
Optimization in Reproducing kernel Hilbert Spaces of

Spike Trains∗

António R. C. Paiva†, Il Park‡, and José C. Pŕıncipe§
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Abstract

This paper presents a framework based on reproducing kernel Hilbert spaces (RKHS)

for optimization with spike trains. To establish the RKHS for optimization we start

by introducing kernels for spike trains. It is shown that spike train kernels can be

built from ideas of kernel methods, or from the intensity functions underlying the spike

trains. However, the later approach shall be the main focus of this study. We intro-

duce the memoryless cross-intensity (mCI) kernel as an example of an inner product

of spike trains, which defines the RKHS bottom-up as an inner product of intensity

functions. Being defined in terms of the intensity functions, this approach towards

defining spike train kernels has the advantage that points in the RKHS incorporate a

statistical description of the spike trains, and the statistical model is explicitly stated.

Some properties of the mCI kernel and the RKHS it induces will be given to show that

this RKHS has the necessary structure for optimization. The issue of estimation from

data is also addressed. We finalize with an example of optimization in the RKHS by

deriving an algorithm for principal component analysis (PCA) of spike trains.
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1 Introduction

A spike train s ∈ S(T ) is a sequence of ordered spike times s = {tm ∈ T : m = 1, . . . , N}
corresponding to the time instants in the interval T = [0, T ] at which a neuron fires. In a

different perspective, spike trains are realizations of stochastic point processes. Spike trains

can be observed whenever studying either real or artificial neurons. In neurophysiological

studies, spike trains result from the activity of multiple neurons in single-unit recordings by

ignoring the stereotypical shape of action potentials [1]. And, more recently, there has also

been a great interest in using spike trains for biologically inspired computation paradigms

such as the liquid-state machine (LSM) [2, 3] or spiking neural networks (SNN) [4, 3].

Regardless of the nature of the process giving rise to the spike trains, the ultimate goal is

to filter or classify the spike trains to manipulate or extract the encoded information.

Filtering, eigendecomposition, clustering and classification are often formulated in terms

of a criterion to be optimized. However, formulation of a criterion and/or optimization

directly with spike trains is not a straightforward task. The most widely used approach

is to bin the spike trains, obtained by segmenting the spike train in small intervals and

counting the number of spikes within each interval [1]. The advantage of this approach

is that the randomness in time is mapped to randomness in amplitude of a discrete-time

random process, and therefore our usual statistical signal processing and machine learning

techniques can be applied. It is known that if the bin size is large compared to the average

inter-spike interval this transformation provides a rough estimate of the instantaneous rate.

However, the discretization of time introduced by binning leads to low resolution.

The caveats associated with binned spike trains have motivated alternative methodolo-

gies involving the spike times directly. For example, to deal with the problem of classifica-

tion, Victor and Purpura [5, 6] defined a distance metric between spike trains resembling

the edit distance in computer science. An alternative distance measure was proposed by

van Rossum [7]. Using spike train distances for classification simplifies the problem to that of

finding a threshold value. However, for more general problems the range of applications that

can be solved directly using distances is limited since these metrics do not lend themselves to

optimization. The reason is that although distances are useful concepts in classification and

pattern analysis they do not provide a general framework for statistical signal processing

and machine learning. Recent attempts were also made to develop a mathematical theory

from simple principles [8, 9], such as the definition of an inner product and an associated

kernel, but these developments are mainly associated with the earlier proposed distance

measures [6, 7].

The framework described in this paper is different in the sense that it does not attempt

to propose a distance or criterion directly. Rather, we propose to define first inner product

kernel functions1 for spike trains. These kernels induce reproducing kernel Hilbert spaces

(RKHS) of functions on spike trains, which provide the needed mathematical structure to

easily define and optimize criteria for a diverse range of problems. Another advantage of

1Throughout this document we will refer to inner products and kernels indistinguishably since they

represent the same concept. However, stated more correctly, kernels denote inner products in a reproducing

kernel Hilbert space of functions on the arguments of the kernel.
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this approach is that many of the difficulties found in manipulating spike trains which lead

to the use of binning are implicitly taken care of through the mapping to the RKHS. In this

paper we exemplify the construction of an RKHS by defining an inner product of spike trains

called memoryless cross-intensity (mCI) kernel. This spike train kernel defines the RKHS

bottom-up as an inner product of intensity functions and thus incorporates a statistical

description of the spike trains. As will be showed later, this particular kernel is related to

the generalized cross-correlation (GCC) [10] but provides a more principled and broader

perspective on many spike train methods reported in the literature.

For continuous and discrete random processes, RKHS theory has already been proven

essential in a number of applications, such as statistical signal processing [11, 12] and de-

tection [13, 14, 15], as well as statistical learning theory [16, 17, 18]. Indeed, Parzen showed

that several statistical signal processing algorithms can be stated as optimization problems

in the RKHS and easily solved [11, 12]. For instance, the cross-correlation function used

throughout statistical analysis and signal processing, including the celebrated Wiener filter

[19], is a valid kernel and induces an RKHS space [11]. Although frequently overlooked,

RKHS theory plays a pivotal role in kernel methods [16, 17] because it is the reason for the

famed kernel trick which allows for the otherwise seemingly intractable task of deriving and

applying kernel techniques.

In the following, we introduce how to define spike train kernels and present some ex-

amples. A systematic approach which builds the RKHS from the ground up is followed

by defining inner products for spike trains. The main advantage in this path is a general

and mathematically precise methodology which, nevertheless, can easily be interpreted in-

tuitively by analyzing the definition of the inner product or, conversely, defining the inner

product to match our understanding of a given problem. In this study we present the mCI

kernel as an example, since it incorporates a statistical description of the spike trains and

the statistical model is clearly stated, but the ideas can be easily extended. A number of

properties are proved for the mCI kernel, and the relationships between the RKHS and con-

gruent spaces are discussed for additional insight. The issue of estimation from data is also

addressed. Finally, the usefulness of an RKHS framework for optimization is demonstrated

through the derivation of an algorithm for principal component analysis (PCA) of spike

trains.

2 Some background on RKHS theory

In this section, some basic concepts of kernel methods and RKHS theorem necessary for the

understanding of the next sections are reviewed. The notation was purposely chosen to be

different from the one used later since the presentation here is meant to be as general and

introductory as possible.

The fundamental result in RKHS theory is the famed Moore-Aronszajn theorem [20, 21].

Let K denote a generic symmetric and positive definite function of two variables defined on

some space E. That is, a function K(·, ·) : E × E → R such that it verifies:

(i) Symmetry: K(x, y) = K(y, x), ∀x, y ∈ E.
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(ii) Positive definiteness: for any finite number of l (l ∈ N) points x1, x2, . . . , xl ∈ E and

any corresponding coefficients c1, c2, . . . , cl ∈ R,

l∑
m=1

l∑
n=1

cmcnK(xm, xn) ≥ 0. (1)

These are sometimes called the Mercer conditions [22] in the kernel methods literature.

Then, the Moore-Aronszajn theorem [20, 21] guaranties that there exists a unique Hilbert

space H of real valued functions defined on E such that, for every x ∈ E,

(i) K(x, ·) ∈ H, and

(ii) for any f ∈ H
f(x) = 〈f(·),K(x, ·)〉H . (2)

The identity on equation (2) is called the reproducing property of K and, for this reason, H
is said to be an RKHS with reproducing kernel K.

Two essential corollaries of the theorem just described can be observed. First, since both

K(x, ·) and K(y, ·) are in H, we get from the reproducing property that

K(x, y) = 〈K(x, ·),K(y, ·)〉H . (3)

Hence, K evaluates the inner product in this RKHS. This identity is the kernel trick, well

known in kernel methods, and is the main tool for computation in this space. Second, a

consequence of the previous properties and which can be seen easily in the kernel trick is

that, given any point x ∈ E, the representer of evaluation in the RKHS is Ψx(·) = K(x, ·).
Notice that the functional transformation Ψ from the input space E into the RKHS H
evaluated for a given x, and in general any element of the RKHS, is a real function defined

on E.

A quite interesting perspective to RKHS theory is provided by Parzen’s work [23]. In

his work, Parzen proved that for any symmetric and positive definite function there exists a

space of Gaussian distributed random variables defined in the input space of the kernel for

which this function is the covariance function [11]. Notice that, assuming stationarity and

ergodicity, this space might just as well be thought of as a space of random processes. That

is to say that any kernel inducing an RKHS denotes simultaneously an inner product in

the RKHS and a covariance operator in another space. Furthermore, it is established that

there exists an isometric inner product-preserving mapping, a congruence, between these

two spaces. Consequently, the RKHS H induced by the kernel and the space of random

variables where this kernel is a covariance function are said to be congruent. This is an

important result as it sets up a correspondence between the inner product due to a kernel

in the RKHS to our intuitive understanding of the covariance function and associated linear

statistics. In other words, due to the congruence between the two spaces an algorithm can

be derived and interpreted in any of the spaces.
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3 Inner product for spike times

Denote the mth spike time in a spike train indexed by i as tim ∈ T , with m ∈ {1, 2, . . . , Ni}
and Ni the number of spike times in the spike train. To simplify the notation, however, the

spike train index will be omitted if is irrelevant for the presentation or obvious from the

context.

The simplest inner product that can be defined for spike trains operates with only two

spike times at a time, as observed by Carnell and Richardson [8]. In the general case, such

an inner product can be defined in terms of a kernel function defined on T × T into the

reals, with T the interval of spike times. Let κ denote such a kernel. Conceptually, this

kernel operates in the same way as the kernels operating on data samples in kernel methods

[16] and information theoretic learning [24]. Although it operates only with two spike times,

it will play a major role whenever we operate with complete realizations of spike trains.

Indeed, as the next sections show, the estimators for one of the kernels we define on spike

trains rely on this kernel as an elemental operation for computation.

To take advantage of the framework for statistical signal processing provided by RKHS

theory, κ is required to be a symmetric positive definite function. By the Moore-Aronszajn

theorem [20], this ensures that an RKHS Hκ must exist for which κ is a reproducing kernel.

The inner product in Hκ is given as

κ(tm, tn) = 〈κ(tm, ·), κ(tn, ·)〉Hκ = 〈Φm,Φn〉Hκ . (4)

where Φm is the element in Hκ corresponding to tm (that is, the transformed spike time).

Since the kernel operates directly on spike times and is, typically, undesirable to em-

phasize events in this space, κ is further required to be shift-invariant ; that is, for any

θ ∈ R,

κ(tm, tn) = κ(tm + θ, tn + θ), ∀tm, tn ∈ T . (5)

In other words, the kernel is only sensitive to the difference of the arguments and, conse-

quently, we may also write κ(tm, tn) = κ(tm − tn).

For any symmetric, shift-invariant, and positive definite kernel, it is known that κ(0) ≥
|κ(θ)|.2 This is important in establishing κ as a similarity measure between spike times.

In other words, as usual, an inner product should intuitively measure some form of inter-

dependence between spike times. However, notice that the conditions posed do not restrict

this study to a single kernel. Quite on the contrary, any kernel satisfying the above require-

ments is theoretically valid and understood under the framework proposed here although,

obviously, the practical results may vary.

An example of a family of kernels that can be used (but not limited to) are the radial

basis functions [25],

κ(tm, tn) = exp(−|tm − tn|p), tm, tn ∈ T , (6)

for any 0 < p ≤ 2. Some well known kernels, such as the widely used Gaussian and Laplacian

kernels, are special cases of this family for p = 2 and p = 1, respectively.

2This is a direct consequence of the fact that symmetric positive definite kernels denote inner products

that obey the Cauchy-Schwarz inequality.
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It is interesting to notice that shift-invariant kernels result in a natural norm induced by

the inner product with the following property,

‖Φm‖ =
√
κ(0), ∀Φm ∈ Hκ. (7)

Since the norm of the transformed spike times in Hκ is constant, all the spike times are

mapped to the surface of an hypersphere in Hκ. The set of transformed spike times is called

the manifold of S(T ). Moreover, this shows in a different perspective why the kernel used

needs to be non-negative. Furthermore, the geodesic distance corresponding to the length

of the smallest path contained within this manifold (in this case, the hypersphere) between

two functions in this manifold, Φm and Φn, is given by

d(Φm,Φn) = ‖Φm‖ arccos

( 〈Φm,Φn〉
‖Φm‖ ‖Φn‖

)
=
√
κ(0) arccos

[
κ(tm, tn)

κ(0)

]
.

(8)

Put differently, from the geometry of the transformed spike times, the kernel function is

proportional to the cosine of the angle between two transformed spike times in Hκ. Be-

cause the kernel is non-negative, the maximum angle is π/2, which restricts the manifold of

transformed spike times to a small area of the hypersphere. With the kernel inducing the

above metric, the manifold of the transformed points forms a Riemannian space. However,

this space is not a linear space. Fortunately, its span is obviously a linear space. In fact, it

equals the RKHS associated with the kernel. Although this is not a major problem, com-

puting with the transformed points will almost surely yield points outside of the manifold

of transformed spike times. This means that such points cannot be mapped back to the

input space directly. Depending on the aim of the application this may not be necessary,

but if required, it may be solvable through a projection to the manifold of transformed input

points.

4 Inner product for spike trains

Although any kernel verifying the conditions discussed in the previous section induces an

RKHS and therefore is of interest on itself, the fact that it only operates with two spike

times at a time limits its practical use. In particular, spike trains are sets of spike times

but we have not yet addressed the problem of how to combine the kernel for all spike times.

One immediate approach is to utilize the linearity of the RKHS [8]. If the mth spike time

is represented in the RKHS by Φm, then the spike train can be represented in the RKHS as

the sum of the transformed spike times,

Ψ =

N∑
m=1

Φm. (9)

Notice that if a spike time is represented by a given function, say, an impulse, the spike

train will be a sum of time-shifted impulses centered at the spike times. Then equation (9)
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implies that the mapping of the spike train into the RKHS induced by the spike time kernel

is linear. Using the linearity of the RKHS it results that the inner product of spike trains is

〈
Ψsi ,Ψsj

〉
Hκ

=

Ni∑
m=1

Nj∑
n=1

〈
Φim,Φ

j
n

〉
Hκ

=

Ni∑
m=1

Nj∑
n=1

κ(tim, t
j
n). (10)

It must be remarked that equation (10) is only one example of a spike train kernel

from inner products on spike times. Indeed, as is commonly done in kernel methods, more

complex spike train kernels can be defined utilizing the kernel on spike times as a building

block equating the nonlinear relationship between the spike times. On the other hand,

the main disadvantage in this approach towards spike train analysis is that the underlying

model assumed for the spike train is not clearly stated. This is important in determining

and understanding the potential limitations of a given spike train kernel for data analysis.

Rather than utilizing this direct approach, an alternative construction is to define first

a general inner product for the spike trains from the fundamental statistical descriptors. In

fact, it will be seen that the inner product for spike trains builds upon the kernel on single

spike times. This bottom-up construction of the kernel for spike trains is unlike the previous

approach and is rarely taken in machine learning, but it exposes additional insight on the

properties of the kernel and the RKHS it induces for optimization and data analysis.

A spike train is a realization of an underlying stochastic point process [26]. In general,

to completely characterize a point process, the conditional intensity function must be used.

The Poisson process is a special case because it is memoryless and therefore the intensity

function (or rate function) is sufficient [26, chapter 2]. Spike trains in particular have been

found to be reasonably well modeled as realizations of Poisson processes [27, chapter 2].

Hence, for the remaining of this study only Poisson spike trains are considered.

Consider two spike trains, si, sj ∈ S(T ), with i, j ∈ N. Denote the intensity of the

underlying Poisson processes by λsi(t) and λsj (t), respectively, where t ∈ T = [0, T ] denotes

the time coordinate. Note that the dependence of the intensity function on t indicates that

the Poisson processes considered may be inhomogeneous (i.e., non-stationary). For any

practical spike train and for finite T , we have that∫
T
λ2si(t)dt <∞. (11)

As a consequence, the intensity functions of spike trains are valid elements of L2(T ) ⊂ L2.

Moreover, in this space, we can define an inner product of intensity functions as the usual

inner product in L2,

I(si, sj) =
〈
λsi , λsj

〉
L2(T )

=

∫
T
λsi(t)λsj (t)dt. (12)

We shall refer to I(·, ·) as the memoryless cross-intensity (mCI) kernel. Notice that the mCI

kernel incorporates the statistics of the processes directly, and treats seamlessly even the

case of inhomogeneous Poisson processes.
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Furthermore, the definition of inner product naturally induces a norm in the space of

the intensity functions,

‖λsi(·)‖L2(T ) =
√
〈λsi , λsi〉L2(T ) =

√∫
T
λ2si(t)dt (13)

which is very useful for the formulation of optimization problems.

It is insightful to compare the mCI kernel definition in equation (12) with the so-called

generalized cross-correlation (GCC) [10],

CAB(θ) = E {λA(t)λB(t+ θ)}

= lim
T→∞

1

2T

∫ T

−T
λA(t)λB(t+ θ)dt.

(14)

Although the GCC was proposed directly as a more general form of cross-correlation of

spike trains, one verifies that the two ideas are fundamentally equivalent. Nevertheless, the

path towards the definition of mCI is more principled. More importantly, this path suggests

alternative spike train kernel definitions which may not require a Poisson assumption, or, if

the Poisson model is assumed, extract more information in the event of deviations from the

model.

5 Properties and estimation of the memoryless cross-

intensity kernel

5.1 Properties

In this section some relevant properties of the mCI kernel are presented. In addition to

the knowledge they provide, they are necessary for a clear understanding of the following

sections.

Property 1 The mCI kernel is a symmetric, non-negative and linear operator in the space

of the intensity functions.

Because the mCI kernel operates on elements of L2(T ) and corresponds to the usual dot

product from L2, this property is a direct consequence of the properties inherited from L2.

More specifically, property 1 guaranties the mCI kernel is a valid inner product.

Property 2 For any set of n ≥ 1 spike trains, the mCI kernel matrix

V =


I(s1, s1) I(s1, s2) . . . I(s1, sn)

I(s2, s1) I(s2, s2) . . . I(s2, sn)
...

...
. . .

...

I(sn, s1) I(sn, s2) . . . I(sn, sn)

 ,

is symmetric and non-negative definite.
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The proof is given in the appendix. Through the work of Moore [21] and due to the

Moore-Aronszajn theorem [20], the following two properties result as corollaries of prop-

erty 2.

Property 3 The mCI kernel is a symmetric and positive definite kernel. Thus, by defini-

tion, for any set of n ≥ 1 point processes and corresponding n scalars a1, a2, . . . , an ∈ R,

n∑
i=1

n∑
j=1

aiajI(si, sj) ≥ 0. (15)

Property 4 There exists an Hilbert space for which the mCI kernel is a reproducing kernel.

Actually, property 3 can be obtained explicitly by verifying that the inequality of equa-

tion (15) is implied by equations (44) and (45) in the proof of property 2 (see the appendix).

Properties 2 through 4 are equivalent in the sense that any of these properties implies the

other two. The most important consequence of these properties, explicitly stated through

property 4, is that the mCI kernel induces an unique RKHS, henceforth denoted by HI .

Property 5 The mCI kernel verifies the Cauchy-Schwarz inequality,

I2(si, sj) ≤ I(si, si)I(sj , sj) ∀si, sj ∈ S(T ). (16)

The proof is given in the appendix. The Cauchy-Schwarz inequality is important since

the triangle inequality results as an immediate consequence and it induces a correlation

coefficient-like measure very useful for matching spike trains. Indeed, the Cauchy-Schwarz

inequality is the concept behind the spike train measure proposed by Schreiber et al. [28].

However, our proof in appendix verifies that all it is required is a spike train kernel inducing

an RKHS, and therefore the idea by Schreiber and colleagues is easily extendible.

Property 6 For any two point processes si, sj ∈ S(T ) the triangle inequality holds. That

is, ∥∥λsi + λsj
∥∥ ≤ ‖λsi‖+

∥∥λsj∥∥ .
As before, the proof is given in the appendix.

5.2 Estimation

As previous stated, spike trains are realizations of underlying point processes, but the mem-

oryless cross-intensity kernel as presented so far is a deterministic operator on the point

processes rather than on the observed spike trains. Using a well known methodology for the

estimation of the intensity function we now derive an estimator for the memoryless cross-

intensity kernel. One of the advantages of this route is that the conceptual construction of

spike train kernel is dissociated from the problem of estimation from data. Put differently,

in this way it is possible to have a clear statistical interpretation while later approaching

the problem from a practical point of view. The connection between the mCI kernel and κ

will now become obvious.
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A well known method for intensity estimation from a single spike train is kernel smooth-

ing [1, 29]. Accordingly, given a spike train si comprising of spike times {tim ∈ T : m =

1, . . . , Ni} the estimated intensity function is

λ̂si(t) =

Ni∑
m=1

h(t− tim), (17)

where h is the smoothing function. This function must be non-negative and integrate to

one over the real line (just like a probability distribution function (pdf)). Commonly used

smoothing functions are the Gaussian, Laplacian and α-functions, among others.

From a filtering perspective, equation (17) can be seen as a linear convolution between the

filter impulse response given by h(t) and the spike train given as a sum of Dirac functionals

centered at the spike times. In particular, binning is nothing but a special case of this

procedure in which the spike times are first quantized according to the binsize and h is

a rectangular window [1]. Moreover, compared with pdf estimation with Parzen windows

[30], we immediately observe that intensity estimation as shown above is directly related to

the problem of pdf estimation except for a normalization term, a connection made clear by

Diggle and Marron [31].

Consider spike trains si, sj ∈ S(T ) with estimated intensity functions λ̂si(t) and λ̂sj (t)

according to equation (17). Substituting the estimated intensity functions in the definition

of the mCI kernel (equation (12)) yields

Î(si, sj) =

Ni∑
m=1

Nj∑
n=1

κ(tim − tjn). (18)

where κ is the ‘kernel’ obtained by the autocorrelation of the smoothing function h. Notice

that ultimately the obtained estimator linearly combines and weights the contribution of a

kernel operating on a pair of event coordinates. Moreover, this estimator operates directly

on the event coordinates of the whole realization without loss of resolution and in a com-

putationally efficient manner since it takes advantage of the, typically, sparse occurrence of

events.

If the kernel κ is chosen such that it satisfies the requirements in section 3, then the mCI

kernel corresponds to a summation of all pairwise inner products between spike times of

the spike trains, evaluated by kernel on the spike time differences. Put in this way, we can

now clearly see how the mCI inner product on spike trains builds upon the inner product on

spike times denoted by κ and the connection to equation (10). The later approach, however,

clearly states the underlying point process model.

6 Induced RKHS and congruent spaces

Some considerations about the RKHS space HI induced by the mCI kernel and congruent

spaces are made in this section. The relationship between HI and its congruent spaces

provides alternative perspectives and a better understanding of the mCI kernel. Figure 1

provides a diagram of the relationships among the various spaces discussed next.
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mCI kernel
induced

RKHS, HI

Space spanned by the
intensity functions,
L2(λsi(t), t ∈ T )

Space of
spike trains,

S(T )

κ induced
RKHS, Hκ

mCI kernel defines
the covariance

function,
L2(X(si), si ∈ S(T ))

Λsi

NiE {Φi}

λsi(t)

X(si)

Figure 1: Relation between the original space of spike trains S(T ) and the various Hilbert

spaces. The double-line bi-directional connections denote congruence between spaces.

6.1 Space spanned by intensity functions

In the introduction of the mCI kernel the usual dot product in L2(T ), the space of square

integrable intensity functions defined on T , was utilized. The definition of the inner product

in this space provides an intuitive understanding to the reasoning involved. L2(λsi(t), t ∈
T ) ⊂ L2(T ) is clearly an Hilbert space with inner product and norm defined in equations (12)

and (13). Notice that the span of this space contains also elements (functions) that may not

be valid intensity functions since, by definition, intensity functions are always non-negative.

However, since our interest is mainly on the evaluation of the inner product this is of no

consequence. The key limitation however is that L2(λsi(t), t ∈ T ) is not an RKHS. This

should be clear because elements in this space are functions defined on T , whereas elements

in the RKHS HI must be functions defined on S(T ).

Despite the differences, the spaces L2(λsi(t), t ∈ T ) and HI are closely related. In fact,

L2(λsi(t), t ∈ T ) and HI are congruent. This congruence can be verified explicitly since

there is clearly a one-to-one mapping,

λsi(t) ∈ L2(λsi(t), t ∈ T ) ←→ Λsi(s) ∈ HI ,

and, by definition of the mCI kernel,

I(si, sj) =
〈
λsi , λsj

〉
L2(T )

=
〈
Λsi ,Λsj

〉
HI

. (19)

A direct implication of the basic congruence theorem is that the two spaces have the same

dimension [11].
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6.2 Induced RKHS

In section 5.1 it was shown that the mCI kernel is symmetric and positive definite (prop-

erties 1 and 3, respectively) and consequently, by the Moore-Aronszajn theorem [20], there

exists an Hilbert space HI in which the mCI kernel evaluates the inner product and is a

reproducing kernel (property 4). This means that I(si, ·) ∈ HI for any si ∈ S(T ) and, for

any ξ ∈ HI , the reproducing property holds

〈ξ, I(si, ·)〉HI = ξ(si). (20)

As a result the kernel trick follows,

I(si, sj) = 〈I(si, ·), I(sj , ·)〉HI . (21)

Written in this form, it is easy to verify that the point in HI corresponding to a spike train

si ∈ S(T ) is I(si, ·). In other words, given any spike train si ∈ S(T ), this spike train is

mapped to Λsi ∈ HI , given explicitly (although unknown in closed form) as Λsi = I(si, ·).
Then equation (21) can be restated in the more usual form

I(si, sj) =
〈
Λsi ,Λsj

〉
HI

. (22)

It must be remarked that HI is in fact a functional space. More specifically, that points

in HI are functions of spike trains defined on S(T ). This is a key difference between the

space of intensity functions L2(T ) explained above and the RKHS HI , in that the latter

allows for statistics of the transformed spike trains to be estimated as functions of spike

trains. The usefulness of an RKHS for optimization and general computation with spike

trains can be appreciated, for example, in the derivation of principal component analysis in

section 7.

6.3 mCI kernel and the RKHS induced by κ

The mCI kernel estimator in equation (18) shows the evaluation written in terms of elemen-

tary kernel operations on the spike times. This fact alone provides a different perspective

on how the mCI kernel uses the statistics of the spike times. To see this more clearly, if κ is

chosen according to section 3 as symmetric positive definite, then it can be substituted by

its inner product (equation (4)) in the mCI kernel estimator, yielding

Î(si, sj) =

Ni∑
m=1

Nj∑
n=1

〈
Φim,Φ

j
n

〉
Hκ

=

〈
Ni∑
m=1

Φim,

Nj∑
n=1

Φjn

〉
Hκ

.

(23)

When the number of samples approaches infinity (so that the intensity functions and, conse-

quently the mCI kernel, can be estimated exactly) the mean of the transformed spike times

approaches the expectation. Hence, equation (23) results in

I(si, sj) = Ni Nj
〈
E
{

Φi
}
, E
{

Φj
}〉
Hκ

, (24)
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where E
{

Φi
}

, E
{

Φj
}

denotes the expectation of the transformed spike times and Ni, Nj

are the expected number of spikes in spike trains si and sj , respectively.

Equation (23) explicitly shows that the mCI kernel can be computed as an inner product

of the expectation of the transformed spike times in the RKHS Hκ induced by κ. In other

words, there is a congruence G between Hκ and HI in this case given explicitly by the

expectation of the transformed spike times, G (Λsi) = NiE
{

Φi
}

, such that〈
Λsi ,Λsj

〉
HI

=
〈
G (Λsi),G (Λsj )

〉
Hκ

=
〈
NiE

{
Φi
}
, NjE

{
Φj
}〉
Hκ

. (25)

Recall that the transformed spike times form a manifold (the subset of an hypersphere)

and, since these points have constant norm, the kernel inner product depends only on the

angle between points. This is typically not true for the average of these points, however.

Observe that the circular variance [32] of the transformed spike times of spike trains si is

var(Φi) = E
{〈

Φim,Φ
i
m

〉
Hκ

}
−
〈
E
{

Φi
}
, E
{

Φi
}〉
Hκ

= κ(0)−
∥∥E {Φi

}∥∥2
Hκ

.
(26)

So, the norm of the mean transformed spike times is inversely proportional to the variance

of the elements in Hκ. This means that the inner product between two spike trains depends

also on the dispersion of these average points. This fact is important because data reduction

techniques rely heavily on optimization with the data variance. For instance, kernel principal

component analysis [33] directly maximizes the variance expressed by equation (26) [34].

6.4 mCI kernel as a covariance kernel

In section 5.1 it was shown that the mCI kernel is indeed a symmetric positive definite

kernel. As mentioned in section 2, Parzen [23] showed that any symmetric and positive

definite kernel is also a covariance function of a random process defined in the original space

of the kernel (see also Wahba [18, chapter 1]). In the case of the mCI kernel, this means the

random processes are defined on S(T ).

Let X denote this random process. Then, for any si ∈ S(T ), X(si) is a random variable

on a probability space (Ω,B, P ) with measure P . As proved by Parzen, this random process

is Gaussian distributed with zero mean and covariance function

I(si, sj) = Eω {X(si)X(sj)} . (27)

Notice that the expectation is over ω ∈ Ω since X(si) is a random variable defined on Ω,

a situation which can be written explicitly as X(si, ω), si ∈ S(T ), ω ∈ Ω. This means

that X is actually a doubly stochastic random process. An intriguing perspective is that,

for any given ω, X(si, ω) is an ordered and almost surely non-uniform sampling of X(·, ω).

The space spanned by these random variables is L2(X(si), si ∈ S(T )) since X is obviously

square integrable (that is, X has finite covariance).

The RKHSHI induced by the mCI kernel and the space of random functions L2(X(si), si ∈
S(T )) are clearly congruent. This fact is a consequence of the basic congruence theorem

[23] since the two spaces have the same dimension or, alternatively, by verifying that the
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congruence mapping between the two space exist. For this reason we may consider the

mCI kernel also as a covariance measure of random variables directly dependent on the

spike trains with well defined statistical properties. Allied to our familiarity and intuitive

knowledge of the use of covariance (which is nothing but cross-correlation between centered

random variables) this concept can be of great importance in optimization and design of

optimal learning algorithms that work with spike trains. This is because linear methods are

known to be optimal for Gaussian distributed random variables.

7 Principal component analysis

To exemplify the importance of the developments shown here, in the following we derive

the algorithm to perform principal component analysis (PCA) of spike trains. The PCA

algorithm will be derived from two different perspectives to show the generality of an RKHS

framework for optimization with spike trains.

First, PCA will be derived directly in the RKHS induced by the mCI kernel. This

approach highlights that optimization with spike trains is possible by the definition of an

inner product, and more specifically through the mathematical structure provided by the

RKHS. This is also the traditional approach in the functional analysis literature [35] and

has the advantage of being completely general, regardless of the spike train kernel definition.

A well known example of discrete PCA done in an RKHS is kernel PCA [33].

In the second approach we will derive PCA in the space spanned by the intensity func-

tions utilizing the inner product defined in this space. Since the RKHS is congruent to this

space and therefore the inner products in the two spaces are isometric the outcome will be

found to be the same. However, this approach has the advantage that the eigenfunctions are

explicitly available. In general, the eigenfunctions are not available in the RKHS because

the transformation to the RKHS is unknown. However, this approach is possible here due

to the linearity of the space spanned by the intensity functions with the inner product we

defined.

7.1 Optimization in the RKHS

Suppose we are given a set of spike trains, {si ∈ S(T ), i = 1, . . . , N}, for which we wish

to determine the principal components. Computing the principal components of the spike

trains directly is not feasible because we would not know how to define a principal component

(PC), however, this is a trivial task in an RKHS.

Let {Λsi ∈ HI , i = 1, . . . , N} be the set of elements in the RKHS HI corresponding to

the given spike trains. Denote the mean of the transformed spike trains as

Λ̄ =
1

N

N∑
i=1

Λsi , (28)

and the centered transformed spike trains (i.e., with the mean removed) can be obtained as

Λ̃si = Λsi − Λ̄. (29)
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PCA finds an orthonormal transformation providing a compact description of the data.

Determining the principal components of spike trains in the RKHS can be formulated as

the problem of finding the set of orthonormal vectors in the RKHS such that the projection

of the centered transformed spike trains {Λ̃si} has the maximum variance. This means that

the principal components can be obtained by solving an optimization problem in the RKHS.

A function ξ ∈ HI (i.e., ξ : S(T ) −→ R) is a principal component if it maximizes the cost

function

J(ξ) =

N∑
i=1

[
Projξ(Λ̃si)

]2
− ρ

(
‖ξ‖2 − 1

)
(30)

where Projξ(Λ̃si) denotes the projection of the ith centered transformed spike train onto ξ,

and ρ is the Lagrange multiplier to the constraint
(
‖ξ‖2 − 1

)
imposing that the principal

components have unit norm. To evaluate this cost function one needs to be able to compute

the projection and the norm of the principal components. However, in an RKHS, an inner

product is the projection operator and the norm is naturally defined (see equation (13)).

Thus, the above cost function can be expressed as

J(ξ) =

N∑
i=1

〈
Λ̃si , ξ

〉2
HI
− ρ

(
〈ξ, ξ〉HI − 1

)
, (31)

Because in practice we always have a finite number of spike trains, ξ is restricted to the

subspace spanned by the centered transformed spike trains {Λ̃si}. Consequently, there exist

coefficients b1, . . . , bN ∈ R such that

ξ =

N∑
j=1

bjΛ̃sj = bT Λ̃ (32)

where bT = [b1, . . . , bN ] and Λ̃(t) =
[
Λ̃s1(t), . . . , Λ̃sN (t)

]T
. Substituting in equation (31)

yields

J(ξ) =

N∑
i=1

 N∑
j=1

bj

〈
Λ̃si , Λ̃sj

〉( N∑
k=1

bk

〈
Λ̃si , Λ̃sk

〉)

+ ρ

1−
N∑
j=1

N∑
k=1

bjbk

〈
Λ̃si , Λ̃sk

〉
= bT Ĩ2b+ ρ

(
1− bT Ĩb

)
.

(33)

where Ĩ is the Gram matrix of the centered spike trains; that is, the N × N matrix with

elements

Ĩij =
〈

Λ̃si , Λ̃sj

〉
=
〈
Λsi − Λ̄,Λsj − Λ̄

〉
=
〈
Λsi ,Λsj

〉
− 1

N

N∑
l=1

〈Λsi ,Λsl〉 −
1

N

N∑
l=1

〈
Λsl ,Λsj

〉
+

1

N2

N∑
l=1

N∑
n=1

〈Λsl ,Λsn〉 .

(34)
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In matrix notation,

Ĩ = I − 1

N
(NI + IN ) +

1

N2
NIN , (35)

where I is the Gram matrix of the inner product of spike trains Iij =
〈
Λsi ,Λsj

〉
, and N is

the N ×N matrix with all ones. This means that Ĩ can be computed directly in terms of

I without the need to explicitly remove the mean of the transformed spike trains.

From equation (33), finding the principal components simplifies to the problem of es-

timating the coefficients {bi} that maximize J(ξ). Since J(ξ) is a quadratic function its

extrema can be found by equating the gradient to zero. Taking the derivative with regards

to b (which characterizes ξ) and setting it to zero results in

∂J(ξ)

∂b
= 2Ĩ2b− 2ρĨb = 0, (36)

and thus corresponds to the eigendecomposition problem3

Ĩb = ρb. (37)

This means that any eigenvector of the centered Gram matrix is a solution of equation (36).

Thus, the eigenvectors determine the coefficients of equation (32) and characterize the prin-

cipal components. It is easy to verify that, as expected, the variance of the projections

onto each principal component equals the corresponding eigenvalue. So, the ordering of ρ

specifies the relevance of the principal components.

To compute the projection of a given input spike train s onto the kth principal component

(corresponding to the eigenvector with the kth largest eigenvalue) we need only to compute

in the RKHS the inner product of Λs with ξk. That is,

Projξk(Λs) = 〈Λs , ξk〉HI

=

N∑
i=1

bki

〈
Λs , Λ̃si

〉

=

N∑
i=1

bki

I(s, si)−
1

N

N∑
j=1

I(s, sj)

 .

(38)

7.2 Optimization in the space spanned by the intensity functions

As before, let {si ∈ S(T ), i = 1, . . . , N} denote the set of spike trains for which we wish

to determine the principal components, and {λsi(t), t ∈ T , i = 1, . . . , N} the corresponding

intensity functions. The mean intensity function is

λ̄(t) =
1

N

N∑
i=1

λsi(t), (39)

and therefore the centered intensity functions are

λ̃si(t) = λsi(t)− λ̄(t). (40)

3Note that the simplification in the eigendecomposition problem is valid regardless if the Gram matrix

is invertible or not, since Ĩ2 and Ĩ have the same eigenvectors and the eigenvalues of Ĩ2 are the eigenvalues

of Ĩ squared.
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Again, the problem of finding the principal components of a set of data can be stated

as the problem of finding the eigenfunctions of unit norm such that the projections have

maximum variance. This can be formulated in terms of the following optimization problem.

A function ζ(t) ∈ L2(λsi(t), t ∈ T ) is a principal component if it maximizes the cost function

J(ζ) =

N∑
i=1

[
Projζ(λ̃si)

]2
− γ

(
‖ζ‖2 − 1

)
=

N∑
i=1

〈
λ̃si , ζ

〉2
L2

− γ
(
‖ζ‖2 − 1

)
,

(41)

where γ is the Lagrange multiplier constraining ζ to have unit norm. It can be shown that

ζ(t) lies in the subspace spanned by the intensity functions {λ̃si(t), i = 1, . . . , N}. Therefore,

there exist coefficients b1, . . . , bN ∈ R such that

ζ(t) =

N∑
j=1

bj λ̃sj (t) = bT r̃(t). (42)

with bT = [b1, . . . , bN ] and r̃(t) =
[
λ̃s1(t), . . . , λ̃sN (t)

]T
. Substituting in equation (31) yields

J(ζ) =

N∑
i=1

 N∑
j=1

bj

〈
λ̃si , λ̃sj

〉( N∑
k=1

bk

〈
λ̃si , λ̃sk

〉)

+ γ

1−
N∑
j=1

N∑
k=1

bjbk

〈
λ̃si , λ̃sk

〉
= bT Ĩ2b+ γ

(
1− bT Ĩb

)
.

(43)

where Ĩ is the gram matrix of the centered intensity functions (i.e., Ĩij =
〈
λ̃si , λ̃sj

〉
L2

).

As expected, since the inner product is the same and the two spaces are congruent,

this cost function yields the same solution. However, unlike the previous, this presentation

has the advantage that it shows the role of the eigenvectors of the gram matrix and, most

importantly, how to obtain the principal component functions in the space of intensity

functions. From equation (42), the coefficients of the eigenvectors of the gram matrix provide

a weighting for the intensity functions of each spike trains and therefore expresses how

important a spike train is to represent others. In a different perspective, this suggests that

the principal component functions should reveal general trends in the intensity functions.

7.3 Results

To illustrate the algorithm just derived we performed a simple experiment. We generated

two template spike trains comprising of 10 spikes uniformly random distributed over an

interval of 0.25s. In a specific application these template spike trains could correspond, for

example, to the average response of a culture of neurons to two distinct but fixed input

stimuli. For the computation of the coefficients of the eigendecomposition (“training set”),
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Figure 2: Spike trains used for evaluation of the eigendecomposition coefficients of PCA

algorithm (A), and for testing of the result (B). In either case, the first half of spike trains

corresponds to the first template and the remaining to the second template.

we generated a total of 50 spike trains, half for each template, by randomly copying each

spike from the template with probability 0.8 and adding zero mean Gaussian distributed

jitter with standard deviation 3ms. For testing of the obtained coefficients, 200 spike trains

were generated following the same procedure. The simulated spike trains are shown in

figure 2.

According to the PCA algorithm derived previously, we computed the eigendecomposi-

tion of the matrix Ĩ as given by equation (35) so that it solves equation (37). The evaluation

of the mCI kernel was estimated from the spike trains according to equation (12), and com-

puted with a Gaussian kernel with size 2ms. The eigenvalues {ρl, l = 1, . . . , 100} and first

two eigenvectors are shown in figure 3. The first eigenvalue alone accounts for more than 26%

of the variance of the dataset in the RKHS space. Although this value is not impressive, its

importance is clear since it is nearly 4 times higher than the second eigenvalue (6.6%). Fur-

thermore, notice that the first eigenvector clearly shows the separation between spike trains

generated from different templates (Fig. 3(b)). This again can be seen in the first principal

component function, shown in figure 4, which reveals the location of the spike times used

to generate the templates while discriminating between them with opposite signs. Around

periods of time where the spike from both templates overlap the first principal component

is zero. As can be seen from the second principal component function, the role of the second

eigenvector is to account for the dispersion in the data capable of differentiate spike trains

generate from different templates.

Both datasets, for evaluation and testing, where projected onto the first two principal

components. Figure 5 shows the projected spike trains. As noted from the difference between
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Figure 3: Eigendecomposition of the spike trains Gram matrix Ĩ.

the first and second eigenvalues, the first principal component is the main responsible for

the dispersion between classes of the projected spike trains. This happens because the

direction of maximum variance is the one that passes through both clusters of points in

the RKHS due to the small dispersion within class. The second principal component seems

to be responsible for dispersion due to the jitter noise introduced in the spike trains, and

suggests that other principal components play a similar role.

A more specific understanding can be obtained from the considerations done in sec-

tion 6.3. There, the congruence between the RKHS induced by the mCI kernel, HI , and

the RKHS induced by κ, Hκ, was utilized to show that the mCI kernel is inversely related

to the variance of the transformed spike times in Hκ. In this dataset and for the kernel

size utilized, this guaranties that the value of the mCI kernel within class is always smaller

than inter class. This is a reason why in this scenario the first principal component always

suffices to project the data in a way that distinguishes between spike trains generated each

of the templates.

Conventional PCA was also applied to this dataset by binning the spike trains. Although

cross-correlation is an inner product for spike trains and therefore the above algorithm could

have been used, for comparison, the conventional approach was followed [36, 37]. That is,

to compute the covariance matrix with each binned spike train taken as a data vector. This

means that the dimensionality of the covariance matrix is determined by the number of bins

per spike train, which may be problematic if long spike trains are used or small bin sizes are

needed for high temporal resolution.

The results of PCA using bin size of 5ms are shown in figure 6 and figure 7. The bin size

was chosen to provide a good compromise between temporal resolution and smoothness of

the eigenfunctions (important for interpretability). Comparing these results the ones using

the mCI kernel, the distribution of the eigenvalues is quite similar and the first eigenfunction

does reveals somewhat of the same trend as in figure 4. The same is not true for the second
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Figure 4: First two principal component functions (i.e., eigenfunctions) in the space of

intensity functions. They are computed by substituting the coefficients of the first two

eigenvectors of the Gram matrix in equation (42).

eigenfunction, however, which looks much more “jaggy.” In fact, as figure 7 shows, in

this case the projections along the first two principal directions are not orthogonal. This

means that the covariance matrix does not fully express the structure of the spike trains.

It is noteworthy that this is not only because the covariance matrix is being estimated

with a small number of data vectors. In fact, even if the binned cross-correlation was

utilized directly in the above algorithm as the inner product the same effect was observed,

meaning that the binned cross-correlation does not characterize the spike train structure in

sufficient detail. Since the binned cross-correlation and the mCI kernel are conceptually

equivalent apart from the discretization introduced by binning, this shows the ill effects of

this preprocessing step for analysis and computation with spike train, and point process

realizations in general.

8 Conclusion

A reproducing kernel Hilbert space (RKHS) framework for optimization with spike trains

is introduced. Although the application of kernel methods to spike trains without binning

is not entirely novel [8, 9], a more general view of the problem is presented. Instead of

a top-down approach often taken in kernel methods, the mCI kernel was built bottom-up

from the concept of intensity functions which are basic statistical descriptors of spike trains.

Indeed, intensity functions are the core concept of the statistical analysis of spike trains
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(a) Projection of the spike trains in the training set.
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(b) Projection of the spike trains in the testing set.

Figure 5: Projection of spike trains onto the first two principal components. The different

point marks differentiate between spike trains corresponding to each one of the classes.
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Figure 6: Eigendecomposition of the binned spike trains covariance matrix.

and is perhaps one of reasons why binning is such a well established technique, at any

time-scale of interest [27, 1]. Kernel methods applied before to spike trains seemed to have

no connection to intensity estimation. This paper, however, bridges these two perspectives

seamlessly. In one perspective, the mCI kernel approximates our intuitive understanding

regarding intensity functions as functional descriptors of point processes. On the other

hand, the evaluation (or estimation) of the mCI kernel for given spike trains easily links to

other methodologies in the literature. Most importantly, the approach taken lends itself to

generalization to other point process models and spike train kernels nonlinear in the space

of intensity functions taking advantage of the RKHS mathematical structure and without

sacrifice in rigor.
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(a) Projection of the spike trains in the training set.
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(b) Projection of the spike trains in the testing set.

Figure 7: Projection of spike trains onto the first two principal components of the covariance

matrix of binned spike trains. The different point marks differentiate between spike trains

corresponding to each one of the classes.

In addition to this enlightening connection of point of view, the rigorous yet general

mathematical approach towards the problem of optimization for manipulating spike trains

clarifies exactly from basic principles which kernels can be used and what are the general

properties of the mCI kernel defined. Even though it may be argued that kernel methods

can applied directly for spike trains data given a kernel, the true meaning of using such a

kernel cannot be well determined. This is one of the strengths of the explicit construction

followed. In this way, the general structure of the RKHS space induced is well understood

allowing for methods to be derived from their basic ideas. Additionally, we were able to

establish a close mathematical relationship to several congruent spaces where the derived

methods can be thoroughly comprehended. Still, it must be remarked that the mCI kernel

presented here will likely not be the most appropriate for a number of problems. This was

not the goal of this paper. Instead one of our aims was to show how other kernels that

operate with spike trains may be easily formulated. Depending on a specific application

other kernels may be defined which lead to simpler solutions and/or are computationally

simpler.

It is noteworthy that the mCI kernel is not restricted to applications with spike trains

but rather can be applied to processing with any Poisson point processes. In fact, the mCI

kernel can be applied for even more general point processes. Naturally, it might not be the

optimum inner product for point processes other than Poisson processes since the intensity

function does not fully characterizes the process but, in a sense, this is similar to the use

of cross-correlation in continuous random processes, which is only sensitive to second-order

statistics.
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A Proofs

This section presents the proofs for properties 2, 5 and 6 in section 5.1.

Proof (Property 2): The symmetry of the matrix results immediately from property 1.

By definition, a matrix is non-negative definite if and only if aTV a ≥ 0, for any aT =

[a1, . . . , an] with ai ∈ R. So, we have that

aTV a =

n∑
i=1

n∑
j=1

aiajI(si, sj), (44)

which, making use of the mCI kernel definition (equation (12)), yields

aTV a =

∫
T

 n∑
i=1

aiλsi(t)

 n∑
j=1

ajλsj (t)

 dt

=

〈
n∑
i=1

aiλsi ,

n∑
j=1

ajλsj

〉
L2(T )

=

∥∥∥∥∥
n∑
i=1

aiλsi

∥∥∥∥∥
L2(T )

≥ 0,

(45)

since the norm is non-negative. �

Proof (Property 5): Consider the 2× 2 CI kernel matrix,

V =

[
I(si, si) I(si, sj)

I(sj , si) I(sj , sj)

]
.

From property 2, this matrix is symmetric and non-negative definite. Hence, its determinant

is non-negative [38, pg. 245]. Mathematically,

det(V ) = I(si, si)I(sj , sj)− I2(si, sj) ≥ 0,

which proves the result of equation (16). �

Proof (Property 6): Consider two spike trains, si, sj ∈ S(T ). The norm of the sum of two

spike trains is ∥∥λsi + λsj
∥∥2 =

〈
λsi + λsj , λsi + λsj

〉
(46a)

= 〈λsi , λsi〉+ 2
〈
λsi , λsj

〉
+
〈
λsj , λsj

〉
(46b)

≤ ‖λsi‖2 + 2 ‖λsi‖
∥∥λsj∥∥+

∥∥λsj∥∥2 (46c)

=
(
‖λsi‖+

∥∥λsj∥∥)2 , (46d)
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with the upper bound in step 46c established by the Cauchy-Schwarz inequality (Property 5).

�
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