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CHAPTER 9 
A REPRODUCING KERNEL HILBERT SPACE FRAMEWORK FOR 

INFORMATION-THEORETIC LEARNING 
 
 

9.1. Introduction 
 

During the last decade, research on Mercer kernel-based learning algorithms 

has flourished [1], [2], [3]. These algorithms include for example the support vector 

machine (SVM) [4] [5], kernel principal component analysis (KPCA) [6] and kernel 

Fisher discriminant analysis (KFDA) [7]. The common property of these methods is 

that they operate linearly, as they are explicitly expressed in terms of inner-products 

in a transformed data space that is a reproducing kernel Hilbert space (RKHS). Most 

often they correspond to nonlinear operators in the data space, and they are still 

relatively easy to compute using the so-called “kernel-trick”. The kernel trick is no 

trick at all, it refers to a property of the RKHS that enables the computation of inner-

products in a potentially infinite-dimensional feature space, by a simple kernel 

evaluation in the input space. As we may expect, this is a computational saving step 

that is one of the big appeals of RKHS. At first glance one may even think that it 

defeats the “no free lunch theorem” (get something out of nothing), but the fact of the 

matter is that the price of RKHS is the need for regularization and in the memory 

requirements as they are memory intensive methods. Kernel-based methods 

(sometimes also called Mercer kernel methods) have been applied successfully in 

several applications, e.g. pattern and object recognition [8], time series prediction [9] 

and DNA and protein analysis [10], to name just a few. 

Kernel-based methods rely on the assumption that the projection to the high 

dimensional feature space simplifies data handling as suggested by Cover’s theorem, 

who showed that the probability of shattering data (i.e. separating it exactly by an 
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hyperplane) approaches one with a linear increase in space dimension [11].  In the 

case of the SVM, the assumption is that the data classes become linearly separable, 

and therefore a separating hyperplane is sufficient for perfect classification. In 

practice, one can not know for sure if this assumption holds. In fact, one has to hope 

that the user chooses a kernel (and its free parameter) that shatter the data, and since 

this is improbable, the need to include the slack variable arises. The innovation of 

SVMs is exactly on how to train the classifiers with the principle of structural risk 

minimization [5].  

ITL emerged independently of the research on Mercer kernel-based learning 

algorithms.  In information theoretic learning, the starting point is a data set that 

globally conveys information about a real-world event. The goal is to capture the 

information in the parameters of a learning machine, using some information theoretic 

performance criterion. As we have seen, information theoretic criteria are expressed 

as integrals over functions of probability densities. As a simplifying factor, ITL 

estimates the α-norm of the PDF directly from data, without an explicit PDF 

estimation. Moreover, information theoretic methods have the advantage over Mercer 

kernel-based methods that they are easier to interpret.  

In this chapter, we will define bottom-up an RKHS for information theoretic 

learning, named ITL RKHS, defined on the Hilbert space of square integrable PDFs. 

Then we will provide a geometric perspective of all the ITL quantities presented in 

the previous chapters. Moreover, we show equivalences between Renyi’s quadratic 

estimators of the statistical quantities and the Mercer kernel methods, which until now 

have been treated separately. Specifically, we show that Parzen window based 

estimators for Renyi’s quadratic information measures have a dual interpretation as 
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Mercer kernel-based measures, where they are expressed as functions of mean values 

in the Mercer kernel feature space. The Mercer kernel plays the same role as the 

Parzen window of density estimation and they are shown to be equivalent. This means 

that if the Parzen window size can be reliably determined, then the corresponding 

Mercer kernel size is simultaneously determined by the same procedure. 

Furthermore, we develop a classification rule based on the Euclidean distance 

between PDFs, and show that this corresponds to a linear classifier in the feature 

space. By regarding this classifier as a special case of the support vector machine, we 

provide an information theoretic interpretation of the SVM optimization criterion. 

This chapter is organized as follows. We start with the definition of the ITL RKHS 

and show the relation between the RKHS used in ITL and kernel methods.  Then an 

ITL perspective of kernel learning and distances is explained, and a new information 

theoretic classification rule is derived. Thereafter, we analyze the connection between 

this classifier and the SVM and other kernel methods.  

Finally, a connection between the ITL RKHS and kernel approaches interested 

in quantifying the statistics of the projected data is established. The ITL RKHS 

structure offers an elegant and insightful geometric perspective towards information-

theoretic learning and to the evaluation of statistics in kernel space.  

9.2. A RKHS Framework for ITL 

This section proposes a reproducing kernel Hilbert space (RKHS) framework 

for information-theoretic learning (ITL), not based on estimators but directly 

involving the PDFs. The issue of estimation from data samples is treated in Section 

9.4.  

The ITL RKHS is uniquely determined by the symmetric non-negative 
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definite kernel function defined as the cross information potential (CIP) in ITL. The 

cross information potential between two PDFs p(x) and q(x), defined in Chapter 2 as 

∫= dxxqxpqpV )()(),( , characterizes similarity between two stochastic functions. 

The information potential used so extensively in Chapters 3, 4, 5 and 6 as an entropic 

cost function (since it is the argument of the log of Renyi’s quadratic entropy) is a 

special case obtained when p(x)=q(x), i.e. a measure of self-similarity. CIP also 

appears both in the Euclidean and Cauchy-Schwarz divergence measures as well as in 

the QMICS and QMIED used in Chapters 6, 7 and 8 as a measure of dissimilarity in 

supervised and unsupervised learning.  

We prove the existence of a one-to-one congruence mapping between the ITL 

RKHS and the inner product space spanned by square integrable probability density 

functions. All the descriptors and cost functions in the original information-theoretic 

learning formulation can be re-written as algebraic computations on deterministic 

functionals in the ITL RKHS. We first focus on one-dimensional PDFs, and then 

consider the extension to multi-dimensions in Section 9.2.4. We form a 2L  space 

spanned by all one-dimensional PDFs, and define an inner product in 2L . Since the 

inner product is symmetric non-negative definite, it uniquely determines the 

reproducing kernel Hilbert space for ITL which will be denoted as VH . We then 

prove that the inner product itself is indeed a reproducing kernel in VH .  

The 2L  space of PDFs 

Let E be the set that consists of all square integrable one-dimensional 

probability density functions over the real numbers, i.e., Exfi ∈)( , i I∀ ∈ , where 



“A reproducing kernel Hilbert space framework for Information-Theoretic Learning,” chapter 9, 
Jose C. Principe, Jianwu Xu, Robert Jenssen, Antonio R. C. Paiva, Il Park 

In “Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives”, Jose C. Principe, 
Springer, 2010. ISBN: 978-1-4419-1569-6 

2( )if x dx < ∞∫  and I  is an index set. We then form a linear manifold ( )
⎭
⎬
⎫

⎩
⎨
⎧
∑
∈Ki

ii xfα  

for any IK ⊂  and i Rα ∈ . Close the set topologically according to the convergence in 

the mean using the norm  

 Ijidxxfxfxfxf jiji ∈∀−=− ∫ ,))()(()()( 2                 (9.1) 

and denote the set of all linear combinations of PDFs and its limit points by 2 ( )L E . 

2 ( )L E  is an 2L  space on PDFs. Moreover, by the theory of quadratically integrable 

functions, we know that the linear space 2 ( )L E  forms a Hilbert space if an inner 

product is imposed accordingly. Given any two PDFs ( )if x  and ( )jf x  in E , we can 

define an inner product as  

 Ijidxxfxfxfxf jiLji ∈∀=〉〈 ∫ ,)()()(),(
2

                        (9.2) 

Notice that this inner product is exactly the cross information potential defined in 

Section 2.7.3. This definition of inner product has Eq. (9.1) as the corresponding 

norm. Hence, 2 ( )L E  equipped with the inner product Eq. (9.2) is a Hilbert space. 

However, it is not a reproducing kernel Hilbert space because the inner product is not 

reproducing in 2 ( )L E , i.e., the evaluation of any element in 2 ( )L E  cannot be 

reproduced via the inner product between two functionals in 2 ( )L E . Next we show 

that the inner product of Eq. (9.2) is symmetric non-negative definite, and by the 

Moore-Aronszajn theorem it uniquely determines the RKHS HV.  

RKHS VH  Based on 2 ( )L E  

First, we define a bivariate function on the set E  as  

 Ijidxxfxfff jijiv ∈∀= ∫ ,)()(),(                       (9.3) 
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Even though v is defined on E its computation makes use of 2 ( )L E . However, by 

construction of 2 ( )L E  as the span of E, any inner product defined on 2 ( )L E  can be 

written as an inner product of elements of E. In reproducing kernel Hilbert space 

theory, the kernel function is a measure of similarity between functionals. Notice that 

Eq. (9.3) corresponds to the definition of the inner product in Eq. (9.2) and the cross 

information potential between two PDFs, hence it is natural and meaningful to define 

the kernel function as ),( ji ffv . Next, we show that Eq. (9.3) is symmetric non-

negative definite in E .  

Property 9.1 (Non-Negative Definiteness): The function in Eq. (9.3) is symmetric 

non-negative definite in REE →× .  

Proof: The symmetry is obvious. Given any positive integer N , any set of 

1 2{ ( ) ( ) ( )}Nf x f x … f x E, , ∈  and any not all zero real numbers 1 2{ }N…α α α, , , , by 

definition we have  

∑ ∑= =

N
i

N
j jiji ffv

1 1
),(αα =

1 1
( ) ( )N N

i j i ji j
f x f x dxα α

= =
∫∑ ∑      

= ( )( )1 1
( ) ( )N N

i i j ji j
f x f x dxα α

= =
∫ ∑ ∑ = ( )2

1
( ) 0N

i ii
f x dxα

=
≥ .∫ ∑        (9.4) 

Hence, ),( ji ffv is symmetric non-negative definite, and it is also a kernel function. 

According to the Moore-Aronszajn theorem [12], there is a unique reproducing kernel 

Hilbert space, denoted by VH , associated with the symmetric non-negative definite 

function in Eq. (9.3). We construct the RKHS VH  bottom-up. Since this bivariate 

function is symmetric and non-negative definite, it also has an eigen-decomposition 

by Mercer’s theorem [13] as  
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 )()(),(
1

jk
k

ikkji ffffv ψψλ∑
∞

=

=                  (9.5) 

where { ( ) 1 2 }k if k …ψ , = , ,  and { 1 2 }k k …λ , = , ,  are sequences of eigenfunctions and 

corresponding eigenvalues of the kernel function ),( ji ffv  respectively. The series 

above converges absolutely and uniformly on E  ×  E . Then we define a space VH  

consisting of all functionals ( )G ⋅  whose evaluation for any given PDF ( )if x E∈  is 

defined as  

 
1

( ) ( )i k k k i
k

G f a fλ ψ
∞

=

= ,∑        (9.6) 

where the sequence { ka , k  = 1, 2, …} satisfies the following condition  

 ∞<∑
∞

=1

2

k
kkaλ                 (9.7) 

Furthermore we define an inner product of two functionals in VH  as  

 ∑
∞

=

=〉〈
1

,
k

kkkH baFG
V

λ          (9.8) 

where G  and F  are of form Eq. (9.6), and ka  and kb  satisfy property Eq. (9.7).  

It can be verified that the space VH  equipped with the kernel function Eq. 

(9.3) is indeed a reproducing kernel Hilbert space and the kernel function ),( ⋅ifv  is a 

reproducing kernel because of the following two properties:  

1. ),( ji ffv  as a function of ( )if x  belongs to VH  for any given ( )jf x E∈  

because we can rewrite ),( ji ffv  as  

 )(,)())(,(
1

ikk
k

jkkkji fbfbffv ψψλ ==⋅ ∑
∞

=

 

That is, the constants { 1 2 }kb k …, = , ,  become the eigenfunctions 
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{ ( ) 1 2 }k if k …ψ , = , ,  in the definition of G . Therefore,  

ExfHf iViv ∈∀∈⋅ )(,),(              (9.9) 

2. Given any VG H∈ , the inner product between the reproducing kernel 

and G  yields the function itself by the definition Eq. (9.8)  

 ∑∑
∞

=

∞

=

===〉⋅〈
00

)()(),(,
k

iikkk
k

kkkHi fGfabafVG
V

ψλλ  

This is so called the reproducing property.  

Therefore, VH  is a reproducing kernel Hilbert space with the kernel function and 

inner product defined above. By the reproducing property, we can re-write the kernel 

function in Eq. (9.5) as  

,...2,1),(:),(),(),,(),( =⋅〉⋅⋅〈= kfffffff ikkiiHjiji vvvv
v

ψλa                  (9.10) 

The reproducing kernel nonlinearly maps the original PDF ( )if x  into the RKHS VH .  

We emphasize here that the reproducing kernel ),( ji ffv  is deterministic (due to the 

expected value in the inner product) and data-dependent in the sense that the mean of 

the norm of nonlinearly transformed vector in the RKHS VH  is dependent on the 

PDF of the original random variable because  

∫=〉⋅⋅〈=⋅ dxxffff iHiii v
vvv 22 )(),(),,(),(  (9.11) 

Congruence Map Between VH  and 2 ( )L E  

We have presented two Hilbert spaces, the Hilbert space 2 ( )L E  of PDFs and 

the reproducing kernel Hilbert space VH . Even though their elements are very 

different, there actually exists a one-to-one congruence mapping Ψ  (isometric 

isomorphism) from RKHS VH  onto 2 ( )L E  such that  
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ii ffv =⋅Ψ )),((                                       (9.13) 

Notice that the mapping Ψ  preserves isometry between VH  and 2 ( )L E  since by 

definitions of inner product Eq. (9.2) in 2 ( )L E  and Eq. (9.10) in VH  

 
22

)),(()),,(()()),(),(),,( LjiLjiHji ffxfxfff vvvv
v

〉⋅Ψ⋅Ψ〈=〉〈=〉⋅⋅〈   

that is, the mappingΨ maintains the inner products in both VH  and 2 ( )L E . In order 

to obtain an explicit representation of Ψ , we define an orthogonal function sequence 

{ ( ) 1 2 }m x m …ξ , = , ,  over the real numbers satisfying  

0
( ) ( )k m

k

k m
x x dx

k m
ξ ξ

λ
, ≠⎧

= ⎨ , =⎩
∫        and          

1
( ) ( ) 1k i k

k
f x dxψ ξ

∞

=

= ,∫∑            (9.14) 

where { }kλ  and { ( )}k ifψ  are the eigenvalues and eigenfunctions evaluated at fi, 

associated with the kernel function ),( ji ffv  by Mercer’s theorem Eq. (9.5). We 

achieve an orthogonal decomposition of the probability density function as  

1
( ) ( ) ( )k k

k
f x f x f Eψ ξ

∞

=

= , ∀ ∈ .∑                              (9.15) 

The integration to unit of f is guaranteed by Eq. (9.14) (right). Note that the 

congruence map Ψ  can be characterized as the unique mapping from VH  into 2 ( )L E  

satisfying the condition that for every functional G  in VH  and every j  in I   

)(),(,)()( jHjj fGfGdxxfG
v

v =〉⋅〈=Ψ∫                      (9.16) 

It is obvious that Ψ  in Eq. (9.13) fulfills the condition Eq. (9.16). Then the 

congruence map can be represented explicitly as  

1
( ) ( )k k V

k
G a x G Hξ

∞

=

Ψ = , ∀ ∈ ,∑                        (9.17) 

where ka  satisfies condition Eq. (9.7). To prove the representation Eq. (9.17) is a 

valid and unique map, substituting Eq. (9.15) and Eq. (9.17) into Eq. (9.16), we obtain  
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1 1
( ) ( ) ( )k k m j mk m

a x f x dxξ ψ ξ∞ ∞

= =
∫∑ ∑ =

1 1
( ) ( ) ( )k m j k mk m

a f x x dxψ ξ ξ∞ ∞

= =
∫∑ ∑  

 =
1

( ) ( )k k k j jk
a f G fλ ψ∞

=
= .∑               (9.18) 

In summary, we provide an explicit representation for the congruence map Ψ  

from RKHS VH  into 2 ( )L E . These two spaces are equivalent in this geometrical 

sense. However it should be emphasized that the constituting elements are very 

different in nature. When using samples (realizations), the RKHS isometry framework 

offers a natural link between stochastic and deterministic functional analysis. Hence, 

it is more appealing to use RKHS VH  for information-theoretic learning as we will 

show in the next section.  

Extension to Multi-Dimensional PDFs 

Extension of VH  to multi-dimensional PDFs is straightforward since the 

definitions and derivations in the previous section can be easily adapted into multi-

dimensional probability density functions. Now let mE  be the set that consists of all 

square integrable m -dimensional probability density functions, i.e., 

1( )i m m mf x … x E, , , ∈ , i I∀ ∈  and m N∈ , where 2
1 1( )i m m mf x … x dx … dx, , , , , < ∞∫  and I  

is the index set. We need to change the definition of kernel function Eq. (9.3) to  

Ijidxdxxxfxxfff mmmjmmimjmiv ∈∀= ∫ ,....),...,(),...,(),( 11,1,,,   (9.19) 

Then every definition and derivation might as well be modified accordingly in the 

previous section. Let H ( )V m  denote the reproducing kernel Hilbert space determined 

by the kernel function for m -dimensional PDFs. The proposed RKHS framework is 

consistent with dimensionality of PDFs.  

The CIP based on the multi-dimensional PDFs characterizes the information 
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among different random variables whose domains might not necessary be the same in 

the whole space. In particular, the two-dimensional PDF CIP can be used to quantify 

the divergence or the cross-covariance between two random variables, because the 

joint PDF can be factorized into a product of two marginal PDFs as a special 

independent case. This is exactly what the definitions of QMIED and QMICS in 

Chapter 2 are based on. We will use the two-dimensional PDF CIP to re-formulate 

these two quantities in the following section.  

9.3. ITL Cost Functions in the RKHS Framework 

In this section, we re-examine the ITL cost functions introduced in Chapter 2 

in the proposed RKHS framework. First, as the kernel function ),( ji ffv  in VH  is 

defined as the cross information potential between two PDFs, immediately we have  

 
vHqpdxxqxp vv 〉⋅⋅〈=∫ ),(),,()()(                        (9.20) 

That is, the cross information potential is the inner product between two transformed 

functionals in the RKHS VH . The inner product quantifies similarity between two 

functionals which is consistent with the definition of cross information potential. The 

information potential can thus be specified as the inner product of the functional with 

respect to itself  

22 ),(),(),,()(
vv HH pppdxxp vvv ⋅=〉⋅⋅〈=∫  (9.21) 

The information potential appears as the norm square of nonlinearly 

transformed functional in the RKHS VH . Therefore, minimizing error entropy in ITL 

turns out to be maximization of norm square in the RKHS VH (due to the minus sign 

in the Renyi’s quadratic entropy definition).  

More interestingly, the result in Eq. (9.21) presents a new interpretation of 
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Renyi’s quadratic entropy. Since Renyi’s quadratic entropy is the negative of the 

logarithm of the information potential, we obtain  

2
2 ),(log)(

VHpXH v ⋅−=          (9.22) 

This means that there is an information theoretic interpretation for the log of 

the mean square of the transformed functional in HV.  

Based on the reformulations of cross information potential Eq. (9.18) and 

information potential Eq. (9.19) in RKHS VH , we are ready to re-write the one-

dimensional Euclidean  and Cauchy-Schwarz distance measures in terms of 

operations on functionals in VH . First,  

2),(),(),(
VHED qpqpD vv ⋅−⋅=                      (9.23) 

that is, the Euclidean distance measure is in fact the norm square of the difference 

between two corresponding functionals in VH . The Cauchy-Schwarz divergence 

measure can be presented as  

)log(cos
),(),(

),(),,(
log),( θ−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅⋅

〉⋅⋅〈
−=

vv

v

HH

H
CS

qp

qp
qpD vv

vv
                     (9.24) 

where θ  is the angle (in VH ) between two functional vectors ),( ⋅pv  and ),( ⋅qv . 

Therefore, the argument of the log of the Cauchy-Schwarz divergence measure truly 

depicts the separation of two functional vectors in the RKHS HV. When two vectors 

lie in the same direction the angle 0θ = o and 0),( =qpDCS . If two vectors are 

perpendicular to each other ( 90θ = o ), ∞=),( qpDCS . The RKHS VH  supplies rich 

geometric insights into the original definitions of the two divergence measures. Now 

we see that the geometric interpretation presented in Chapter 2, Section 2.7.4 is in fact 

accurate in HV.  
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To extend the same formulation to the Euclidean and Cauchy-Schwarz 

quadratic mutual information defined in Section 2.7.3, consider the product of 

marginal PDFs 1 1 2 2( ) ( )f x f x  as a special subset 2A  of the 2-dimensional square 

integrable PDFs set 2E  where the joint PDF can be factorized into product of 

marignals, i.e., 2 2A E⊆ . Then both measures characterize different geometric 

information between the joint PDF and the factorized marginal PDFs. The Euclidean 

quadratic mutual information (QMIED) can be expressed as  

2
212,121 ),(),(),(

VHED fffXXI vv ⋅−⋅=                       (9.25) 

where ),( 2,1 ⋅fv  is the functional in (2)VH  corresponding to the joint PDF 1 2 1 2( )f x x, , , 

and ),( 21 ⋅ffv  is for the product of the marginal PDFs 1 1 2 2( ) ( )f x f x . Similarly, the 

Cauchy-Schwarz quadratic mutual information (QMICS) can be re-written as  

)log(cos
),(),(

),(),,(
log),(

212,1

212,1
21 γ−=

⋅⋅

〉⋅⋅〈
−=

VV

V

HH

H
CS

fff

fff
XXI

vv
vv

       (9.26) 

The angle γ , measured between f1,2 and f1f2 is the separation between two functional 

vectors in (2)VH . When two random variables are independent 

( 1 2 1 2 1 1 2 2( ) ( ) ( )f x x f x f x, , = , 0γ = o  and the divergence measure 1 2( ) 0CSI f f, =  since 

two sets are equal. If 90γ = o , two vectors in (2)VH  are orthogonal and the joint PDF 

is singular to the product of marginals. In this case, the divergence measure is infinity.  

 The proposed RKHS framework provides an elegant and insightful geometric 

perspective towards information-theoretic learning. All the ITL descriptors can now 

be re-expressed in terms of algebraic operations on functionals in RKHS VH .  

We can also provide a more mathematical understanding for the ITL operators 
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and their properties. Let us start with the Cross Information Potential. From a 

statistical point of view, this quantity is a composite moment (expected value over 

p(x) of another function q(x)) of the r.v. x. In Chapter 7 we showed that it is a pseudo-

distance that was useful because it was easier to estimate than KL, Renyi’s, MI and 

other distance measures in probability spaces. Now we clearly see that it is the natural 

metric in Hv, because it defines the inner product in ITL RKHS. In the same RKHS 

we can define obviously other distances, such as DED, DCS and QMIED and QMICS that 

are all dependent on the CIP. But now this picture becomes quite clear.  

Another example is the evaluation of the statistical properties of IP. For 

instance, in Chapter 2 we say that the IP estimator contains higher order statistical 

information of the input data. This has been recognized in ITL by applying the Taylor 

expansion to the Gaussian kernel used in the estimate of the information potential 

definition,  
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But notice that this result depends on the kernel utilized (the Gaussian kernel only 

provides sums of even order moments, a polynomial kernel will create a finite sum of 

moments, etc). From Eq. (9.21) it is clear that the norm maximization in ITL RKHS 

will include the PDF information, therefore now we have a clean statement that 

derives from the use of the first order moment of the PDF in VH .  

9.4. ITL Estimators in RKHS 

In this section, we will reinterpret the estimators of the information theoretic 

quantities of information potential and Euclidean and Cauchy Schwarz distance in 

kernel spaces.  
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Let H  be a Hilbert space of real-valued functions defined on the real numbers 

R, equipped with an inner product ⋅〉〈⋅,  and a real-valued non-negative definite 

function ),( yxκ on RxR. According to the Moore Aronszajn theorem, ),( yxκ  is a 

reproducing kernel, which means that each point in the input space R is mapped to a 

function in the RKHS defined by the selected kernel kHx ∈⋅ ),(κ  (since the kernel is 

so important in the definition we use it as a subscript for H). We can define the 

nonlinear mapping between R and Hk as ),()( xx ⋅=Φ κ , and obtain the reproducing 

property 

),()(.,),(.,)(),( yxyxyx H κκκ ==ΦΦ        (9.28) 

Therefore, )(.,)( xx κ=Φ defines the Hilbert space associated with the kernel. For our 

purposes we will be using here the Gaussian kernel )(),( yxGyx −= σκ , which is a 

non negative definite function, but many others can also be used. A Gaussian kernel 

corresponds to an infinite-dimensional Mercer kernel feature space, since the 

Gaussian has an infinite number of eigenfunctions. 

This is very different from the reproducing kernel ),( ji ffv which has a norm 

dependent upon the PDF of the data as shown in Eq. (9.11).  The norm of nonlinearly 

projected vector in the RKHS Hκ  does not rely on the statistical information of the 

original data since  

)0()(),()( 2 κ=〉ΦΦ〈=Φ
kHxxx                      (9.29) 

if we use translation-invariant kernel functions. Moreover, if x  is a random variable, 

( )xΦ  is a function operating on random variable in the RKHS Hκ . The value of 

(0)κ  is a constant regardless of the original data. Consequently, the reproducing 

kernel Hilbert spaces VH  and Hκ  determined by ),( ji ffv  and ( )x yκ ,  respectively 
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are very different in nature, however, there are very interesting links among them as 

we will see below.   

Estimator of the Information Potential 

Recall the definition of the information potential estimator in Chapter 2, which 

is presented below for convenience.  
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Recall from Chapter 2 that this expression is obtained by integrating a product of two 

Gaussian functions centered at each sample over the domain which can be written as 

an inner product as follows 

kHjijiji xxxxxxG 〉ΦΦ〈==− )(),(),()(2 κσ              (9.30) 

Hence, the Parzen window-based estimator for the information potential can be 

expressed in terms of an inner product in the Mercer kernel space. We can further 

operate to obtain  
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     (9.31) 

where N samples are assumed available from the data. That is, it turns out that the 

information potential may be expressed as the squared norm of the mean vector of the 

data in a Mercer kernel feature space. This connection was previously pointed out in 

[14] in a study relating orthogonal series density estimation to kernel principal 

component analysis. Therefore the magic that may still have existed in why we could 

estimate an entropy without explicit PDF estimation becomes clear now. The 

argument of the log is a central moment of the projected data, therefore it is likely to 
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find good estimators that do not require PDF estimation. As we mentioned in Chapter 

2, estimating the mean and variance from data does not require PDf estimation, and 

the same applies to Renyi’s quadratic entropy.  

Estimators of Quadratic Distances 

In Chapter 2 we defined two distances measures using the information 

potential DED and DCS and their corresponding estimators based on kernels. Let us 

assume that the goal is to estimate the distance between two PDFs p(x) and q(x) from 

which we have respectively N1 and N2 samples. Again for convenience we copy 

below the estimator for DED.  
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Note that we have for simplicity assumed that the same kernel size σ is appropriate 

for both estimators. This may not be the case in practice, but it can be incorporated in 

the subsequent analysis. In analogy to Eq. (9.32), DED may also be expressed in terms 

of mean vectors in the Mercer kernel feature space Hκ to obtain 
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1 2),(ˆ mmmmmm −=+−= T

ED qpD             (9.33) 

where m1 is the kernel feature space mean vector of the data points drawn from p(x), 

and m2 is the kernel feature space mean vector of the data points drawn from q(x). 

Hence, DED can also be seen to have a geometric interpretation in Hk. It measures the 

square of the norm of the difference vector between the two means m1 and m2. In a 

similar fashion we can obtain the estimator for the Cauchy Schwarz divergence as  
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CS qpD      (9.34) 

Remember that the information cut explained in Chapter 6 was defined as the 

argument of the log of DCS, therefore it has a dual interpretation as a measure of the 
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cosine of the angle between cluster mean vectors in the Mercer kernel feature space 

Hk. This metric is very natural in kernel machines because the nonlinear 

transformation induced by a symmetric reproducing kernel maps the input samples 

over a sphere in the feature space, since for any x, ||Φ(x)||2=κ(0)= 1/( πσ2 ). 

Therefore, the distance between Φ(xi) and Φ(xj) on that sphere (i.e., the geodesic 

distance) is proportional to the angle between the vectors from the origin to those 

points 
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In other words, the kernel function is in fact computing the cosine of the angle  

between two points over the sphere (i.e., a distance). In addition, we notice from the 

previous discussion that the transformed data Φ(xi) must lie on some embedded 

manifold over the positive hyperoctant on the sphere (since the kernel takes only 

positive values, the angle belongs to the interval [0, π/2]).  

The relationship between the two RKHS Hv and Hk can then be readily 

perceived thru the ITL descriptors of IP, DED and DCS and their estimators. In fact, by 

comparing Eq. (9.22) with (9.31) (and Eq. (9.23) with (9.33) as well as Eq. (9.24) 

with (9.34)) we see that these statistical quantities in VH can be estimated by the mean 

operator of the projected functionals in Hκ , which effectively were derived with the 

Parzen’s non-parametric asymptotically unbiased and consistent PDF estimator 

employed in the ITL cost functions. Provided one chooses a non-negative definite 

kernel function as the Parzen window, the statistical quantities in RKHS VH  are 

related to the estimators in Hκ  as illustrated in Fig. 9-1.  
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In more general terms, the reproducing kernel Hilbert spaces Hκ  and  VH  are 

formally related via the expectation operator, which means that the feature map 

),( ⋅ifv  is a transformation of the PDF space into a deterministic RKHS VH , while the 

feature map ( )xΦ  nonlinearly projects the sample space into a stochastic RKHS Hκ . 

The feature map ),( ⋅ifv  is a descriptor of the stochasticity of the sample space, and 

immediate algebraic operation can be applied to compute statistics in VH . This means 

that IP, CIP and all the distances are deterministic scalars that quantify PDF 

properties. Hence, the proposed ITL RKHS framework provides a function analysis 

view of statistics, and it seems the natural RKHS to perform statistical inference. Of 

course, the issue is that if one does not have an analytical description of the data PDF 

one can not progress further. This is where Hκ  becomes useful since one can build 

there the estimators for the above mentioned statistical quantities. But this clearly 

shows that statistical estimators in Hκ operate with the full PDF information.  

 

Figure 9-1. The relationship between VH  and Hκ . 

Parzen was the first to introduce the RKHS methodology in statistical signal 

processing and time series analysis in the late 1950s. The essential idea is that there 



“A reproducing kernel Hilbert space framework for Information-Theoretic Learning,” chapter 9, 
Jose C. Principe, Jianwu Xu, Robert Jenssen, Antonio R. C. Paiva, Il Park 

In “Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives”, Jose C. Principe, 
Springer, 2010. ISBN: 978-1-4419-1569-6 

exists a congruence map between the RKHS of random variables spanned by the 

random process and its covariance function R(t, s) = E[X(t) X(s)] which determines a 

unique RKHS, denoted as HR. Note that the kernel includes the second order statistics 

of the data through the expected value (a data dependent kernel as ),( ji ffv ) and 

Parzen clearly illustrated that the RKHS offers an elegant functional analysis 

framework for minimum variance unbiased estimation of regression coefficients, 

least-squares estimation of random variables, detection of signals in Gaussian noise, 

and others [15], [16], [17]. In the early 1970s, Kailath and coworkers presented a 

series of detailed papers on the RKHS approach to detection and estimation problems 

to demonstrate its superiority in computing likelihood ratios, testing for 

nonsingularity, bounding signal detectability, and determining detection stability [18], 

[19], [20], [21], [22]. RKHS concepts have also been extensively applied to a wide 

variety of problems in optimal approximation including interpolation and smoothing 

by spline functions in one or more dimensions (curve and surface fitting) [23]. De 

Figueiredo took a different approach to apply RKHS in nonlinear system and signal 

analysis [24]. He built the RKHS bottom-up using arbitrarily weighted Fock spaces 

that played an important role in quantum mechanics [25]. The spaces are composed of 

polynomials or power series in either scalar or multi-dimensional variables. The 

generalized Fock spaces have been also applied to nonlinear system approximation, 

semiconductor device characteristics modeling and neural networks [25]. 

The conventional mean square error has also been re-written as norm square of 

projected vectors in the RKHS RH  induced by the covariance function [15]. But RH  

only takes the second-order statistics into account, while the RKHS VH  is defined 

over PDFs and the RKHS Hκ , depending upon the kernel utilized, will also implicitly 
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embed all the statistical information of the data.  Moreover, notice that VH although 

linearly related to the PDF space, it is nonlinearly related to the data space, unlike 

RH which is linearly related to the data space. This implies that, with appropriate 

kernels, Hκ can be used to estimate second and higher order statistical of the data.  In 

general, mean and covariance operators are necessary to perform statistics in Hκ as 

we will discuss next, but our work shows that the inclusion of the expected value 

operator in the kernel itself simplifies the analysis when the goal is statistical 

inference.  

9.5. Connection Between ITL and Kernel Methods via RKHS VH  

In this section, we connect ITL and kernel methods via the proposed RKHS 

framework. As we have mentioned in the previous section, because the RKHS Hκ  is 

induced by the data-independent kernel function, the nonlinearly projected data in Hκ  

is still stochastic and statistical inference is required in order to compute quantities of 

interest. For instance, in order to compute the statistics over the functionals, the 

expectation and covariance operators are required. The expected value of functionals 

in the RKHS Hκ  is defined as [ ( )]E xΦ . The cross-covariance is defined as a unique 

operator ΣXY  such that for any functionals f  and g  in Hκ   

)](),([)]([)]([)]()([, ygxfCovxfEygExfygEfg
XY H k

=−=〉〈 ∑    (9.35) 

The mean and cross-covariance operators as statistics of functionals in Hκ  become 

intermediate steps to compute other quantities such as the maximum mean 

discrepancy (MMD) [26], kernel independent component analysis (Kernel ICA) [27] 

and others. But the interesting question is to find out the relationships with both the 
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ITL RKHS VH  and the ITL estimators of Eq. (9.31), (9.33) and (9.34). We show here 

that MMD is equivalent to the Euclidean divergence measure, and that Kernel ICA is 

equivalent to the Cauchy-Schwarz quadratic mutual information. The statistical 

computations in the RKHS Hκ  have corresponding algebraic expressions in the 

RKHS VH .  

An ITL Perspective of Maximum Mean Discrepancy 

The maximum mean discrepancy (MMD) [26] is a statistical test based on 

kernel methods to determine whether two samples are from different distributions. 

Since first order moment of the PDF describes Renyi’s quadratic entropy, 

theoretically, if the expected value of a PDF ( )p x  for an arbitrary measurable 

function is the same for both random variables, the two distributions are identical. 

Since it is not practical to work with such a rich function class, MMD restricts the 

function class to a unit ball in a reproducing kernel Hilbert space Hκ  that is 

associated with the kernel ( )κ ⋅,⋅ . This leads to the following quantity,  

 )])([)]([(sup),(
1

ypExpEYXM
kHp

−=
≤

       (9.36) 

where X and Y are the underling random variables of the two distributions, p  is a 

family of measurable functionals in the unit ball of the RKHS Hκ . The kernel trick 

can be employed here to compute MMD, that is,  

 
kk HH pxpxxp 〉⋅〈=〉Φ〈= ),,(),()( κ         (9.37) 

Substituting Eq. (9.37) into the definition of MMD Eq. (9.36), we obtain  

 
κHYX mmYXM −=),(           (9.38) 

where [ ( )]m E x= ΦX  and [ ( )]m E y= ΦY  are the statistical expectations of the 
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functionals  ( )xΦ  and ( )yΦ  in the RKHS Hκ . Applying 1
1

( )N
iN i

m x
=

= Φ∑X , an 

empirical estimate of MMD can be obtained as  
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where 1{ }N
i ix =  and 1{ }L

j jy =  are two sets of data samples. The estimate of MMD 

provides a statistical test to determine whether two sets of data samples are from the 

same distribution. Comparing with Eq. (9.35) it is easy to show that MMD is 

equivalent to the Euclidean divergence measure. i.e.  2[ ( )] ( )EDM D f g, = ,X Y . 

Moreover, since the Euclidean divergence measure can be re-written as the norm 

square difference between two functionals in the RKHS VH , we obtain  

κκ HHYX gfmm vv 22 ),(),( ⋅−⋅=−            (9.40) 

The left hand side is the norm square of difference between two functional 

expectations in the RKHS Hκ . Since the functional ( )xΦ  is still stochastic in Hκ , the 

expectation operation is necessary to carry out the computation. On the other hand, 

the right hand size is the norm square of difference between two functionals in the 

RKHS VH . Because the functional ),( ⋅fv  is deterministic, the computation is 

algebraic. The feature map ),( ⋅fv  for the RKHS VH  is equivalent to the expectation 

of the feature map ( )xΦ  for the RKHS Hκ (see Figure 9-1). Therefore, the proposed 

RKHS framework provides a natural link between stochastic and deterministic 

functional analysis. The MMD in kernel methods is essentially equivalent to the 

Euclidean divergence measure in Information-Theoretic Learning.  
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An ITL Perspective of Kernel ICA 

Kernel ICA is a novel independent component analysis method based on a 

kernel measure of independence [27]. It assumes an RKHS Hκ  determined by the 

kernel ( )x yκ ,  and feature map ( )xΦ . The feature map ( )xΦ  can be derived from the 

eigen-decomposition of the kernel function ( )x yκ ,  according to Mercer’s theorem, 

and forms an orthogonal basis for the RKHS Hκ . Then the F -correlation function is 

defined as the maximal correlation between the two random variables 1 1( )f x  and 

2 2( )f x , where 1f  and 2f  range over Hκ :  

))(var())(var(
))(),((max))(),((max

2211

2211

,
2211

, 2121 xfxf
xfxfcorrxfxfcorr

ffff
==ρ         (9.41) 

 

Obviously, if the random variables 1x  and 2x  are independent, then the F -correlation 

is zero. And the converse is also true provided that the RKHS Hκ  is large enough. 

This means that 0ρ =  implies 1x  and 2x  are independent. In order to obtain a 

computationally tractable implementation of F -correlation, the reproducing property 

of RKHS is used to estimate the F -correlation. The nonlinear functionals 1f  and 2f  

can be represented by the linear combination of the basis 1{ ( )}i N
ix =Φ  in which 1{ }i N

ix =  

is an empirical observation of the random variable x with N samples. That is,  
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Substituting Eq. (9.42) and Eq. (9.37) into Eq. (9.41) and using the empirical data to 

approximate the population value, the F -correlation can be estimated as  
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where 1K  and 2K  are the Gram matrices associated with the data sets 1 1{ }i N
ix =  and 

2 1{ }i N
ix =  defined as [ ] ( )a b

i a b i iK x xκ, = , .  

Because the cost function in Eq. (9.43) is not a numerically stable estimator in 

general, a regularization is needed by penalizing the RKHS norms of 1f  and 2f  in the 

denominator of Eq. (9.43). The regularized estimator has the same independence 

characterization property of the F -correlation, since it is the numerator, 2211 αα KKT , 

that characterizes the independence property of two random variables.  

We prove here the equivalence between the cost function used in Kernel ICA 

Eq. (9.43) and the Cauchy-Schwarz quadratic mutual information Eq. (9.34). To 

prove the equivalence, we use the weighted Parzen window which is defined as  
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where A  is a normalization term such that the integral of ˆ ( )f x  equals to 1.  

When the Cauchy-Schwarz quadratic mutual information is used as a contrast 

function in ICA, it should be minimized so that the mutual information between 

random variables is also minimized. As the logarithm is a monotonic function, 

minimizing the Cauchy-Schwarz quadratic mutual information is equivalent to 

maximizing its argument. Therefore, by approximating the population expectation 

with sample mean for the argument in Eq. (9.34) and estimating the joint and 

marginal PDFs with weighed Parzen window Eq. (9.44), we obtain  
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where 1 [1 1 1]…= , , , ,  [ ] ( )a b
i a b i iK x xκ, = , , and ijiN

j
jiiN

i
xxxxL 2221 1111
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Comparing the two expressions Eq. (9.43) and (9.45), we notice that they have the 

same numerators but different normalizations. As we already pointed out, it is the 

numerators in the Kernel ICA and the Cauchy-Schwarz quadratic mutual information 

that characterize the dependence measure of two random variables. The denominators 

only provide normalization. Hence we conclude that the Cauchy-Schwarz quadratic 

mutual information, estimated via weighed Parzen window, is equivalent to Kernel 

ICA. Moreover, the coordinates of the nonlinear functionals 1f  and 2f  in the RKHS 

Hκ  Eq. (9.42) have corresponding terms in the weighted Parzen window Eq. (9.44).  

In summary, the feature map ( )xΦ  works with individual data samples and 

transforms each data into the RKHS Hκ  induced by the kernel ( )κ ⋅,⋅ . For 

applications involving statistical inference on the transformed data, extra operators 

such as the mean and covariance are required. On the other hand, the feature map 

),( ⋅fv  deals with PDF directly and transforms each PDF into the RKHS VH  

determined by the kernel ),( ⋅⋅v . If the applications are based on the statistics of the 

transformed functionals, only algebraic computation is needed without defining any 

extra operators as required in RKHS Hκ . Therefore the proposed RKHS framework 

provides a direct and elegant treatment of statistical inference using RKHS technique. 

Certainly, the RKHS Hκ  is more flexible in other applications beyond statistical 

inference since it is based on the available data samples. The RKHS VH  is built 

directly upon PDFs, and requires Parzen windows to carry out the evaluation of the 

overall cost functions as we saw in ITL.  

9.6. An ITL Perspective of MAP and SVM Classifiers 
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From the previous sections, we obtained a very clear view of the statistical 

power of mappings onto Hκ . The square of the projected data vector mean is in fact 

an estimator of the 2-norm of the PDF of the data as we saw in Chapter 2 when we 

interpreted quadratic Renyi’s entropy. Therefore, a classification rule similar to LDA 

can be easily implemented with the projected class means without making any 

Gaussian assumption and benefiting from the high dimensionality of the feature space 

that provides good performance even for linear classifiers.   

9.6.1. Euclidean Distances in Hκ  and MAP Classifiers 

The classification rule is based on DED, which we will analyze theoretically 

both in the input space and in the Mercer kernel space Hκ . An interesting property of 

this new classifier is that it contains the MAP classifier as a special case. We have 

available the training data points {xi}; i =1,…,N1, drawn from p(x), and a 

corresponding sample from q(x), that is, {xj}; j = 1, …, N2. The label information is 

used to create these two classes. Based on this training data set we wish to construct a 

classifier, which assigns a test data point x0 to one of the classes c1 or c2. Now, we 

define 
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Hence, )(ˆ xp′  is the Parzen estimator for p(x), assuming x0 is included in the c1 data 

class. Likewise, )(ˆ xq′  is the Parzen estimator for q(x), assuming x0 is included in the 

c2 data set. The proposed  DED based strategy is to classify x0 according to the 

following rule: 

( ) ( ) dxxqxpdxxqxpcx
22

10 )(ˆ)(ˆ)(ˆ)(ˆ: ∫∫ ′−≥−′∈             (9.47)  

otherwise, assign x0 to c2. In words, the rule assign x0 to the class which, when having 
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x0 appended to it, makes the estimated distance between the classes the greatest. We 

will now analyze this simple classification rule in terms of the Mercer kernel feature 

space Hκ. Let 2,1, =′ imi  be the Mercer kernel feature space mean vector of class ci, 

assuming Φ(x0) is assigned to that class. It is easily shown that 
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In the kernel feature space, the equivalent classification rule of Eq. (9.47) may be 

expressed as 

2
21

2
2110 : mmmmcx ′−≥−′∈               (9.49)  

Assume that P(c1) = P(c2), that is the prior probabilities for the classes are equal. Let 

P(c1) = N1/N and P(c2) = N2/N , which means that we assume that N1 = N2. In that 

case, we have 
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                (9.50)  

where β1 = N1/(N1+1) = N2/(N2+1), and β2 = 1/(N1+1) = 1/(N2+1). For ease of 

notation, let Φ(x0) = y. The left-hand side of Eq.(9.49), becomes 
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Similarly, the right-hand side of Eq.(9.46) becomes 
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Using these results, the classification rule becomes 
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where )(2/1 2
1

2
2 mmb −= , and the constant 1

)1(
1

12

2
1 −=

+
−

ββ
β  . The above 

classification rule has a simple geometrical interpretation. The point y is assigned to 

the class whose mean it is closest, and the class boundary in kernel feature space is a 

hyperplane given by a vector w. Let w = m1 − m2, and let the midpoint between m1 

and m2 be given by v = 1/2 (m1 +m2). Now the class of y is determined by examining 

whether the vector (y −v) encloses an angle smaller than π/2 with the vector w or not. 

If it does, y is closest to m1, and y is assigned to c1. 

 

Figure 9-2: ISE-based geometric classification rule: Assign the point y to the class whose 
mean it is closest to. This can be done by looking at the inner-product between (y − v) and w. 

It changes sign as the enclosed angle passes through π/2 . The corresponding decision 
boundary is given by a hyperplane orthogonal to w (dashed line). From [39]. 
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0

0

0)(:

21

10

≥+−⇔

≥+

≥−∈

bymym

byw

vywcx

TT

T

T

           (9.52)  
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Figure 9-2 geometrically illustrates this simple classification rule, which we have 

derived using the DED criterion as a starting point. As explained above, in the Mercer 

kernel space, the value of the inner-product between the class mean values and the 

new data point determines which class it is assigned to. The threshold value b, 

depends on the squared Euclidean norms of the mean values, which are equivalent to 

the class information potentials, and hence the class entropies. We now complete the 

circle, and analyze the Mercer kernel feature space classification rule in terms of 

Parzen estimators in the input space. Note that 

 ∑∑
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Likewise 
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The classification rule hence becomes 

0)(ˆ)(ˆ: 0010 ≥+−∈ bxqxpcx                 (9.55) 

We remark that this classification rule depends both on the estimated densities 

at x0, and on the information potentials of the two classes. We have already shown 

that these information potentials are equivalent to Renyi's quadratic entropies for the 

classes. In the case that the classes have the same value for the information potential 

(entropy), which means that the kernel feature space mean values have equal length 

from the origin, we have b = 0, and the current classification rule reduces to the well-

known MAP classification rule (for equal priors), where the class probability densities 

are estimated using Parzen windowing. The same direct connection can not be 

obtained based on the Cauchy-Schwarz divergence.  

The Support Vector Machine 
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The support vector machine is the most prominent Mercer kernel-based 

learning algorithm. It is a hyperplane classifier which is based on two crucial 

properties: 1) the kernel property (kernel trick), which allows for a relatively efficient 

computation of the SVM algorithm even in infinite dimensional spaces. 2) the 

maximization of the hyperplane margin, which is a regularizing condition on the 

hyperplane solution. Basically, it limits the admissible separating hyperplanes to the 

one maximizing the margin. This regularization has a positive effect on the 

generalization capability of the classifier [5]. 

In the following, we give a brief review of the SVM theory. We formulate the 

problem directly in the Mercer kernel feature space. This Mercer kernel feature space 

is induced by some kernel function, which hopefully makes the feature space data 

linearly separable such that it can be separated by a hyperplane. Whether or not the 

data in fact is linearly separable, heavily depends on the user choosing a proper 

kernel. 

Let c1 and c2 denote two data classes. We are given a training set consisting of 

{xi}; i = 1,….,N1, from c1, and {xj}; j = 1,….,N2, from c2. The task is to train a SVM 

classifier, such that it creates a maximum margin linear classifier in the kernel feature 

space. After training, the classification rule in feature space is 

0*)(*: 010 ≥+Φ∈ bxwcx T           (9.56) 

otherwise, 20 cx ∈ , where, x0 is a new, previously unseen data point. Presumably, it 

has either been generated by the process generating the c1 data, or the process 

generating the c2 data. Regularization by maximizing the margin in feature space 

corresponds to minimizing the squared norm of the (canonical) separating hyperplane 

weight vector, that is ||w*||2, given the constraints 
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This is a constrained optimization problem, which is dealt with by introducing 

Lagrange multipliers 0,0 ≥≥ ji αα , corresponding to the two classes, and a primal 

Lagrangian 
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The Lagrangian LP has to be minimized with respect to the primal variables w* and 

b*, and maximized with respect to the dual variables αi and αj. Hence, a saddle point 

must be found. At the saddle point, the derivatives of LP with respect to the primal 

variables must vanish, 
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which leads to 
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By substituting these constraints into Eq. (8.58), the dual Lagrangian 
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is obtained, where κ(.,.) denotes an inner product between any two training data points 

in the Mercer kernel feature space Hκ . LD must be maximized with respect to the 

Lagrange multipliers. It can be seen that the solution vector w* has an expansion in 



“A reproducing kernel Hilbert space framework for Information-Theoretic Learning,” chapter 9, 
Jose C. Principe, Jianwu Xu, Robert Jenssen, Antonio R. C. Paiva, Il Park 

In “Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives”, Jose C. Principe, 
Springer, 2010. ISBN: 978-1-4419-1569-6 

terms of the training patterns weighted by the Lagrange multipliers. The Karush-

Kuhn-Tucker (KKT) conditions 

[ ]
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specify the non-zero Lagrange multipliers to be those training patterns which are 

situated on the margin in feature space. Hence, w* is a weighted combination of the 

patterns on the margin. Let us determine the expression for b* in the SVM theory. For 

those b* corresponding to support vectors belonging to c1, we have 

)(*1*
1 i

T xwb Φ−= , where Φ(xi) is a support vector. By adding all b1* values 

corresponding to c1, we have (remember that only those i's corresponding to support 

vectors deviate from zero) 
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Similarly, for those b* corresponding to support vectors belonging to c2, we have  
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2 j

T xwb Φ−−=  and we obtain by adding them up   
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Since *
2
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1 bb = , ( )*
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ITL Interpretation of the SVM 

The classifier developed in Section 9.6.1 is entirely determined by the mean vectors 
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m1 and m2 of the training data, since both w and b are determined by these vectors. 

For the classifier to perform well on test data, we are totally dependent on these mean 

vectors to truly represent the structure of the data. For example, the presence of 

outliers in the training set may affect the computation of w and b in such a way that 

the performance of the classifier is degraded. This may be remedied by allowing the 

contribution of each training data point to the mean vectors to be weighted differently. 

Let us therefore introduce the weighting components αi > 0 associated with c1, and  

αj > 0 associated with c2. The weighted mean vectors then become 
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By introducing such weighted mean vectors, we also need to introduce some 

criterion to determine proper weights. Such a criterion should be optimal with respect 

to classifier performance. The performance of a classifier is measured by its success 

rate on test data. Hence, the classifier should generalize well. In statistical learning 

theory, it has been shown that minimization of the squared norm of the hyperplane 

weight vector, while satisfying the classification constraints on the training data, 

improves generalization performance. 

Based on the arguments above, we may relate the vector w = m1 − m2 to the 

SVM weight vector w* = m1*-m2*. Recall that the SVM is exactly based on 

regularization by minimization of ||w*||2. The minimization is accompanied by the 

classification constraints of Eq. (9.57), which ensures that the training data is 

classified correctly. Taking a closer look at the information potentials associated with 

the weighted mean vectors (Eq. (9.53)), we can write 
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Thus, the weighted mean vector m1 is associated with 

∑
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a weighted Parzen window estimator in the input space. We likewise have the same 

for the second class. However, in this case, the kernels which constitute these Parzen 

window estimators are no longer equally important. Recall that to derive the original 

classification rule based on the DED of Eq. (9.55) we assumed that N1 = N2. Using the 

weighted Parzen window estimators instead, it is easily found that the corresponding  

assumption becomes Ω1=Ω2=Ω. Therefore, 
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Now, using the weighted Parzen window estimators we may express the SVM 

optimization problem in an information theoretic framework as follows  
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Since ||m1 −m2||2 is the Mercer kernel feature space equivalent to the DED, we have 
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The optimization is subject to classification constraints, expressed as 
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Therefore, the SVM classification rule, using the weighted Parzen window estimators, 
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becomes 
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The weighted Parzen window estimators )(ˆ),(ˆ xqxp , as defined above, are bona fide 

density estimators. That is, they are always non-negative and integrate to one. 

However, since the weights are determined by minimizing DED, which puts emphasis 

on the points close to the class boundary trying to maximize the overlap between the 

class PDFs, we do not regard them as proper estimators for the PDFs that generated 

the data. From SVM theory, we know that in the Mercer kernel feature space, the only 

non-zero weighting components are those which correspond to data patterns on the 

margin. 

In the input space, it seems that the corresponding non-zero weighting 

components will be associated with data patterns near the class boundary. We 

therefore interpret the minimization of the DED as a sparseness criterion, which tunes 

the classifier to those patterns which are near the boundary. The other data patterns 

should be much easier to classify correctly, and are not given any weight in the design 

of the classifier. 

The performance of the classifier is secured by the classification constraints. 

Note that weighted Parzen window estimators have been previously proposed for 

improved Parzen window-based Bayes classification [28], [29]. In summary, we have 

found that one may view the SVM theory in feature space in terms of weighted 

Parzen density estimation in the input space, where regularization is obtained by 

minimizing the integrated squared error criterion. Hence, in an information theoretic 

framework, the support vector machine is formulated by introducing the weights αi>0 

and αj>0, and estimating the class densities according to 
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The weights, and hence )(ˆ),(ˆ xqxp , are learned by enforcing a regularization criterion  
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subject to the classification constraints, 
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9.7. Case Study: Spike Train Computation in a RKHS  

In the previous sections, we defined the ITL RKHS and showed several 

connections of this perspective with kernel methods. Although the original data space 

structure was sufficient to perform computations required for machine learning, the 

RKHS augmented this perspective and provided an elegant mathematical approach to 

do information theoretic learning. Certain types of data (e.g. point processes), 

however, do not naturally have the necessary structure to implement machine learning 

algorithms. For these cases, the structure can be obtained by the construction of an 

RKHS, and learning problems can easily be formulated and solved in the RKHS. As 

an application example we illustrate this methodology for spike trains. A spike train 

( )s S T∈  is a simplified representation of a neuron’s activity, specified by a sequence 

of ordered spike times { 1 }ms t T m … N= ∈ : = , ,  corresponding to the time instants in 

the interval [0 ]T T= ,  at which a neuron emits a spike (i.e., it “fires”) [30]. 
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Kernel function for spike trains 

The first step in the construction of the RKHS is to define a symmetric non-

negative definite kernel function. There are two basic approaches to do this for spike 

trains. The first approach follows the ideas from kernel methods, and utilizes the 

kernel κ to build an RKHS on spike times [31][32]. By writing the spike train as a 

sum of impulses centered at the spike times, and utilizing the linearity of the inner 

product in the RKHS, it is then possible to extend this RKHS to spike trains. An 

alternative approach is to build the RKHS by defining the kernel function on 

statistical descriptors of spike trains. We will follow the later approach since it is 

more insightful, and closely parallels the construction of the ITL RKHS. 

A spike train is a realization of an underlying stochastic point process [33]. In 

general, to completely characterize a point process, the conditional intensity function 

must be used. However, for simplicity, here we focus on the special case of Poisson 

processes, which are memoryless and therefore the intensity function (or rate 

function) completely describes the point process [33]. The general case is considered 

in Paiva et al. [34]. In a sense, it can be said that intensity functions play for Poisson 

point processes the same role as PDFs for random variables, since both are complete 

statistical functional descriptors [35]. Thus, it makes sense to build the RKHS for 

spike trains following an approach similar to the construction of the ITL RKHS. 

Consider two spike trains, ( )i js s S T, ∈ , with i j N, ∈ . Denote the intensity of 

the underlying Poisson processes by ( )
is tλ  and ( )

js tλ , respectively, where [0 ]t T∈ ,  

denotes the time coordinate. As with the CIP, we focus first on the case of 

deterministic statistical descriptors and consider the estimation problem in the next 

section. For any practical spike train with finite duration T , we have that  
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 2 ( )
isT

t dtλ < ∞.∫  (9.78) 

As a consequence, the intensity functions of spike trains are valid elements of 

2 ([0, ])L T . Therefore, we can define in this space a kernel function of intensity 

functions given by the usual inner product in 2L ,  

 
2 ( )

( ) ( ) ( )
i j i ji j s s s sTL T

I s s t t dtλ λ λ λ, = , = .∫  (9.79) 

We shall refer to ( )I ⋅,⋅  as the memoryless cross-intensity (mCI) kernel. The proof that 

the mCI is indeed a symmetric non-negative definite kernel, follows the same steps as 

the proof of Property 9.1, and is omitted here. Hence, the mCI induces an RKHS, 

denoted IH . Comparing the definition of the mCI kernel with the CIP kernel, it is 

clear that both kernels incorporate the statistics descriptors directly into the kernel 

function. Thus, both are complete statistical operators. As with the CIP kernel, the 

definition of the mCI naturally induces a norm in the space of the intensity functions,  

 
2 2

2

( ) ( )
( ) ( )

i i i is s s sL T L T T
t dtλ λ λ λ⋅ = , = ∫  (9.80) 

which is very useful for the formulation of optimization problems.  

Estimation of the memoryless cross-intensity kernel 

Spike trains are realizations of underlying point processes, but, as defined, the 

mCI kernel is a deterministic operator on the point processes rather than on the 

observed spike trains. Thus, in practice, the kernel function is evaluated with the 

intensity functions estimated from spike trains. A well known methodology for 

estimation of the intensity function is kernel smoothing [33]. Given a spike train is  

with spike times { 1 }i
m it T m … N∈ : = , ,  the estimated intensity function is  
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i

i

N
i
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m
t h t tλ

=

= − ,∑  (9.81) 

where h  is the smoothing function. This function must be non-negative and integrate 

to one over the real line (just like a PDF). Commonly used smoothing functions are 

the Gaussian, Laplacian and α -functions, among others.  

Consider spike trains ( )i js s S T, ∈  with estimated intensity functions ˆ ( )
is tλ  

and ˆ ( )
js tλ  according to Eq. (9.81). Substituting the estimated intensity functions in 

the definition of the mCI kernel (Eq. (9.79)) yields  

 
1 1

ˆ( ) ( )
ji NN

i j
i j m n

m n
I s s t tκ

= =

, = − .∑∑  (9.82) 

where κ  is the ‘kernel’ obtained by the autocorrelation of the smoothing function h . 

 It must be remarked the difference the space of intensity functions from which 

the mCI kernel function was defined, and the RKHS induced by this kernel. As with 

the CIP and the ITL RKHS, it can be shown there is a congruence mapping between 

the two spaces. Therefore, the same result can be obtained from either space. 

 It is interesting to verify the parallel of concepts and derived operators 

between the RKHS just defined for spike trains and the ITL RKHS. Yet, the most 

important result is that the construction of this RKHS provides the structure needed 

for computation with this data, and which otherwise would not be possible. 

Principal component analysis 

To exemplify these developments in an application, we now derive the 

algorithm to perform principal component analysis (PCA) of spike trains. The 

derivation of PCA in the RKHS is general, and applicable with other kernel functions. 

Interestingly, this is the traditional approach in the functional analysis literature [36]. 
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A well known example of discrete PCA done in an RKHS is kernel PCA [37][38]. 

Derivation of the algorithm: Consider a set of spike trains, { ( ) 1 }is S T i … N∈ , = , ,  , for 

which we wish to determine the principal components. Computing the principal 

components of the spike trains directly is not feasible because we would not know 

how to define a principal component (PC), however, this is a trivial task in an RKHS. 

Let { 1 }
is IH i … NΛ ∈ , = , ,  be the set of elements in the RKHS corresponding to the 

given spike trains. Denote the mean of the transformed spike trains as  

 
1

1
i

N

s
iN =

Λ = Λ ,∑  (9.83) 

and the centered transformed spike trains (i.e., with the mean removed) can be 

obtained as  

 
i is s= Λ −Λ.Λ%  (9.84) 

PCA finds an orthonormal transformation providing a compact description of 

the data. Determining the principal components of spike trains in the RKHS can be 

formulated as the problem of finding the set of orthonormal vectors in the RKHS such 

that the projections of the centered transformed spike trains { }
isΛ%  have maximum 

variance. This means that the principal components can be obtained by solving an 

optimization problem in the RKHS. A function IHξ ∈  (i.e., ( )S T Rξ : → ) is a 

principal component if it maximizes the cost function  

 ( )2 2

1
( ) Proj ( ) 1

i

N

s
i

J ξξ ρ ξ
=

⎡ ⎤= − −Λ⎣ ⎦∑ %  (9.85) 

where Proj ( )
isξ Λ%  denotes the projection of the i th centered transformed spike train 

onto ξ , and ρ  is the Lagrange multiplier to the constraint ( )2 1ξ −  imposing that the 

principal components have unit norm. To evaluate this cost function one needs to be 
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able to compute the projection and the norm of the principal components. However, 

the inner product needed for the projection and the norm are naturally defined. Thus, 

the above cost function can be expressed as  

 ( )2

1

( ) 1
i II

N

s HH
i

J ξ ξ ρ ξ ξ
=

= , − , − ,Λ∑ %  (9.86) 

 

By the representer theorem [38], ξ  is restricted to the subspace spanned by the 

centered transformed spike trains { }
isΛ% . Consequently, there exist coefficients 

1 Nb … b, , ∈R  such that  

 
1

i

N
T

sj
i

b bξ
=

= = ΛΛ∑ %%  (9.87) 

where 1[ ]T
Nb b … b= , ,  and 

1
( ) ( ) ( )

N

T

s st t … t⎡ ⎤Λ = , ,Λ Λ⎣ ⎦
% % % . Substituting in Eq. (9.86) yields  
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 (9.88) 

where I%  is the Gram matrix of the centered spike trains; that is, the N N×  matrix 

with elements  

 

2
1 1 1 1

1 1 1

i j

i j

i j i l l j l n

ij s s

s s

N N N N

s s s s s s s s
l l l n

I

N N N= = = =

= ,Λ Λ

= Λ −Λ,Λ −Λ

= Λ ,Λ − Λ ,Λ − Λ ,Λ + Λ ,Λ .∑ ∑ ∑∑

% % %

 (9.89) 

In matrix notation,  

 2

1 1(1 1 ) 1 1N N N NI I I I I
N N

= − + + ,%  (9.90) 
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where I  is the Gram matrix of the inner product of spike trains 
i jij s sI = Λ ,Λ , and 

1N  is the N N×  matrix with all ones. This means that I%  can be computed directly in 

terms of I  without the need to explicitly remove the mean of the transformed spike 

trains.  

From Eq. (9.88), finding the principal components simplifies to the problem of 

estimating the coefficients { }ib  that maximize ( )J ξ . Since ( )J ξ  is a quadratic 

function its extrema can be found by equating the gradient to zero. Taking the 

derivative with regards to b  (which characterizes ξ ) and setting it to zero results in  

 2( ) 2 2 0J b IbIb
ξ ρ∂

= − = ,
∂

%%  (9.91) 

and thus corresponds to the eigendecomposition problem  

 Ib bρ= .%  (9.92) 

This means that any eigenvector of the centered Gram matrix is a solution of Eq. 

(9.91). Thus, the eigenvectors determine the coefficients of Eq. (9.87) and 

characterize the principal components. It is easy to verify that, as expected, the 

variance of the projections onto each principal component equals the corresponding 

eigenvalue squared. So, the ordering of ρ  specifies the relevance of the principal 

components.  

To compute the projection of a given input spike train s  onto the k th 

principal component (corresponding to the eigenvector with the k th largest 

eigenvalue) we need only to compute in the RKHS the inner product of sΛ  with kξ . 

That is,  
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An alternative approach to derive PCA for spike trains would be to utilize the 

inner product in the space of intensity functions directly. Basically, the derivation 

would follow the same steps but now in terms of intensity functions, rather than 

elements in the RKHS. Nevertheless, due to the congruence between this space and 

the RKHS induced by the mCI kernel, the result is the same. The key difference is 

that in Eq. (9.87), the principal components are written as weighted combinations of 

intensity functions, with weights given by the eigenvectors of the centered Gram 

matrix. That is, this approach allows the principal components to be obtained as 

intensity functions. Since intensity functions characterize spike trains, this perspective 

can be very telling of the underlying data structure.  

Results 

To illustrate the algorithm just derived we performed a simple experiment. We 

generated two template spike trains comprising of 10 spikes uniformly random 

distributed over an interval of 0.25s. In a specific application these template spike 

trains could correspond, for example, to the average response of a culture of neurons 

to two distinct but fixed input stimuli. For the computation of the coefficients of the 
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Figure 9.3. (A) Spike trains used for evaluation of the eigendecomposition coefficients of PCA 

algorithm, and (B) for testing of the result. In either case, the first half of spike trains corresponds to the 

first template and the remaining to the second template. 

 

eigendecomposition (“training set”), we generated a total of 50 spike trains, half for 

each template, by randomly copying each spike from the template with probability 0.8 

and adding zero mean Gaussian distributed jitter with standard deviation 3ms. For 

testing of the obtained coefficients, 200 spike trains were generated following the 

same procedure. The simulated spike trains are shown in Figure 9.3. 
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Figure 9.4. Eigenvalues { 1 100}l l …ρ , = , ,  in decreasing order (a) and first two eigenvectors 

(b) of the eigendecomposition of the centered Gram matrix I% . 

 

 

Figure 9.5. First two principal component functions (i.e., eigenfunctions) in the space of intensity 

functions. 

With the PCA algorithm derived previously, we computed the 

eigendecomposition of the matrix I% . The evaluation of the mCI kernel was estimated 

from the spike trains according to Eq. (9.82), and computed with a Gaussian kernel 

with size 2ms. The eigenvalues { 1 100}l l …ρ , = , ,  and first two eigenvectors are shown 

in Figure 9.4. The first eigenvalue alone accounts for more than 26% of the variance 
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of the dataset in the RKHS space. Although this value is not impressive, its 

importance is clear since it is nearly 4 times higher than the second eigenvalue 

(6.6%). Furthermore, notice that the first eigenvector clearly shows the separation 

between spike trains generated from different templates (Figure 9.4(b)). This again 

can be seen in the first principal component function, shown in Figure 9.5, which 

reveals the location of the spike times used to generate the templates while 

discriminating between them with opposite signs. Around periods of time where the 

spike from both templates overlap the first principal component is zero. As can be 

seen from the second principal component function, the role of the second eigenvector 

is to account for the dispersion in the data capable of differentiate spike trains 

generate from different templates.  

   

Figure 9.6. Projection of spike trains onto the first two principal components. (a) Shows the projection 

of the spike trains in the training set and (b) in the testing set. The different point marks differentiate 

between spike trains corresponding to each one of the classes. 

 

For evaluation and testing, both datasets where projected onto the first two 

principal components. Figure 9.6 shows the projected spike trains. As noted from the 

difference between the first and second eigenvalues, the first principal component is 

the main responsible for the dispersion between classes of the projected spike trains. 

This happens because the direction of maximum variance is the one that passes 
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through both clusters of points in the RKHS due to the small dispersion within class. 

The second principal component seems to be responsible for dispersion due to the 

jitter noise introduced in the spike trains, and suggests that other principal 

components play a similar role.  

  

9.8. Conclusion 

This chapter presented formally the relationship between the ITL descriptors 

in the preceding chapters and a RKHS that we called Hv. The elements of Hv are 

PDFs, and the kernel is the cross information potential. The inner product between 

two PDFs was crucial to measure distances for clustering and it also appeared in the 

divergence measures and quadratic mutual information. From the RKHS perspective 

we can easily recognize its central role because it defines the natural similarity metric 

in the space of PDFs.  

In the previous chapters we estimated all these quantities directly from 

samples using the Information Potential, i.e. the double sum of pairwise interactions 

between the data samples. We saw in this chapter that these estiamtors correspond 

rather directly to kernel methods. Indeed, when one places a kernel on a data sample 

we are defining a function that exists in a RKHS defined by the kernel. Therefore, we 

can reinterpret the information theoretical estimators as kernel operations: the 

information potential estimator is nothing but the mean square norm of the projected 

samples, the Cauchy Schwarz divergence estimator is nothing but the log of the 

cosine of the angles between the projected samples.  

Finally, we can establish a relationship between Hv and the Hκ defined by the 

kernel used in the ITL estimators: the mean value (over the data samples) in the 
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RKHS defined by the kernel exists in the Hv. We were able to show that certain 

statistical operators defined in kernel spaces indeed correspond to ITL quantities (e.g. 

MDD becomes the Euclidean distance in Hv) 

It is therefore possible to also interpret well known solutions in kernel methods with 

ITL descriptors. We showed that the SVM can be interpreted as the maximization of 

the Euclidean distance between classes estimated with a weighted Parzen window, 

where the weights are basically the Lagrange multipliers that define the support 

vectors.  

We hoped to convince the reader that the CIP ∫= dxxqxpqpV )()(),(  is the 

key concept behind all these relations, since it defines Hv and when p(x)=q(x) it 

defines the quadratic norm of the PDF that yields the estimators for Renyi’s entropy. 

Therefore, synergisms were established between a statistical view of information and 

its functional view. The information theoretical descriptors presented by Alfred Renyi 

just take the log of the projected data in Hv, which just changes the weighting of the 

inner product as we established in Chapter 2. 

As an application of the RKHS methodology we apply it to a problem where 

the original space structure of the data does not support operations required for 

machine learning. One such example is the space of point processes. However, we can 

define a positive definite function in the point process space that builds a RKHS, 

where optimization algorithms can be carried out easily. We demonstrate this with 

PCA, but could likewise have used dissimilarity between spike trains, which as we 

have seen is associated with divergence. 
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