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Conclusion

We show that the nCI inner product is the most powerful measure. This was shown
here explicitly for unsupervised learning, but similar results have been obtained for
supervised learning. This is because the nCI is a characteristic kernel, and, intuitively,
sensitive to memory dependences of the point processes.

The disadvantage of the nCI is that the explicit form of a congruent inner product in
the spike train or intensity function space is unknown. This prevents the results from
being related back to those spaces, where the analysis can be more easily understood
in terms of synaptic and statistical models.

Why does the nCI perform better?
Theorem 1. Given a strictly positive definite functionKσ : R×R→ R, the nCI kernel
I : S(T ) × S(T ) → R is strictly positive definite, and therefore a characteristic
kernel.

Proof. The theorem follows immediately from noticing that

∑
i

∑
j

aiajIσ(si, sj) =
∫ ∑

i

∑
j

aiajKσ
(
λsi(t), λsj(t)

) dt ≥ 0,

and, because Kσ is strictly positive definite, the equality holds if and only if λsi(t) =
λsj(t)⇔ si = sj.

Since the nCI is a characteristic kernel, the following theorem follows.

Theorem 2. The nCI-based measure between two point processes P and Q,

DK(P,Q) =
∫∫
I(x, y)dµ(x)dµ(y),

with probability measure µ = P −Q, is a divergence.

This means that two point processes map to different points in the reproducing ker-
nel Hilbert space (RKHS) induced by the kernel. In other words, this kernel ensures
that spike trains corresponding to different point processes have distinct means in the
RKHS, which allows statistical inference to distinguish between them.

Empirical comparison

Principal component analysis of renewal point processes

The measures were used to compute prin-
cipal component analysis (PCA) of spike
trains generated from two homogenous re-
newal point processes with gamma dis-
tributed inter-spike intervals (shape parame-
ter θ = 0.5 and θ = 3). The algorithm fol-
lows the same steps as Kernel PCA using one
of the spike train inner product measures.
The smoothing parameter was τ = 50ms.
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(a) mCI inner product.
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(b) nCI inner product.

Using the nCI and IPH (with
µ = 0.9) inner products the
spike train projections clearly
distinguish the different pro-
cesses, revealing that these in-
ner products are sensitive to
the time history needed to
discriminate between renewal
point processes.
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(c) IPH inner product.

Clustering of spike trains from an in-vitro neural culture
The measures were compared on a clustering task [2] using multi-channel spike trains
recorded from an in-vitro neural culture that was electrically stimulated at ten different
channels in a random order.

Smoothing
parameter

Inner product measure

mCI IPH nCI

1ms 60.5% 71.2% 99.3%
3ms 56.1% 59.8% 98.6%
5ms 45.0% 47.8% 97.4%

The performance was evaluated in terms of the number of spike trains correctly grouped
with regards to stimuli. For the IPH and nCI inner products, the best results are shown,
corresponding to using µ = 0.8 and σ = [0.1, 10]. Note that the performance using
the nCI was the same across a large range of the nonlinearity parameter σ, and much
better than using the other two inner products.

Spike train measures

Consider two spike trains si, sj ∈ S(T ) defined in the interval T = [0, T ].
We compare three inner product measures:

• The memoryless cross-intensity (mCI) inner product is defined as

I(si, sj) =
∫
T
λsi(t)λsj(t)dt.

This is the simplest of a family of cross-intensity inner products and is equivalent
to a continuous-time cross-correlogram. It is also the inner product associated with
van Rossum’s distance.

• The inner product associated with the b-metric proposed by Houghton [4], hence-
forth denoted IPH, is defined as

Hµ(si, sj) =
∫
T
fsi(t)fsj(t)dt,

where f characterizes the dynamics of synaptic model governed by equations:

spike discontinuities : f → (1− µ)f + 1

neurotransmitters unbinding : τ
df

dt
= −f

• The nonlinear cross-intensity (nCI) inner product is defined as

Iσ(si, sj) =
∫
T
Kσ

(
λsi(t), λsj(t)

)
dt,

where Kσ is a symmetric positive definite kernel with parameter σ.

Motivation

In certain experimental paradigms, the dynamics of a neural system may not be fully
determined by external stimuli because the neural activity depends on internal states
from a wide range of possible causes. For example, bistable dynamics of a single
neuron has been observed in vitro via frozen noise injection [1], local field potentials
and EEG phase often correlates with response strength, and top-down control such as
attention are known to affect responses.

In other words, in these cases, it is nearly impossible to control or observe all the
internal variables. Still, we would like to infer these internal states by analyzing the
observation variability.

The solution we propose is to use unsupervised learning methods, such as PCA and
clustering [2, 3], to discover the internal states.
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Which measure should we use for unsupervised spike train learning?


