Fast AdaBoost Training Using Weighted Novelty Selection

Mojtaba Seyedhosseini, Antonio R. C. Paiva and Tolga Tasdizen

INTRODUCTION

- Boosting is a general learning concept to train a strong learner by combining a set of weak learners.

- It consists of two parts: weighted novelty selection and AdaBoost.

WEIGTHED NOVELTY SELECTION

- of the training dataset.
- representative points.
- threshold.
- Choosing an appropriate threshold, WNS ensures that enough points are picked to cover the whole space while keeping the number of them to a minimum.

$$X = \{x_1, \dots, x_N\} \longrightarrow W$$
 WNS
$$\longrightarrow W = \{w_1, \dots, w_M\}$$
 AdaBoost
$$A = \{\alpha_1, \dots, \alpha_T\}$$

WNS-AdaBoost

- WNS-AdaBoost takes the outputs of the WNS to train the AdaBoost classifier.
- AdaBoost is given a smaller number of training points together with prior information about the importance of them.

• WNS speeds up AdaBoost in the training stage by reducing the number of training samples and maintains also the performance of AdaBoost at a good level by providing prior information about the importance of the selected representative points.

Given a training set $X = \{x_1, ..., x_N\}$ and corresponding labels A

- 1. Separate the classes and make two sets: $X1 = \{x_i \mid l_i = -1\}$
- 2. Choose a δ and run WNS for X1 and X2. The output of W points and weights for each class are: $X1 \rightarrow (X_1^R, W_1), X2$
- 3. Construct a new training set $X^R = \{X_1^R, X_2^R\}$ and $W = \{W_1\}$
- 4. Normalize *W* so it will be a probability distribution.
- 5. Use $X^{\mathbb{R}}$, W to train AdaBoost classifier.

• AdaBoost training can be time consuming for large datasets and convergence can be slow for problems with complex decision boundary. • We propose a new learning framework which speeds up the training of AdaBoost, or any other boosting based algorithms.

• WNS is the pre-processing sampling method in the WNS-AdaBoost which provides the boosting algorithm with a concise summary • WNS summarizes the dataset with a set of representative points and corresponding weights that show the importance of the • WNS picks a data point as a representative point if the smallest distance to all previous representative points is larger than a

Fig 1: Illustration of the WNS-AdaBoost training model.

$$L = \{l_1, ..., l_N\}, l_i \in \{-1, 1\}.$$

$$\{X_2 = \{x_i | l_i = 1\}.$$

WNS, i.e. representative

$$2 \to (X_2^R, W_2).$$

$$\{y_1, W_2\}.$$

Fig 2: WNS-AdaBoost training algorithm

Fig 3: ROC curves for texture segmentation.

CONCLUSION

• WNS provides a compact representation of the distribution of the training data in a way that is naturally amenable to AdaBoost, or any other AdaBoost-based classifier.

• WNS-AdaBoost reduces the overall computational complexity and increases the speed of the training process. • The improvement in training speed is achieved potentially at the expense of a small reduction in accuracy.

10.3%

16%

TABLE I TRAINING TIME AND PERFORMANCE FOR THE "POKER HAND" DATASET Time for applying Time for Speedup Testing Training WNS (s) training error error 135s13%8.8520%2.2317%11%10.05236.10s1.3

320.19s

TABLE II TRAINING TIME FOR THE "TEXTURE SEGMENTATION" EXPERIMENT

_

g	Time for applying WNS (s)	Time for training	Speedup
	108.62	5.82s	38351
	11186.96	502.64s	444
	_	62hours	_

Fig 4: Test results for the texture segmentation experiment.