In the interest of registering for connectivity analysis we cur-
rently disregard any minor tissue losses and just warp a moving
section’s landmarks to coincide with the preceding reference
section. Taking into consideration that the physical sections
are very thin, we propagate corrections for the moving section
throughout the entire section. In other words, each mosaicked
optical slice is warped the same as the top mosaicked optical
slice. The succeeding section is then registered to this trans-
formed section.

The refinement process begins by recalculating landmark
feature similarities using an updated metric. We now incorpo-
rate angular information with respect to the x-y plane since the
approximate rotation of the moving section, R̂, is known from
the coarse alignment. The updated correspondence criterion be-
tween points m and n is,

Cm,n = w
Pm,n

Pthresh
+ (1 − w)

Dm,n

Dthresh
, (6)

where w is a weight, Pm,n is a Chi-square histogram measure
comparing the positional distributions of nearby points, Dm,n

is the Euclidean distance between points m and n, Pthresh is a
threshold for Pm,n, and Dthresh is a threshold placed on Dm,n.
The Pm,n term is formed by dividing the region surrounding a
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Figure 5: Example bin layout in polar coordinates.

point into bins in polar coordinates up to a specified distance.
Within this region we use bins that are evenly spaced both ra-
dially and rotationally, such as is depicted in Figure 5. The
feature is a 2-D histogram, and comparison of two of these fea-
tures is performed in the same manner as in (1). Similar to (Be-
longie et al., 2001) interim correspondences are again assigned
using minimum weighted bipartite matching, with additional
considerations made to reduce erroneous landmark matchings
discussed next.

When assigning correspondence values for a given land-
mark, restrictions are used to limit the permissible point cor-
respondences. An upper threshold, Pthresh, is placed on Pm,n

to prohibit axons with largely different neighborhoods from be-
ing matched. To enforce local matching, a distance threshold,
Dthresh, prevents a point from being paired with one outside of
the specified radius. In other words, if either of the terms sur-
pass their respective threshold, landmarks m and n are forced
to be non-corresponding. Otherwise, the thresholds are used
as normalization factors. The orientation of axons in the sec-
tion and their size are also used to prevent insensible matchings.
For example, if the difference in orientation in the x-y plane is
larger than a threshold, θthresh, a potential match is disregarded.
Analogously, maximum allowable differences are also placed
on radii and boundary angles, rthresh and φthresh, respectively.

Once correspondences have been reassigned, the arbitrary
deformations are addressed using nonrigid transformations. We
accomplish nonrigid warping using third order B-splines de-
fined on a 2-D lattice of knot points (Unser, 1999). Control
points are used to modify the shape of the underlying function,
which in our case represents the deformation. The number of
control points available is coupled with the number of B-spline
knots. We iteratively reposition control points to pull regions
of distorted tissue into alignment using the current correspon-
dence assignments. Progressively increasing the density of the
control point grid permits finer local refinement.

We adjust control points in a straightforward manner by tak-
ing advantage of the fact that, in general, our misaligned land-
marks require approximately the same amount of correction in
a given region as depicted in Figure 6. Therefore, we deter-
mine the general direction of distortion for an area of the mov-

Figure 6: Illustration depicting approximate motion coherence
for a local set of coarsely aligned landmarks. The o’s are the
reference landmarks and the x’s are the moving landmarks. The
connecting lines indicate the current correspondences, which
are used to determine the displacement vector, Vp,q, for the con-
trol point (black dot).

ing section and shift the regional control points to compensate.
For a particular control point with indices p and q, we calcu-
late its displacement vector, Vp,q, based on how landmarks are
misaligned in the four surrounding grid cells. For each pair
of corresponding landmarks in these grid cells we also define
a displacement vector, vm,n, originating at the moving points.
From the vm,n’s we select the median x and y components as the
motion for the control point. The median displacement vector
components are chosen since it is possible for improper corre-
spondences to still exist, and as long as half of the correspon-
dences in the grid cells surrounding a control point are correct
the region shifts in the general needed direction. If only one
landmark exists within the grid cells around a control point, it
will be drawn towards its corresponding point directly.

In a similar sense as the ICP algorithm and the method pre-
sented in (Xie and Farin, 2004), we iteratively update the cor-
respondence assignments and transformations to progress the
registration. The correspondences are assigned according to (6)
and a stage of bipartite matching. The control point density in-
creases at each iteration for improved local control. A specified
control point spacing, S D, determines when the correspondence
assignments should completely favor Dm,n and effectively be-
come nearest neighbor assignments. The number of iterations
beyond the first required to reach this spacing is calculated as
in (7) using the initial control point spacing, S I , and its defined
rate of change, S RC .

ID =

⌈
logS RC

(
S D

S I

)⌉
(7)

ID is then used to perform a simple adjustment to the weight
in (6). For the first iteration w is set to 1.0, and subsequent
changes shift emphasis from matching similar clusters to near-
est neighbors. After each transformation w is updated as,

w(i+1) = w(i) −
1
ID

, (8)
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Figure 7: Example landmark adjustment for several refinement iterations. The o’s represent axon intersections at the bottom
boundary of a section while the x’s represent the axon intersections at the top boundary of the adjacent section. The connecting
lines indicate correspondences for the current iteration, which is labeled in each frame.

where i is the current iteration number. Upon reaching the
(ID+1)th iteration the restrictions imposed by θthresh, rthresh, and
φthresh are relieved to ensure that any trace inconsistencies do
not prohibit true axon endpoints from being matched. Further
iterations can be run for additional tweaking until a termina-
tion spacing, S T , is reached. Lastly, Dthresh is automatically
adjusted throughout the iterations so that it is never larger than
the current control point grid spacing. An example warping
progression is shown in Figure 7.

3. Results

3.1. Datasets
Confocal datasets used for this study are a subset of those ac-

quired as part of a larger neuroanotomical investigation of the
macaque brain. Imagery included here represents neuropeptide
antibody # AB1565 (Chemicon) expressing neuronal fiber pro-
jections immunohistochemically labeled with Alexa 568 (In-
vitrogen) secondary antibody. Fluorescence microscopy was
performed on five consecutive tissue sections of the right hemi-
sphere in the region of the basal forebrain and hypothalamus. A
Nikon A1R confocal microscope equipped for resonant mode
acquisition was used for 20X imaging yielding a x-y resolution
of 0.63 µm/pixel. The Alexa 568 probe was excited using a
561 nm wavelength laser with 512 × 512 pixel emission image
fields captured at ∼3.7 f rames/s. For each section a region was
acquired comprising 13 × 17 fields (∼4200 × 5500 µm) over 25
optical slices at 0.60 µm intervals.

3.2. Experiments
The registration is quantitatively assessed using landmarks

derived from two sets of traces. The first collection of traces is
obtained using NeuronStudio. Although the traces are attained
semi-automatically, one drawback is that our dataset resolu-
tion limits NeuronStudio’s ability to differentiate intertwined
or crossing axons that touch. As a result many axon traces be-
come merged. For purposes of acquiring the locations where
axons exit a section, however, these endpoints generally re-
main intact (with exceptions such as where an entwined axon
pair exits a section). The second set of experimental traces

Table 1: Coarse Alignment Correspondences for the Subsets

Trace # Total Possible # Inlier
Source Sections Correspondences Correspondences

NS 1, 2 92 31
NS 2, 3 94 32
NS 3, 4 118 44
NS 4, 5 112 42
M 1, 2 88 51
M 2, 3 94 57
M 3, 4 94 58
M 4, 5 80 51

NS: NeuronStudio, M: Manually edited

is obtained by manually correcting problem areas in the Neu-
ronStudio traces, such as false branch points and incorrectly
merged axons. Manual editing is accomplished using Neuro-
mantic (Myatt). The purpose of using the two trace sources is
to show that with respect to aligning axon endpoints at section
boundaries, the result obtained using readily placed Neuron-
Studio traces is comparable to that based on traces which have
undergone time-consuming manual editing.

The dataset used for quantitative evaluation is a ∼1290 ×
1290 µm subset of the five section series described in the pre-
vious section. The subset contains both a very sparse area as
well as a region representative of the general axon density of
the complete dataset. The average number of point landmarks
at the section boundaries acquired from the five NeuronStudio-
traced subsections is 286. For the manually adjusted traces the
average is 229 landmarks. The difference is indicative of the
elimination of spurious landmarks during manual editing.

Coarse registration results are presented in Table 1. The total
possible correspondences are the number of correspondences
assigned between sections following the initial bipartite match-
ing. For computational savings a subset of the landmarks is
used in the matching, accounting for the low number of possible
correspondences compared to the average number of landmarks
per section. The subset is chosen by limiting landmarks used
in the matching to those whose associated axon approaches
the section boundary greater than a given steepness. For the
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Table 2: Refined Alignment Correspondences for the Subsets

Trace # Correspondences Assigned Breakdown of Correspondences
Source Sections Manually Algorithm Assigned by Algorithm

V↔V Incorrect V↔V V↔S S↔S V Unmatched
NS 1, 2 141 158 126 1 9 22 19
NS 2, 3 145 167 135 1 5 26 13
NS 3, 4 169 179 151 1 13 14 21
NS 4, 5 158 142 142 2 9 19 19
M 1, 2 194 197 182 1 11 3 11
M 2, 3 199 202 184 2 13 3 13
M 3, 4 185 192 177 0 8 7 8
M 4, 5 182 182 177 0 4 1 5

NS: NeuronStudio, M: Manually edited, V: Valid landmark, S: Spurious landmark

datasets examined in this work a threshold of approximately
fifteen degrees reduces the possible matches to the values listed
in the table. The inlier correspondence numbers in Table 1 in-
dicate how many of the initial matches RANSAC uses to de-
termine the final rotation and translation; i.e. these are the cor-
responding landmarks that fall within a given distance of each
other after the moving section is transformed. These numbers
are relatively low due to the limited nature of the correspon-
dence criterion from which they are based, and an extended
discussion is covered in Section 4.

The final correspondences assigned by the registration refine-
ment stage are shown in Table 2, which translate into axon con-
nectivity across sections. The table shows the comparison of the
number of correspondences assigned manually and by the algo-
rithm, as well as the breakdown of correspondences assigned
by the algorithm. The algorithm correspondence breakdown
contains subheadings that list landmark matchings as valid-to-
valid, incorrect valid-to-valid, valid-to-spurious, and spurious-
to-spurious. Valid and spurious landmarks are manually deter-
mined, with a valid landmark defined as having a correspond-
ing landmark in the adjacent section. For example, the valid-to-
spurious column represents the number of valid landmarks from
both sections that have been incorrectly matched to a landmark
without a corresponding point. The last column shows the num-
ber of valid landmarks incorrectly left unmatched.

A summary of Table 2 can be made in terms of precision and
recall as,

precision =
# true positives

# true positives + # f alse positives

recall =
# true positives

# true positives + # f alse negatives
. (9)

The number of true positives refers to the number of corre-
spondences the algorithm selects correctly with respect to the
manual assignments. The false positives are the incorrect cor-
respondences, and the false negatives are the unmatched valid
landmarks. The perfect set of results would yield precision and
recall values of 1.0. The values derived from our results are
shown in Table 3. Precision indicates how many points are
paired correctly with a penalty incurred for incorrect correspon-

Table 3: Precision and Recall Measures

Trace Source Sections Precision Recall
NS 1, 2 0.798 0.869
NS 2, 3 0.808 0.912
NS 3, 4 0.844 0.878
NS 4, 5 0.826 0.882
M 1, 2 0.924 0.943
M 2, 3 0.911 0.934
M 3, 4 0.922 0.957
M 4, 5 0.973 0.973

NS: NeuronStudio, M: Manually edited

dence assignments. Spurious point matchings are the predomi-
nant cause for drawing the precision away from the maximum
of one. Recall indicates how many true correspondences are
missed.

In combination the precision and recall values suggest we
match truly corresponding points reasonably well, but also in-
clude a non-negligible number of spurious landmarks. This ap-
plies more so to the case of the experiments using landmarks
derived from unedited traces since there are more false land-
marks available. The reason some false landmarks get paired
is that in the final stages of the registration nearest neighbor as-
signments take hold under the assumption that region stretching
has been corrected and endpoints should be reconnected.

The registrations have been carried out on a standard Linux
desktop (Intel i7 3.2 GHz CPU with 8 GB RAM). Implementa-
tion is currently based in MATLAB, with the nonrigid transfor-
mations performed using the Insight Toolkit (ITK). The average
time for calculating the initial feature correspondences was 1.36
seconds across all of the sections. RANSAC took an average of
0.044 seconds to find a suitable rotation and translation. There
were a total of seven iterations of recalculating correspondences
and warping landmarks. The average times for these two steps
at each iteration were as follows: 1) 1.69, 0.79 seconds 2) 1.69,
0.92 seconds 3) 1.66, 1.36 seconds 4) 1.58, 2.52 seconds 5)
2.09, 6.44 seconds 6) 1.64, 15.99 seconds 7) 1.51, 46.81 sec-
onds. The landmark warping times rise at each iteration due to
increasing control point densities. The matching time for itera-
tion 5 is slightly higher since it is the first iteration distances are
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Figure 8: Volume rendering of a single axon aligned. The circles highlight the section boundaries. Breaks in the renderings (stair-
step effect) are the result of section boundaries that are not perfectly flat. Two faint aligned axons can also be seen on either side of
the marked axon.

the only contributing factors to correspondence assignments.
Therefore, additional points are included in the matching. Gen-
eration of the transformed images was performed off-line since
the process was much slower (on the order of minutes) than
just manipulating landmarks, depending on the amount of par-
allelization used and the final control point density.

A visualization of what the registration aims to accomplish,
i.e. align axon endpoints at the section boundaries, is shown in
Figure 8 with the aligned endpoints marked by circles. From
this visual evaluation alone the axon exhibits enough continuity
to recognize that the pieces comprise the same axon, although
the landmark correspondences are what provide the connectiv-
ity information as to which segments should be considered the
same axon. The stair-step pattern is caused by empty space
along section boundaries that are not perfectly flat. We also ap-
plied the method to the full dataset containing approximately
900 landmarks per section. While quantitative results are only
presented for the subregion, the same types of errors are observ-
able in the full dataset, namely spurious points being matched
and some missed correspondences. Isosurface renderings in
Figure 10 show examples of aligned axons, where sections are
tagged by different colors to make the axon transitions from one
section to the next easily identifiable.

4. Discussion And Conclusions

Our registration task faces the common challenge of incom-
plete one-to-one landmark correspondences across datasets.
The severity of spurious and missing landmark formulation is
dependent on the tracing quality, as centerline endpoints at sec-
tion boundaries are treated as landmarks. Faintly stained axons
traced in one section but not the next, broken traces running
along a section boundary, incorrectly merged axons, and false
branches near section boundaries all generate erroneous land-

marks. These problems are more pronounced in the landmarks
extracted from the semi-automatically acquired traces, hence
the higher rate of spurious landmark matchings in Table 2. The
other problem is the merging of centerlines for touching axons
as they weave through a section, since individual axon identi-
ties are lost. This issue is highlighted in Figure 9a, which shows
the semi-automatically obtained centerlines registered for the
five section subset. The centerline colors represent axons con-
nected across sections using the final correspondence assign-
ments, and the problematic merging is depicted by the large
bundle of green traces. In contrast, Figure 9b presents regis-
tered traces that have undergone time-consuming manual edit-
ing prior to registration. The abundance of centerline colors
in same region visually demonstrates that axon identities have
been significantly better preserved.

A tradeoff exists between the capacity to follow individual
axons over large distances and how readily results can be pro-
duced. While the semi-automatic traces are much faster to place
than by hand, the resolution of our datasets makes it difficult
to differentiate axons in moderate to heavily populated areas.
Without correction, the ability to track any given axon is inhib-
ited. However, manual corrections are very time-consuming,
especially when considering hundreds of serial sections. Cap-
turing sections at a higher magnification could potentially help
in improving trace quality at the expense of substantially in-
creased imaging times and both computational and storage de-
mands in dealing with larger datasets. With the desire to main-
tain as much automation as possible, another alternative is to
register sections with the semi-automatically obtained traces
and track bundles of axons versus individual projections. Our
registration results indicate this approach is plausible since truly
corresponding landmarks are matched well. Because this ap-
proach strays from our goal of following individual axons, how-
ever, it is also worth investigating whether other automated trac-
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(a) Aligned centerlines obtained semi-automatically. (b) Aligned manually corrected centerlines.

Figure 9: Example registered centerlines for the five section testing subset. Black lines represent segments with no connectivity to
another section, and colors (randomly assigned) mark axons connected across sections.

ing algorithms are better able to differentiate axons at our cur-
rent data resolution (Wang et al., 2011, Chothani et al., 2011,
Zhao et al., 2011, Turetken et al., 2011, Bas and Erdogmus,
2011).

Several user set parameters are required for the registration,
though their selection is rather intuitive. Tables A.4 and A.5 in
Appendix Appendix A show the parameters used to register all
of the sections. The coarse registration requires three signifi-
cant parameters. One parameter is the distance threshold for d,
or the maximum distance for which to consider a landmark’s
neighbors when creating the distance histograms. Our moder-
ately sized threshold captures enough global context to identify
the approximate region a point is located in the section. The
number of bins in d accounts for variability in the locations of
corresponding landmarks, since they will not align under a rigid
transform alone. The third primary parameter is the distance
tolerance, ε, for determining a valid correspondence in a given
RANSAC iteration. The ε threshold is intentionally set to be le-
nient, implying that not all the inliers in Table 1 represent truly
corresponding axon pairs. The reason is because the match-
ing criterion for coarse alignment is solely based on distances
to neighbors. Considering the presence of spurious landmarks
and section stretching, it is difficult to match corresponding
landmarks exactly based exclusively on the distance criterion.
Nevertheless, in cases of mismatch the correctly correspond-
ing axon is nearby, and the final least squares solution obtained
provides an acceptable coarse alignment. The logic behind the
use of the limited correspondence criterion is that under nor-
mal section distortions most local axon configurations remain
intact, and we only need to match a portion of them correctly

to establish a global transformation. The criterion also allows
us to assume no a priori knowledge of alignment. The num-
bers of inlier correspondences in Table 1 associated with the
manually corrected traces are higher since the distance-based
correspondence assignments improve from the reduced number
of spurious landmarks.

The remaining two parameters in Table A.4 are the the num-
ber of points used to to calculate a potential rotation and transla-
tion, n, and the desired probability that a pair of corresponding
points is randomly selected for model fitting, p. Parameter n is
kept small since we expect many of the initial correspondences
to be incorrect as previously discussed, and we keep p near 1.0
so the iteration limit calculated in (5) does not cause premature
termination.

The parameters for the registration refinement are listed
in Table A.5. The logic behind selection of the polar his-
togram parameters is similar to the prior discussion regarding
the distance-only histograms. However, the range threshold is
smaller than that used for d since we want to focus on more lo-
cal differences. The choices of radial and angular bin sizes are
again moderately sized to account for variations in the align-
ment of corresponding neighbors. The Pthresh parameter pre-
vents two points with very different neighborhoods from being
matched. In other words, this threshold aims to keep spurious
landmarks from being paired with one another. The smaller the
threshold, the more similar the polar histograms need to be for
two points to be eligible for correspondence. We allow some
tolerance by setting Pthresh above the midpoint of its possible
range.

The maximum radius a given point can be matched within is
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Dthresh, though this value becomes bounded by the control point
spacing as the iterations progress. If there is too much distor-
tion in a region, i.e. a stretch larger than Dthresh, it is possible
for a region to not have any correspondences assigned. For a
case like this the intent of starting with a sparse set of control
points would be to pull this region of the section into closer
alignment as a nearby region is corrected. The other thresholds
that aim to restrict spurious matchings based on radii, x-y plane
orientations, and boundary angles are rthresh, θthresh, and φthresh,
respectively. Axons are presumed to transition roughly linearly
across section boundaries, so the value for θthresh assumes a fac-
tor of π has been subtracted from the moving section’s θ angles
(see Figure 3). Because of sporadic trace inaccuracies, all three
thresholds are allotted some leeway to prevent truly correspond-
ing landmarks from being disassociated.

The last series of parameters for the refined alignment relate
to the control point spacing. The initial spacing is a function of
a rough estimate of the amount of stretching present in the sec-
tions. The testing subregions cover a small area, so their initial
spacing is set to only 176.4 µm. In contrast, the full sections
require a larger initial spacing due to more prevalent section-
wide stretching, so their spacing begins at 1134 µm. For the
control point spacing rate of change, we use the heuristic of
halving the spacing at each iteration. Too rapid of a decrease
can lead to missed correspondences, since Dthresh is bounded
by the spacing. The desired spacing at which weight w forces
Dm,n to completely dominate the correspondence measure in (6)
is 12.6 µm, and the desired final grid spacing is 3.15 µm. One
clarification is that our grid spacing halves at each iteration, so
the S D and S T spacings are not reached exactly. Instead, the
first spacing reached that is smaller than the specified value is
used. Lastly, the challenges in dealing with large, high den-
sity control point grids, such as memory consumption, can in
part be addressed by utilizing a full hierarchical B-spline im-
plementation (Forsey and Bartels, 1988, Xie and Farin, 2004).
In a scheme like this only regions containing landmarks have
increasing control point densities, so empty space is effectively
ignored.

There are many opportunities for extensions to this work. For
example, there are limitations to which datasets this method is
entirely applicable, such as those containing severe deforma-
tions (perhaps as the result of a tear during mounting), small
regions of overlap, and extremely dense regions of axons. Be-
cause we currently utilize spatial relationships amongst land-
marks to aid in identifying matching pairs, substantial landmark
detection errors or deformations so severe that large disparities
exist between axon geometric configurations and orientations
are problematic. For an immensely dense set of axons, we could
potentially again lose the ability to identify unique local neigh-
borhood configurations. Our datasets so far exhibit moderate
axon densities and distortions. In addition, improvements are
needed to reduce the number of spurious landmarks incorrectly
included in correspondence assignments. The results based on
the manually corrected traces confirm that fewer false land-
marks boosts both the precision and recall values, supporting
the efficacy of the method. However, the need still exists to
reduce erroneous connections. Finally, with the end goal of an-

alyzing long-range neural circuits, it is obvious that many more
consecutive sections must be experimented on and statistics for
the axon populations must be generated.

A methodology for registering axonal processes across serial
sections has been presented in this work. We take advantage
of the progress made in automated neurite tracing algorithms
to extract centerlines and set point landmarks at section bound-
aries. The tracings also provide additional information for each
landmark in terms of the representative axon’s radius and ori-
entation in the section. We obtain a coarse registration without
prior knowledge of how sections are initially misaligned and al-
low for nonrigid warping in response to moderate arbitrary de-
formations in the tissue. We have presented connectivity results
for a region of axons and include visualizations of the final au-
tomated alignment. While extensions to the work presented are
required to make it more applicable to broader datasets, we nev-
ertheless show progress in providing neuroscientists with the
ability to establish axonal connectivity in an automated fash-
ion.
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mosaicking and serial section registration of large sstem datasets. Bioinfo-
matics, 26:i57–i63, July 2010.

T Tasdizen, P Koshevoy, B Grimm, J Anderson, B Jones, C Watt, R Whitaker,
and R Marc. Automatic mosaicking and volume assembly for high-
throughput serial-section transmission electron microscopy. J. Neurosci.
Methods, 193:132–144, 2010.
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Appendix A. Parameters

Table A.4: Coarse Registration Parameters

Parameter Value Value in Pixels
Distance threshold for d 409.5 µm 650

Number of radial bins for d 30
Distance error for RANSAC inlier: ε 47.25 µm 75

Desired probability that a RANSAC inlier is selected: p 0.99
Number of points used to determine a model for RANSAC: n 3

x-y pixel spacings are 0.63 µm

Table A.5: Refined Registration Parameters

Parameter Value Value in Pixels
Distance threshold for Pm,n 94.5 µm 150

Number of radial bins for Pm,n 10
Number of angular bins for Pm,n 10

Threshold for polar histogram similarities: Pthresh 0.6
Threshold for distance of potential matches: Dthresh 94.5 µm 150

Threshold for radii differences: rthresh 0.4 µm
Threshold for x-y plane orientation differences: θthresh π/3 rad

Threshold for boundary angle differences: φthresh π/3 rad
Initial control point grid spacing: S I 176.4 µm (1134 µm for full dataset) 280 (1800)

Control point spacing rate of change: S RC 0.5
Desired control point spacing at which Dm,n dominates: S D 12.6 µm 20

Desired termination control point spacing: S T 3.15 µm 5
x-y pixel spacings are 0.63 µm
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(a) Isosurfaces of a zoomed-in region of the five section testing subset.

(b) Isosurfaces of a zoomed-in region of the five section full dataset.

Figure 10: Example regions of aligned axons. Colors indicate different sections: 1 - Green, 2 - Orange, 3 - Yellow, 4 - Red, 5 -
Blue.
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