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Point processes are stochastic random processes, yet a realization consists of a set

of randomly distributed event locations. Hence, the peculiar nature of point process

has made the application of conventional signal processing methods to their realizations

difficult and imprecise to apply from first principles. Statistical descriptors have been

extensively studied in the point process literature, and thus provide accurate and well

founded methodologies to point process analysis by estimating the distributions necessary

to characterize the process. But such methodologies face serious shortcomings when the

interactions among multiples point processes need to be considered simultaneously, since

they are only practical using an assumption of independence. Nevertheless, processing

of multiple point processes is very important for practical applications, such as neural

activity analysis, with the widespread use of multielectrode array techniques.

This dissertation presents a general framework based on reproducing kernel Hilbert

spaces (RKHS) to mathematically describe and manipulate point processes. The main

idea is the definition of inner products (or point process kernels) to allow signal processing

with point process from basic principles while incorporating their statistical description.

Moreover, because many inner products can be formulated, a particular definition can be

crafted to best fit an application. These ideas are illustrated by the definition of a number

of inner products for point processes. To further elicit the advantages of the RKHS

framework, a family of these inner products, called the cross-intensity (CI) kernels, is

13



further analyzed in detail. This particular inner product family encapsulates the statistical

description from conditional intensity functions of spike trains, therefore bridging the

gap between statistical methodologies and the need for operators for signal processing.

It is shown that these inner products establish a solid foundation with the necessary

mathematical structure for signal processing with point processes. The simplest point

process kernel in this family provides an interesting perspective to other works presented

in the literature, since the kernel is closely related to cross-correlation.

These theoretical developments also have important practical implications, with

several examples shown here. The RKHS framework is of high relevance to the practitioner

since it allows the development of point process analysis tools, with the emphasis given

here to spike train analysis. The relation between the simplest of the CI kernels and

cross-correlation exposes the limitations of current methodologies, but also brings forth

the possibility of using the more general CI kernels to cope with general point process

models. From a signal processing perspective, since the RKHS is a vector space with an

inner product, all the conventional signal processing algorithms that involve inner product

computations can be immediately implemented in the RKHS. This is illustrated here for

clustering and PCA, but many other applications are possible such as filtering.
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CHAPTER 1
INTRODUCTION

1.1 General Motivation

A primal question in any work aspiring for relevance is why such work is worthy of

attention. In this section we answer this question. Moreover, answering this question also

prepares the reader to understand, and better appreciate, how the problem should be

solved, which is done in the next section.

In a very broad sense, one might say that this dissertation was motivated by a desire

to understand how the brain works. Or, more specifically, by the desire to understand

the basic principles by which the brain represents and computes with information.

Nevertheless, this is too broad of a question to tackle. More than simply trying to pose a

philosophical question, or for the sake of the interest in fundamental neurophysiology and

neuroscience, we were trying to solve an engineering challenge. The goal was do propose

a framework for signal processing with neural activity which one could apply to design

better (more accurate and reliable) brain-machine interfaces (BMIs).

Naturally, use of this framework for BMI work could greatly benefit from knowledge

of the principles of information representation in the brain. More importantly, a

framework for signal processing can provide the means to design the necessary tools to

search for this understanding. Indeed, this mix of interests will be noticeable throughout.

What do we mean by neural activity in this work? Brain activity can be analyzed

using many forms of neural recordings, namely: single-unit activity (SUA), local

field potentials (LFP), electro-corticogram (ECoG), electro-encephalogram (EEG),

magneto-encephalogram (MEG), just to mention the most commonly used. Each of these

signals has specific properties, for example, in terms of spatial resolution and coverage,

and signal-to-noise ratio. The general idea is that better properties of the recordings

are typically obtained at the expense of greater invasiveness, which is of paramount

importance in practical use. Table 1-1 reviews some of the properties.
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Table 1-1. Common forms of neural activity recordings and their properties.

Recording Invasive
Local

resolution
Spatial
coverage

Spectral
range SNR

SUA yes very high localized high-frequencies high

LFP yes high broad broadband high

ECoG yes high broad broadband high

EEG no low broad low-frequencies low

MEG no low broad low-frequencies low

In this work only SUA will be considered. This is the most invasive method (together

with LFP) with the need to introduce electrodes perforating the cortex. On the other

hand, from an engineering perspective, SUA has the best properties, especially in terms

of resolution and SNR, and therefore derived BMIs have the potential to achieve the

best resolution. Furthermore, BMIs studies based in this form of recording also have

the potential to deepen your understanding of how is information represented in the

brain and should provide an upper bound on the achievable performance. Finally, this

understanding can suggest how to improve the design of BMIs using less invasive neural

activity recordings.

SUA-based BMIs are at the forefront of brain decoding for brain-machine interaction.

This is understandable since, as stated, this form of recording has the best signal

characteristics. However, unlike the other recordings, working with this form of recording

presents a challenge of its own since SUA is a recording of the activity of one neuron,

and neurons are known to communicate through electrical pulses, called spikes. Thus,

information is represented not in a voltage waveform as usual but in sequences of spikes,

or spike trains. The challenge is that spike trains must be modeled as realizations of point

processes, for which the basic signal processing operators are not straightforwardly defined.

This is the goal of this dissertation.

Notice that although BMIs were the motivation to start this work and are primal

applications, they are not the focus of this dissertation. In fact, this work has a substantially

broader impact, and for which BMIs are only one application. For example, this may be of
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great importance in other computation paradigms, such as in liquid state machines (LSM)

studies [Maass et al., 2002], or spiking neural network (SNN) models which have recently

emerged as a new artificial neural networks paradigm in a way that more closely mimics

the brain [Maass and Bishop, 1998; Gerstner and Kistler, 2002]. Moreover, the impact of

this work may even go beyond these applications, to whatever problem where processing

or analysis of point processes is required.

1.2 Problem Statement

Before moving on, it is beneficial to try to understand the challenge tackled here

and why processing with point processes is not as straightforward as for continuous- or

discrete-valued random processes.

Point processes are stochastic random processes, yet a realization consists of a set of

randomly distributed event locations. Put differently, for a point process the randomness

is not contained in the amplitude1 but when (or where) the event occurs. Consequently,

upon observation of a realization of a point process one is not interested in the events

themselves but on the mechanism/information underlying the generation of the events.

Point processes play a very important role in statistical modeling and inference in a

wide variety of fields, such as: biology, engineering, geography, physics, astronomy [Snyder,

1975, Section 1.1 for application examples]. In general the event space of a point processes

can be one-dimensional or multidimensional. However, here we shall deal exclusively with

one-dimensional point processes. Often, the event space of one-dimensional point processes

is time (as is the case for spike trains). For this reason, we will use “event locations” and

“event times” interchangeably to refer to the coordinates of events.

1 Actually, there are point process models, called marked point processes, for which
there may be one or more random variables associated with the events. In this case,
the amplitude of the event is a result of the randomness in these random variables.
Nevertheless, these are a special class of point processes and are not considered in this
work.
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Figure 1-1. An inner product is an elementary operation in signal processing and pattern
recognition.

Unfortunately, the peculiar formulation of point processes does not allow for the

application of the usual signal processing operations to filter, eigendecompose, classify

or cluster point processes or their realizations, which are essential to manipulating these

signals and extract the information they convey. From a statistical perspective, point

processes can be well characterized and many representations have been developed in

the literature [Snyder, 1975; Daley and Vere-Jones, 1988]. Some of these representations

and descriptors will be reviewed in Chapter 2. The main limitation of current statistical

approaches is that point processes are analyzed independently, and independence need

to be typically assumed to avoid handling the high dimensional joint distribution when

multiple point processes are considered.

Before attending the question of how to do signal processing with point processes,

let us first consider what is necessary for signal processing. For filtering, the output is

the convolution of the input with an impulse response; for principal component analysis

(PCA), one needs to be able to project the data; for clustering, the concept of similarity

(or dissimilarity) between points is needed; and for classification, it is necessary to define

discriminant functions that separate the classes. However, careful observation reveals that

all of these needed concepts are either implemented directly by an inner product or can

be constructed with an inner product. Convolution implements an inner product at each

time instant between a shifted version of the input function and the systems’ impulse
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response. Projection is inherently an inner product between two objects. An inner product

is also a similarity measure, and dissimilarity measures (such as distances) can be defined

given an inner product. Discriminant functions cannot be obtained directly with an inner

product but, a neural network can be used to approximate it to the desired precision, with

the linear projections in the PEs implemented by some given inner product. In summary,

to obtain a general framework for signal processing and pattern recognition with point

processes all that it is needed is an inner product definition operating with spike trains.

It must be remarked that it is possible to implement at least some of the aforementioned

concepts without defining an inner product. For example, distances between point

processes have been defined without explicitly defining an inner product (Section 3.6.3).

However, such approaches have limited scope and do not provide a consistent and

systematic mathematical framework to do signal processing, and tend to obscure the

point process model associated with the operation.

1.3 Main Contributions

Based on the previous considerations, we can state that for signal processing with

point processes all that is needed is an appropriate inner product. However, as before,

defining an inner product of point processes is not straightforward, but the required

mathematical structure follows once one is defined. For this reason, one of the main

contributions of this dissertation it to suggest how inner products of point processes

can be defined, estimated from realizations, and discuss some of their implications and

applications.

Most of the considerations presented here regarding definitions of inner products

for point processes are done under the formalism of reproducing kernel Hilbert space

(RKHS) theory. Due to their equivalence this means that inner products will be defined
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as kernels.2 The use of RKHS theory is done to assure that the necessary mathematical

structure is well defined even in situations where the inner product is not explicitly

defined, thus ensuring generality without sacrifice in rigor. Furthermore, operating with

point processes in an RKHS is more convenient since several developments in signal

processing and machine learning can be immediately incorporated. Therefore, this

provides the framework for the development of a comprehensive set of algorithms for

analysis and processing of point processes.

Although frequently overlooked, RKHS theory is a pivotal concept in statistical signal

analysis and processing [Parzen, 1967], and machine learning [Schölkopf et al., 1999]. In

RKHS theory, kernel operators denote inner product operations in a Hilbert space, which

are fundamental for signal processing techniques, thus providing a strong motivation for

the use of kernel functions. For instance, the cross-correlation function used throughout

statistical analysis and signal processing, including the celebrated Wiener filter [Haykin,

2002], is a valid kernel and induces a RKHS space [Parzen, 1959]. In fact, most (if not all)

of our understanding and ease of mathematical treatment of second-order methods can be

obtained from the study of the RKHS induced by the cross-correlation.

In this dissertation, several kernels (that is, inner products) for operating with point

processes shall be proposed. Notice that their corresponding RKHSs are automatically

defined. Two main approaches will be followed. The first derives from ideas in kernel

methods, whereas the second defines the inner product in the space of intensity functions

of the point processes. Both may play an important role in method developments. We

shall mainly focus on the second approach since the use of the conditional intensity

functions permits the inner product to encapsulate a complete statistical characterization

2 Throughout this dissertation we will often refer to ‘kernels’ and ‘inner products’
interchangeably. In our context, unless cautioned otherwise, they should always be
understood as the same concept, although the former shall be often preferred since it
makes explicit the connection to RKHS theory.
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of the point process, provides a better insight of the properties and limitations of the

inner product as a descriptor of the point processes, and because, as will be shown, is

closest related to current methodologies. The relevance of these concepts are exemplified

in applications, where some of these inner products are utilized.

An important component of this dissertation is also the discussion of implications of

this work which, by its generality, provides insightful perspectives in several methodologies

described in the literature. Considerations for immediate implications in the state-of-the-art

methods for spike train analysis are also presented.

1.4 Outline

This dissertation is organized in roughly four parts. The first comprises of Chapter 1

and Chapter 2 and provides the motivation, establishes the problem from an overall

perspective, introduces point processes and spike trains, and reviews previous approches
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for their analysis. The second part, in Chapter 3, contains the main theoretical contributions

and is where the kernels for point processes and the corresponding RKHS are defined and

analyzed. The third part explores a more general definition of cross-correlation inspired

by an RKHS construction in Chapter 4, and its multiple consequences in terms of new

tools for the experimenter in Chapter 5 with several examples of application of these

tools in both simulated and real datasets. This part is somewhat independent of the

theory in Chapter 3, but in doing so the reader will miss the important connections to the

general RKHS framework being presented. Finally, the fourth part shows two application

examples of the RKHS framework for machine learning by showing how clustering

algorithms for spike trains may be easily derived in Chapter 6, and by deriving from first

principles the principal component analysis algorithm for spike trains.

Conclusions and discussion of this work are given in Chapter 8, along with a

description of possible ideas for future developments on this work.
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CHAPTER 2
INTRODUCTION TO POINT PROCESSES AND SPIKE TRAIN METHODS

In this chapter, we briefly introduce what point processes are and how they arise in

a number of problems. This shall be done first in a somewhat informal way, broadly

introducing the reader to historical problems that gave rise to the study of point

processes in a review manner. Afterwards, the problem of how point processes arise in

neurophysiology is discussed to aim on some of the important goals for this work. Then,

many of the techniques specifically developed to analyze spike trains are presented, and we

discuss the key strategies utilized to handle the particularities of point processes and some

of the their limitations. This discussion will, hopefully, allow the reader to have a more

general perspective and further appreciate some of the accomplishments of this work.

2.1 History of Point Process Theory

Here, a brief review of some of the historical developments in the theory of point

processes is presented. This is done here for two reasons: to introduce the reader to some

of the terminology and basic concepts in an informal way, and showcase some of the

approaches developed earlier that are still utilized in statistical analysis of point processes.

For a more detailed review the reader is referred, for example, to Daley and Vere-Jones

[1988, Chapter 1].

Although point processes can be found in a relatively large number of problems,

the primordial ideas and developments where been mainly associated with four areas of

application, by chronological order:

• life tables and self-renewing aggregates;

• counting problems;

• communications theory; and

• particle physics and population processes.

The first two applications really motivated the initial developments in point process

analysis and where developed in parallel with the fundamental ideas of probability (17th

century), whereas the remaining two where raised in the previous century. Despite this
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separation and, as expected, it should be noticed from our presentation that the later

topics where strongly affected by the earlier concepts and terminology.

2.1.1 Life Tables and Self-Renewing Aggregates

Life tables are records utilized in demographics studies of a population. Simply put,

a life table lists the number of individuals from a population, or their ratio, that survive

to a given age. The first known life table is due to John Graunt who in 1662 published

the “Observation on the London Bills of Mortality” (available at [Graunt, 1662]). This

table was analyzed at a later time by Huyghens (1629–1695) who proposed the notion of

expected length of life. A second life table was constructed in 1693 by Halley using data

from the smaller city of Breslau. Compared to Graunt’s life table, this table was better

since Halley did not have problems with disease, immigration and incomplete data that

plagued Graunt’s account.

Life tables occupied much of the field of statistics of that time, and was developed

parallel to advances in probability theory. There are three basic descriptors (or summary

statistics) of a life table: the relative frequency of individuals surviving to a given age or

survivor function; the relative frequency of individuals that deceased between two ages,

called lifetime distribution function; and the relative frequency of individuals that die after

a certain age, the so-called hazard function. These concepts can be written informally in

terms of probabilities as:

(i) Survivor function: S(x) = Pr{lifetime > x},

(ii) Lifetime distribution function:

f(x) = lim
dx→0

1

dx
Pr{lifetime terminates between x and x + dx},

(iii) Hazard function:

q(x) = lim
dx→0

1

dx
Pr{lifetime terminates between x and x + dx|lifetime ≥ x}.
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Actually these same concepts served as the root for the developments in probability

theory by de Moivre, Euler and Laplace. However, it was not until Laplace’s work, “A

Philosophical Essay on Probabilities,” that the previous concepts gained a more formal

perspective in terms of probabilities. Indeed, although de Moivre had suggested that the

survivor function would decrease with constant step for ages between 22 and 86, only after

Laplace formal introduction of probabilities the three concepts where connected and more

accurately through distributions.

The basic distribution function for lifetime has been the exponential function,

f(x) = λe−λx, x > 0, corresponding to a constant hazard function, q(x) = λ. That

is, the probability of occurrence of an event is independent of previous events. A more

accurate fit is usually found by the power-law hazard function with a constant added,

q(x) = B + Aeαx (A > 0, B > 0, α > 0), known as Gompertz-Makeham law. It is one of the

most widely used functions for fitting a life table. Other commonly used distributions for

lifetime modeling are:

• Gamma: f(x) = λα
Γ(α)

xα−1e−λx,

• Lognormal : f(x) = 1√
2πσx

e−
1

2σ2 (log x−µ)2 .

Closely related to the study of life tables were problems in the study of statistical

demography, growth, mortality tables and insurance. In the insurance context in

particular, the importance of maintaining a stable “portfolio”; that is, a self-regenerating

population of individuals, propelled the development of the theory of self-renewing

aggregates. Simply put, this problem concerns the study of evolution of the human

population and the balance in terms of number of births and deaths. A particularly

relevant concept was the idea of renewal density characterizing the probability for the

need of a replacement in time interval [t, t + dt). In essence, these same ideas served as

foundations for renewal theory.
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2.1.2 Counting Problems

An alternative representation to statistically describe point process realizations is

to count the number of events in intervals or regions of the event space. Unlike other

approaches, counting is the only approach that lends itself to extension and systematic

use in spaces with more than one dimension. The basic idea is to describe the point

process in terms of the distribution of the number of events in a given region of the event

space. Since the characterizing element if the “number of events” in the space, discrete

distributions play a major role in the statistical analysis of point process under this

perspective (even though the space is continuous).

The earliest references of application of a counting approach to point processes

seem to be due to Seidel [1876] while studying the occurrence of thunderstorms, and

Abbé [1879] which studied the number of blood cells in haemocytometer squares. Notice

that these case studies dealt with point processes in two- and three-dimensional spaces,

respectively, which justified the need for this approach.

The Poisson distribution is one of the best known examples of discrete distributions,

and is particularly important in counting problems of point processes. In 1838, Poisson

had included in his monograph, “Recherches sur la probabilité des jugements en matières

criminelles et matière civile,” the derivation of the Poisson distribution as the limit

case of the binomial distribution as the interval length (or region volume) approaches

zero. Interestingly, the works of Seidel and Abbé occurred after, and apparently in an

independent manner, from Poisson’s work. In fact, this is understandable since Poisson’s

result did not get wide attention at the time. Also, the fact that it was not derived in

a counting process context may explain why it was unknown or neglected by Seidel and

Abbé. Attention was only drawn to Poisson’s distribution when in 1898, Von Bortkiewicz

used the distribution to fit several phenomena in his monograph “Das Gesetz der kleinen

Zahlen.”
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Several advances succeeded Poisson’s work, namely on generalization and alternatives

to the Poisson distribution. One notable generalization is the negative binomial distribution

derived by Greenwood and Yule [1920] to fit accident statistics. However, the negative

binomial distribution can be obtained from a mixed Poisson distribution, in which the rate

parameter λ is a random variable with a gamma distribution.

2.1.3 Communications and Reliability Theory

Communications and reliability theory are two of the most important application

areas of point processes in the past century. Reliability theory developed mainly after

World War II and concerned the estimation of the lifetime of connected elements.

Naturally, it absorbed much of the terminology and concepts derived earlier for the

study of life tables. This application was propelled by the advances and growing industry

in electronics in the post WWII period.

Communications theory and, in particular, queueing theory, was the second

fundamental application of point processes to engineering, with the advent of telephone

trunk lines. The landmark paper in the subject was published by Erlang [1909] on

the study of the number of calls in a fixed time interval, for which Erlang derived

a distribution. But, at that time, Erlang did not realize his finding corresponds to

the Poisson distribution, only making this correction in Erlang [1917]. Actually, the

distribution derived by Erlang is a continuous probability distribution whereas the Poisson

distribution is discrete. Nevertheless, the Erlang distribution is a special case of the

gamma distribution where the shape parameter is a natural number, and the gamma

distribution had already been derived sometime earlier.

Another fundamental contribution to the field of queueing theory was Palm’s thesis

work in 1943 on the study of intensity variations in communications traffic [Palm, 1988].

In his work, Palm provided a detailed analysis of particular telephone trunking systems,

but also the foundations of a general theory for point process with far reaching impact.
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2.1.4 Density Generating Functions and Moment Densities

Point process theory also proved useful for the study of particle scatter in physics.

Due to the high-dimensionality of the problem (more than 2 dimensions) the general

approach to counting problems was used. However, instead of utilizing discrete distributions

directly, the concepts of generating functionals and moment densities were employed since

they provide a more convenient treatment of these problems. These concepts were first

developed by Yvon [1935], a physicist looking to characterize the evolution of particle

scatter distributions in experimental and theoretical physics studies.

These ideas are related to the probability generating functional defined by

G[h] = E

{∏
i

h(xi)

}
= E

{
exp

[∫
log h(x)dNx

]}
, (2–1)

where h(x) is some test function, xi are the event locations, and Nx is the counting

measure. For a finite number of events the probability generating functional allows an

expansion in terms of moment density functions (or product densities, as are perhaps more

commonly known), characterizing the distribution of the number of events and the event

locations.

One of the most important results in this regard was obtained by Ramakrishnan

[1950], who first derived expressions for the moments of the number of events in terms of

product densities and Stirling numbers. These ideas where later considerably extended by

Ramakrishnan, Janossy and Srinivasan, among others, and applied to numerous physical

problems, such as cosmic ray showers, for example. A review of this approach can be

found in Srinivasan and Vijayakumar [2003].

2.1.5 Other Theoretical Developments

The work of Palm in 1943 [Palm, 1988] is one of the landmarks in the theory of

point processes in the last century. Even though it had well defined practical context,

it established the foundations for a general theory of point processes, and many of the

current terminology. There are three major contributions in his work. First, the concept
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of regeneration point after which a point process (or system responsible for the point

process) reverts to a given state and evolves independently of the past before the state

corresponding to the regeneration point was achieved. Related to this idea, is the idea of a

process aftereffects, which, simply put, describes the memory property of a process. Thus,

Poisson processes are processes without aftereffects, and renewal processes have limited

aftereffects. Second, that two distributions are important in describing stationary point

processes: the distribution of the time to the next event from an arbitrary origin, and the

distribution of the time to the next event from an arbitrary event. These distributions are

related by the Palm-Khinchin equations. Third, a partial proof the limit theorem for point

processes, which states that superposition of large number of independent point process

tends to a Poisson process. Palm’s work paved the way for developments by Wold [1948]

on processes with Markov dependent intervals, which constitute the next alternative to

renewal point processes, and by Khinchin [1960] who greatly extended and refined Palm’s

work.

The alternative approach was the study of point processes in term of probability

measures on abstract spaces. This was motivated by the use of characteristic functionals

proposed earlier by Kolmogorov to study random elements in linear spaces. This work

allowed for studies on the convergence of measures on metric spaces (which also occur

in point processes), and served as the basis for the developments mentioned earlier in

generating functionals and moment densities.

Worthy of remark are also the works on the second half of the last century by Cox

[1955] (Cox and Isham [1980] for a review) and Bartlett [1963]. These authors were

responsible for developments in methods for statistical treatment of data generated by

point processes. For example, Cox introduced the important class of doubly stochastic

Poisson processes, important in the study of inhomogenous Poisson processes, and Bartlett

illustrated theoretically how some methods of time series analysis could be adapted to the

point process context.
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One must must also note the contributions of Moyal [1962] who established the theory

point processes in a general state space, providing the relations between product densities

and probability generating functionals, as well pointing out several applications this

theory.

2.2 Representations and Descriptors of Point Processes

As informally reviewed in the previous section, there are roughly four different

approaches to represent and/or describe point processes:

1. Event densities and distributions;

2. Counting processes;

3. Random measures; and

4. Generating functionals and moment densities;

Needless to say that these representations are all closely inter-related and a description in

a representation may be converted to another. These are briefly presented next.

2.2.1 Event Densities and Distributions

Point processes can be characterized in terms of the distributions needed to specified

the statistics of its events. This is perhaps the most direct approach and relies on the

same statistical principles utilize to quantify life tables (Section 2.1.1). Notice that in

general multiples distributions may be needed to fully describe a point process.

The two most often used statistics are the density of events, called rate function or

simply intensity function, and the inter-event interval distribution. These specify the

expected number of events per space unit and the distribution of the difference between

two adjacent events, respectively. The Poisson process is the simplest of the cases, for

which the intensity function provide a complete description, and the inter-event interval is

inherently specified as the exponential distribution, since this distribution is responsible

for the memoryless property of the Poisson process. Another example are the renewal

processes, which generalize the Poisson process to general inter-event interval distributions,

and therefore both the intensity function and the inter-event interval distribution are

needed to characterize the point process. But these two statistics do not suffice in general.

30



t

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

0

1

2

3

4

5

6

7

8

t

N
t(ω

)

Figure 2-1. A realization of a point process and the corresponding counting process.

A compact description can be attained by using the conditional intensity function

[Snyder, 1975, Pg. 238], denoted λ(t|Ht), where t ∈ T (T is the space of events) and

Ht = {t1 < t2 < · · · < tN(t)} is the history of the process up to time t (the ti’s denote

the event times or locations, with tN(t) denoting the most recent event before t). The

conditional intensity function is defined as

λ(t|Ht) = lim
∆t→0

1

∆t
Pr[N(t + ∆t) − N(t) = 1|Ht]. (2–2)

For small ∆t, λ(t|Ht)∆t is the probability that an event occurs in the interval [t, t + ∆t).

The conditional intensity function corresponds to the hazard function introduced in

Section 2.1.1 since, in survival analysis, it expresses the probability of failure.

The conditional intensity function can be written in terms of the event probability

density function f(t|Ht) [Daley and Vere-Jones, 1988; Brown et al., 2001a], as

λ(t|Ht) =
f(t|Ht)

1 −
∫ t

tN(t)
f(u|Ht)du

. (2–3)

Note that f(t|Ht) is related to the distribution of the interval to the next event given all

previous, which, as remarked by Palm [1988] (Section 2.1.5), is one of the fundamental

distributions in describing a point process.
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2.2.2 Counting Processes

Throughout the literature on point processes, the concept of counting process is

prevalently used. This is understandable for the reasons presented in Section 2.1.2. The

perspective provided by a counting process is easily interpretable and tractable using only

the theory of discrete distributions, and is extendible to multidimensional point processes

in a systematic manner.

The function Nt(ω), t ∈ T , is a counting process and is defined as the number

of events up to location t for the realization (Figure 2-1). For each ω ∈ Ω, Nt(ω) is a

piecewise-constant function of t with unit jumps at the event coordinates. However, notice

that, like stochastic random processes, Nt(·) is a functional representation which becomes

a well defined function of t only for a fixed ω; that is, a given realization.

A counting process is an attractive formulation also because the derivative of its

expectation over ω at a given t may be interpreted as the density of events. Therefore, it

provides a way to map the space of events to a density of events, providing an equivalent

representation of the statistical distributions mentioned in the previous section without

requiring their form explicitly.

2.2.3 Random Probability Measures

Random measures are another way to express point processes. Let the space of

events, T , be a locally compact Hausdorff space with a Borel σ-algebra, and N the set of

locally finite counting measures on T with σ-algebra N . Then, a point process on T is a

measurable map ξ : Ω ← N, from a probability space (Ω,B, P ) to the measurable space

(N,N ). That means that for any set S ∈ T , ξ(S) is a random variable corresponding to

the number of events in S.

Typically, the point process random measure is written as

ξ(·) =
N∑

n=1

δtn(·), (2–4)
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where δ denotes the Dirac measure,

δx(A) =

 1, x ∈ A

0, x 6∈ A,
(2–5)

N is an integer-valued random variable, and tn are the events in T .

In essence, random measures formalize mathematically the concepts utilized to build

the counting processes. For this reason, counting processes are sometimes called counting

measures in the literature.

2.2.4 Generating Functionals and Moment Densities

As mentioned earlier, the foundations for handling stochastic populations of particles

had already been set before by Yvon [1935], but there where gaps in the theory. The

problem was that of statistically describing a point process characterized by a finite set

of points or events, say X = {x1, . . . , xN}, in a state space χ. A simple probability

description can be obtained in terms of the probability mass function (pmf) for the total

number of points in the realization, Pr = Pr[N = r]. The pmf can then be utilized to write

the joint distribution over a state space of realizations, Πr, which in turn is specified in

terms of the densities fr(x1, . . . , xr), with properties:

Pr[N(dx) = 1] = f1(x)dx + o(dx),

Pr[N(dx) > 1] = o(dx),

Pr[N(dx) = 0] = 1 − f1(x)dx + o(d).

(2–6)

It must be noted that the density f1 is not a probability density function (pdf). Rather, it

is called a product density function, to distinguish it from a pdf.

These can be utilized to write the probability generating functional in the form,

G[ζ] = E

{
N∏

i=1

ζ(xi)

}

= P0 +
∞∑

r=1

Pr

∫
χr

ζ1(x1) . . . ζr(xr)fr(x1, . . . , xr)dx1 . . . dxr,

(2–7)
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0 T

Figure 2-2. An example of a single-neuron extracellular voltage recording showing a few
action potentials.

or, equivalently, as

G[1 + η] = 1 +
∞∑

k=1

1

k!

∫
χk

η1(x1) . . . ηr(xk)mk(x1, . . . , xk)dx1 . . . dxk, (2–8)

where the mk’s are the product densities, with

mk(x1, . . . , xk)dx1 . . . dxk ≈ E {N(dx1) . . . N(dxk)} . (2–9)

In this regard, Ramakrishnan [1950] was the first to derive explicit expression for

the factorial moments in terms of product densities and Stirling numbers. For the mth

moment it was obtained

E {N(dx)m} =
m∑

k=1

Cm
k

∫
χk

fk(x1, . . . , xk)dx1 . . . dxk, (2–10)

where the weight coefficients Cm
s are the Sterling numbers.

2.3 Spike Trains as Realizations of Point Processes

In neurophysiology it is widely accepted that the fundamental processing units

of the brain — the neuron cell — communicate through a discrete pulse-like wave of

voltage, called an action potential [Dayan and Abbott, 2001]. A neuron receives the action

potentials in its, typically, large number of input synapses and produces an output of the

same form in the axon, even though internally to the cell membrane the action potential is

converted into an analog potential change.

Action potentials, being electrical pulses, can be captured in single-neuron voltage

recordings (Figure 2-2), which record the voltage differential to a distant “ground”
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point, typically the skull. Despite the inevitable noise in these recordings, it is easily

observed that action potentials have a very stereotypical shape, with a characteristic

fixed amplitude and width associated with a given neuron. That is to say that, from a

neurophysiological perspective, the actual shape and magnitude of an action potential is

redundant because it contains no information, only the moment it occurs. As explained

earlier this kind of phenomena is best described by a point process model. Under this

perspective action potentials are simply called “spikes,” and these events are responsible

for transmitting the information in and out of the neuron only through their occurrence.

Correspondingly, a sequence of spikes ordered in time is termed a spike train. Since

spike trains always correspond to an observation or measurement associated with some

underlying point process they are considered to be realizations of a point process from

which only the number of spikes and the moments they occur are relevant.

2.4 Analysis and Processing of Spike Trains

Since analysis and processing of spike trains is the primal motivation for this work, for

completeness, this section briefly reviews many of the established approaches and methods

utilized in their study.

2.4.1 Intensity Estimation

Intensity function estimation is one of the most fundamental problems in spike trains

analysis, since an intensity function is a fundamental descriptor of the underlying point

process. There are basically three approaches for intensity function of a spike train:

1. Binning;

2. Kernel smoothing; and

3. Nonparametric regression with splines.

2.4.1.1 Binning

Binning is the predominant approach in current spike train analysis and processing

methods [Dayan and Abbott, 2001]. Statistically, it is motivated by the counting

process representation of a point process. Basically, the binned spike train is obtained
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Figure 2-3. Estimation of the intensity function by different procedures. (A) Spike train
to estimate the firing rate. (B) Normalized binned spike train, with bin
size ∆t = 100ms. (C)–(E) Estimated firing rate by kernel smoothing, for
the Gaussian function, Laplacian function and exponential decay function,
respectively. The kernel size parameter was 100ms for all three smoothing
functions.

by discretizing time and assigning the number of spikes occurring in the time quantization

interval (i.e., the bin) to the time instant. If the bin size is large compared to the average

inter-spike interval the transformation provides a crude yet effective estimate of the

instantaneous firing rate. For consistent intensity function estimation, the binned data is

normalized by the bin size (i.e., the size of the quantization interval), although this last

step is often skipped.

From a signal processing perspective, binning is a transformation which maps the

randomness in the spike train continuous time structure to randomness in the amplitude
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of the intensity estimation. The use of binning has clear advantages in terms of intuitive

understanding and ease of practical use, and the transformation of point processes into

discrete random processes allows for the wealth of conventional statistical time series

analysis and processing methods to be used. On the other hand, the discretization of

time affects the resolution in time of any analysis subsequently performed to the resulting

signal. This means that any temporal information in the spikes within and between bins is

disregarded, limiting the type of analysis that can be subsequently done. This is especially

alarming for neurophysiology use when a number of recent studies suggest that neurons

spike timing precision is on the sub-millisecond range [Wagner et al., 2005; Carr and

Konishi, 1990], and the actual spike times encode additional information [Hatsopoulos

et al., 1998; Vaadia et al., 1995; Mainen and Sejnowski, 1995]. Moreover, a reminiscent

problem is at what time-scale to analyze the data. That is, what bin size to choose?

Notice that the hard-limiting nature of the rectangular window used make this an even

harder task.

2.4.1.2 Kernel smoothing

Kernel smoothing is another approach to intensity estimation, and seems the method

of choice in the point processes literature. The main advantage compared to binning is

that the precision in the event location is preserved and fully incorporated in the intensity

estimation.

Of course, there are other ways to estimate the intensity function of a point process,

mainly through smoothing. That is, by convolving some smooth function with the

spike train (seen as a sum of time-shifted impulses). Figure 2-3 illustrates some of these

methods. More elaborated methods included Bayesian and spline fitting to normalized

binned data [Kass et al., 2003; Ventura et al., 2002]. In any case, the improvements in

terms of resolution and/or in the estimation of the intensity function these methods might

provide are made at the expense of much higher computation complexity. In addition, like

for the binned spike trains, any further computation is done without a clear understanding
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of the mathematical and statistical properties of the space. A realization of a point process

can be interpreted as a signal in a continuous parameter space composed as a sum of

impulses centered at the event coordinates. Thus, spike trains can be written as,

s(t) =
N∑

m=1

δ(t − tm), (2–11)

where N is the number of spikes and tm the spike times in the recording interval, and

δ(·) denotes the Dirac delta. Then, the estimated intensity function is obtained by simply

convolving s(t) with the smoothing kernel h, yielding

λ̂(t) =
N∑

m=1

h(t − tim). (2–12)

Notice that the smoothing function must integrate to 1 so that the estimated intensity

function is consistent (integral of the estimated intensity function must equal the number

of spikes).

It should be remarked that binning can be posed in terms of kernel smoothing.

Specifically, binning of spike trains can be put as a two step procedure:

1. Quantize the spike times to a precision of ∆t/2, where ∆t is the bin size;

2. Convolve the sequence of time-shifted impulses centered at the quantized spike times
with a rectangular window of width ∆t.

This view makes it clear the time discretization in binning. The two approaches are

illustrated in Figure 2-3 for several smoothing functions.

2.4.1.3 Nonparametric regression with splines

A recently proposed method for intensity estimation is nonparametric regression with

splines [Ventura et al., 2002; Kass et al., 2003]. The basic premise in the use of splines is

the smoothness of the intensity functions, which is translated into constraints with regards

to which the optimization algorithm finds the estimated intensity function as a weighted

combination of splines. In particular, in Kass et al. [2003] the Bayesian adaptive regression

splines (BARS) method was utilized since it automatically finds the “knots” where the
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splines are joined together, thus rendering the methods basically parameter-free. Although

this method does not require the choice of bin or kernel size, unlike the previous two

approaches, it can only be utilized in offline studies and it has much higher computational

complexity due to the Monte Carlo optimization approach utilized by BARS.

Instead of being applied to the data directly spline smoothing can, alternatively, be

applied to the binned spike train to smooth the estimated intensity function. Indeed, one

of the most important conclusions by Kass et al. [2003] is the much greater data efficiency

in intensity estimation by smoothing.

2.4.1.4 Trial averaging

An approach often employed in conjunction with either of the previous methods

is trial averaging. This means that if multiple realizations of the experimental trial are

available, and stationary is assumes between trials, then one can average the estimated

intensity function across trials for improved statistical robustness. The widely used peri-

stimulus time histogram (PSTH) is an example of trial averaged intensity estimation using

binning.

To implement trial averaging the spike trains are first time aligned with respect to

the time a stimulus is applied, and then one can first estimate the intensity function

for each trial and then average over trials or, conversely, condense the spike trains of all

trials together and estimate the intensity function attending for the normalization by the

number of trials. One of the advantages of trial averaging is that, from the limit theorem

for point processes, the combined spike trains approach a realization of a Poisson process,

even if the true underlying point process contains history. Put differently, the estimated

intensity function is more likely reflect the true instantaneous firing rate, as intuitively

expected.

On the other hand, the main difficulty with trial averaging is the assumption of

stationarity between trials. That it, is assumes that the process giving rise to the spike

train did not change. However, given the many factors the influence the brain activity
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(memory, learning, plasticity, attention focus, etc.) this is often a difficult assumption to

justify, especially when the number of trials is large.

2.4.2 Methods for Spike Train Analysis

Considering only one neuron in the brain at a time, the information it conveys is

expressed through changes in the firing pattern (rate or temporal precision). In this

case, one needs to measure the statistics of the observed spike train to infer the neuronal

state. The intensity function captures the neuron instantaneous firing rate is therefore

of great importance. Any of the methods described in the previous section can be

utilized but, as mentioned, binning is the most common method. The peri-stimulus

time histogram (PSTH) is often used for spike train analysis [Perkel et al., 1967a; Gerstein

and Aertsen, 1985].1 The PSTH is particularly useful to study and verify the presence of

modulations in the neural activity (for example, in terms of the firing rate) with regards to

a time-locking stimulus.

Neurons in the brain greatly interact with neighboring neurons through there many

(on the order of thousands) synaptic connections. However the previous approach,

although well suited statistically, does not scale properly to the simultaneous analysis of

multiple spike trains. For this, independence is habitually assumed. Consequently, how

to find and measure association or couplings between neurons is another major problem

for which several methods have been proposed. The cross-correlation [Perkel et al.,

1967b; Dayan and Abbott, 2001] is probably the most widely used technique to measure

interactions between two spike trains.

1 Sometimes the peri-event time histogram (PETH) is mentioned in the literature.
Conceptually, the PSTH and PETH are the same thing, although the time mark for
alignment of the spike trains is general in the latter case.
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If NA and NB denotes the binned spike trains, the cross-correlation (or correlogram)

is defined as,

RA,B[l] = E {NA[n]NB[n − l]} ' 1

M

M∑
n=l

NA[n]NB[n − l]. (2–13)

where M is the total number of bins and NA[n], NB[n] are the number of spikes in the nth

bin, respectively.

Cross-correlation as a statistical measure of similarity between spike trains was

“imported” from random processes and currently can only be applied to the binned spike

trains. Moreover, the expectation implies averaging over time which limits its usefulness as

a descriptor of the evolution of correlation as a function of time, and intrinsically requires

stationarity and ergodicity over the averaging time interval. To address non-stationary,

cross-correlation is averaged over small windows of time which further reduce the time

resolution at the sacrifice of statistical reliability.

The limited temporal resolution of cross-correlation lead to the use of other methods.

The JPSTH Gerstein and Perkel [1969]; Aertsen et al. [1989]; Gerstein and Perkel [1972]

is another widely used tool to characterize the evolution of synchrony over time between

two neurons. The fundamental idea is a smoothed two-dimensional scatter diagram of the

neuronal firings from one neuron with respect to the other, and time-locked to a stimulus.

Although the averaging over time in the JPSTH is removed (apart from smoothing),

and thus provides more detailed information about time-dependent cross-correlation

with respect to the stimulus, this approach requires trial averaging. Therefore, one

needs to assume stationarity between trials which, for the same reasons given previously

(Section 2.4.1.4), is an unrealistic assumption. Furthermore, the approach rapidly becomes

unmanageable for more than just a few neurons since the analysis is does in pairs (e.g.,

16 neurons requires 120 JPSTH plots). The joint interval histogram (JIH) [Rodieck et al.,

1962] is a similar tool to identify correlations between inter-spike intervals for which

similar considerations may be made.
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Other spike train analysis methods in the time domain include unitary events [Grün

et al., 2002a,b] and the gravity transform [Gerstein et al., 1985; Gerstein and Aertsen,

1985]. Unitary events is a statistical method to detect coincident spike activity above

chance. It does so by comparing the number of coincident spikes with the expected

number by chance for the estimated “local” firing rate. However, like other methods, it is

sensitive to binning and employs a large moving window analysis for statistical reliability.

The gravity transform tackles some of these problems. Mainly because it does not require

binning and provides a way to visualize the evolution of synchrony over time. However,

it lacks a statistical baseline which limits the knowledge that can be inferred from the

analysis.

Several methods for analysis in the frequency-domain have also been proposed.

For instance, the partial directed coherence (PDC) [Baccalá and Sameshima, 1999;

Sameshima and Baccalá, 1999], and the method by Hurtado et al. [2004]. PDC employs

multivariate time series analysis to together with the ideas behind the Granger causality

concept to infer inter-dependencies between neurons. But, due to the transformation

into the frequency domain, these methods operate over windows of data. Therefore, they

require stationarity for the analysis to be valid, and the time resolution is reduced as a

consequence.

2.4.3 Processing of Spike Trains

Processing of spike trains is of great interest from a neurophysiological perspective

but even more important from an engineering point of view. Mainly because of the

tremendous implications for neural prostheses, and in particular for the applications in

brain-machine interfaces (BMI).

In the recent years computation with artificial neural networks of spiking neurons

has also emerged as an engineering application where tools to do signal processing with

spike trains are naturally of great importance. An example is the emerging concept of

liquid state machines (LSM) proposed by Maass et al. [2002]. LSMs use the principles
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of high-dimensional dynamical systems to perform computation with recurrent neural

networks of spiking neurons. Another example are spiking neural networks (SNN)

currently being studied and applied to large number of problems. Using processing

elements that more closely resemble the actual neurons, these networks extend the

computation paradigm of artificial neural networks in a way that more closely mimics the

brain [Maass and Bishop, 1998; Gerstner and Kistler, 2002].

There are four main approaches currently utilized for processing of spike trains:

1. Linear/nonlinear models;

2. Probabilistic models;

3. State space models; and

4. Volterra/Wiener models.

The literature on these methods will now be quickly reviewed. From the review it will be

clearly shown that, as said above, processing of spike trains has been largely motivated

and applied to neural prostheses, which is also the (long-term) motivation for this work.

In spite of that, we hope that the reader may realize the wide implications of this work

beyond this realm of problems.

2.4.3.1 Linear/nonlinear models

These models are the most direct approach towards processing of spike trains,

since it utilizes current time series processing techniques. So that these models can be

directly applicable the spike train must be transformed into a discrete-time signal, and

the standard approach is to utilize binning, since as explained earlier binning implements

this mapping. It must be remarked that these cases are predicated on the idea that the

information to be extracted is encoded in modulations of the firing rates [Nicolelis, 2003].

Indeed, most results reported in the literature utilize binned spike trains with bin size

∼ 100ms, corresponding to firing rate estimation. These models have proven particular

important in BMIs since the output is a discrete-time signal of the movement variables.

At the current stage of research, in most of the BMI experimental paradigms the

desired response (intended movement) is available. Therefore, these paradigms lend
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themselves to supervised learning, where the problem is well formulated as a system

modeling task. The Wiener filter [Haykin, 2002] is the linear model typically employed,

having been extensively utilized in many studies in the literature [Chapin et al., 1999;

Wessberg et al., 2000; Carmena et al., 2003]. For nonlinear modeling, neural networks have

been used. See Kim et al. [2006]; Sanchez et al. [2003]; Kim [2005]; Sanchez [2004] for a

comparison of methods.

It is important to remark that, because for the scenarios envisioned for BMIs the

desired response will not be available, some attempts have also been made to move

towards the use of unsupervised learning models [Darmanjian et al., 2007].

2.4.3.2 Probabilistic models

Probabilistic models attempt to interpret spike trains content from some probabilistic

model, often specific to a given task.

The work by Georgopoulos et al. [1982, 1988] represents a landmark in spike train

decoding, when Georgopoulos suggested the concept of population coding. Georgopoulos

showed in a center-out task that if each neuron is a assigned a “tunning curve,” basically

denoting the distribution of the movement angle as a function of the neuron’s firing rate,

and by averaging across a population of neurons a high precision is attained. Perhaps the

most important contribution of this work was to provide evidence for the importance of a

group of neurons in conveying information in a reliable and effective manner.

Another probabilistic worthy of remark is the Bayesian approach by Shenoy’s group

(see, for example, Shenoy et al. [2003]). Based on the specific experimental paradigm,

a state space model with transitions decoded by maximum a posterior probability, was

proposed. This implied the estimation of the marginal distributions for each neuron

from data. These distributions were then combined using Bayes’ theorem under an

independence assumption.

In either of these approaches independence among neurons needs to be assumed. As

we had remarked earlier, this is one of the major limitations of statistical methods.
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2.4.3.3 State space models

An alternative to the above methods is to utilize state space models together with

sequential estimation. These approaches make use of Bayesian tracking to probabilistically

infer the evolution of a state sequence over time. Roughly speaking, this is similar to the

idea of hidden Markov models (HMMs) but for a continuous state space.

The simplest example of this methodology is the use of Kalman filtering applied to

the binned spike trains [Wu et al., 2004]. Kalman filtering applied to spike train processing

has numerous limitations: both the model describing the evolution through the state

space and the readout are linear, all distributions are assumed to be Gaussian, and is

applied to binned spike trains only. Under similar assumptions but applied to the spike

trains directly2 has been also proposed by several groups Eden et al. [2004]; Brown et al.

[2001b]. Notice that in the latter the forward (encoding) model is needed and has been

assumed to be Gaussian.

To avoid these assumptions, in recent studies particle filters have been used which

allow for arbitrary forward models, non-linear evolution through the state space and

non-Gaussian distributions. Particle filter creates a probabilistic state space model for

the decoder which is recursively and continuously adapted through a Bayesian approach

based on the latest observation. However, update of the probabilistic model used Monte

Carlo sequential estimation which is not only extremely computational intensive due to

the random sampling of the space, but also requires a priori knowledge of properties of the

neurons being measured.
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Figure 2-4. Diagram of the Volterra/Wiener model for system identification. A
MISO (multiple-input single-output) configuration is shown. For MIMO
configurations, basically, the MISO structure is repeated for each output.

2.4.3.4 Volterra and Wiener models

Sometimes the spike train analysis or signal processing problem at hands can

formulated as a system identification task. Since the brain is known to be highly

nonlinear then a model with nonlinear modeling ability needs to be utilized, such as a

neural network. However, if the output is to be a spike train then the Volterra/Wiener

models have been utilized [Marmarelis, 2004, 1993; Song et al., 2007]. This is particularly

important for the study of specific neural systems by estimating the input-output model

from recorded spike trains, or in neural prostheses aiming to replace or aid the functioning

of a failing neural structure. Figure 2-4 depicts the architecture of the Volterra/Wiener

model.

2 More correctly said, the sequential methods work with a binary representation of the
spike train, equivalent to binning with a very small bin size (∼ 1ms), which corresponds to
a Bernoulli random process.
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A time-invariant system can be expressed in terms of the Volterra series as

y(t) = h0 +

∫
R

h1(τ1)x(t − τ1)dτ1

+

∫
R2

h2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

+

∫
R3

h3(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3)dτ1dτ2dτ3

+ · · ·

=
∞∑

n=0

∫
Rn

hn(τ1, . . . , τn)x(t − τ1) · · · x(t − τn)dτ1 · · · dτ3

=
∞∑

n=0

Hn[x(t)],

(2–14)

where H0[x(t)] = h0 and

Hn[x(t)] =

∫
Rn

hn(τ1, . . . , τn)x(t − τ1) · · · x(t − τn)dτ1 . . . dτn (2–15)

is the nth order Volterra functional. One can think of the Volterra series as a Taylor

series with memory. The functions hn are called the Volterra kernels of the system and

are causal; that is, hn(τ1, . . . , τn) = 0, if any τi < 0, i = 1, . . . , n. In general, these

kernels are not unique for a given output. However, if symmetry is imposed with respect

to permutations of the τi, that is, if hn(. . . , τi, . . . , τj, . . .) = hn(. . . , τj, . . . , τi, . . .), for all

i, j = 1, . . . , n, then it can be shown that the Volterra series expansion is unique.

In the Volterra series the output of two distinct functionals is not, in general,

orthogonal (i.e., uncorrelated). However in the Wiener series the functionals form a

complete orthonormal basis. In terms of the Wiener series the system can be expressed as

y(t) =
∞∑

n=0

Gn[x(t)], (2–16)

where Gn[x(t)] are the Wiener functionals. The characterizing feature of the Wiener

functionals is their orthonormality for zero-mean white Gaussian distributed input.
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The Wiener and Volterra series are two equivalent approaches to characterize a

system. However, the orthogonality of the basis functionals can be used to “isolate” each

of the term in the series, this facilitating the estimation of the corresponding kernel. In

fact, if the input is zero-mean white Gaussian distributed, the leading Wiener kernels

can be obtained directly by cross-correlations between the input (at various lags) and

output. Moreover, there is a mathematical relation between the functionals of the two

representations. For neurophysiological studies, however, the Volterra series as been more

widely used since the estimated kernels provide a better analytical description of the

neurophysiological system [Marmarelis, 2004].

This approach has very powerful system modeling capability. However, in practice, it

also present several difficulties: a very large number of coefficients need to be estimated,

especially for higher order kernels, thus needing large volumes of data for the estimation of

cross-correlations, and it estimation requires that the input is zero-mean white Gaussian

distributed. Moreover, this approach can only be used if the system is assumed stationary

and time-invariant.
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CHAPTER 3
INNER PRODUCTS FOR POINT PROCESSES, AND INDUCED REPRODUCING

KERNEL HILBERT SPACES

As motivated in Chapter 1, the fundamental operator for signal processing is an inner

product definition. In this chapter we introduce several inner products for point process.

More important than the inner product definitions themselves we want to illustrate

how kernels for point processes can be defined following to different two approaches.

Afterwards, we prove several properties of the kernels defined to demonstrate that the

kernels are well-posed and each induces a corresponding reproducing kernel Hilbert space

(RKHS) for computation. The relation between the RKHS induced by one of these kernels

and others is analyzed since it provides insight on the full potential of these kernels

may be explored. The problem of how to estimate these kernels from realizations is also

considered.

3.1 Inner Product for Event Coordinates

Denote the mth event coordinate in a realization of the point process indexed by

i ∈ N as tim ∈ T , with m ∈ {1, 2, . . . , Ni} and Ni the number of events in the realization.

To simplify the notation, however, the explicit reference to the point process index will be

omitted if it is not relevant or obvious from the context.

The simplest inner product that can be defined for point processes operates with only

two event coordinates at a time. In the general case, such an inner product can be defined

in terms of a kernel function defined on T ×T into the reals, with T the event space where

the events occur. Let κ denote such a kernel. Conceptually, this kernel operates in the

same way as the kernels operating on data samples in machine learning [Schölkopf et al.,

1999] and information theoretic learning [Pŕıncipe et al., 2000]. Although it operates only

with two events, it will play a major role whenever we operate with complete realizations

of point processes. Indeed, the estimator for one of the point process kernels defined next

relies on this simple kernel as an elementary operation for computation or composite

operations.
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To take advantage of the framework for statistical signal processing provided

by RKHS theory, κ is required to be a symmetric positive definite function. By the

Moore-Aronszajn theorem [Aronszajn, 1950], this ensures that an RKHS Hκ must exist for

which κ is a reproducing kernel. The inner product in Hκ is given as

κ(tm, tn) = 〈κ(tm, ·), κ(tn, ·)〉Hκ
= 〈Φm, Φn〉Hκ

. (3–1)

where Φm is the element in Hκ corresponding to tm (that is, the transformed event

coordinate).

Since the kernel operates directly on event coordinates and, typically, it is undesirable

to emphasize events in this space, the kernel κ is further required to be shift-invariant.

That is, for any θ ∈ R,

κ(tm, tn) = κ(tm + θ, tn + θ), ∀tm, tn ∈ T . (3–2)

Hence, the kernel is only sensitive to the difference of the arguments and, consequently, we

may write κ(tm, tn) = κ(tm − tn).

For any symmetric, shift-invariant, and positive definite kernel, it is known that

κ(0) ≥ |κ(θ)|.1 This is important in establishing κ as a similarity measure between event

coordinates since, as usual, an inner product should intuitively measure some form of

inter-dependence. However, the conditions posed do not restrict this study to a single

kernel. On the contrary, any kernel satisfying the above requirements is theoretically valid

and understood under the framework proposed here, although the practical results may

vary.

1 This is a direct consequence of the fact that symmetric positive definite kernels denote
inner products that obey the Cauchy-Schwarz inequality.
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An example of a family of kernels that can be used (but not limited to) are the radial

basis functions [Berg et al., 1984],

κ(tm, tn) = exp(−|tm − tn|p), tm, tn ∈ T , (3–3)

for any 0 < p ≤ 2. Some well known kernels, such as the widely used Gaussian and

Laplacian kernel are special cases of this family for p = 2 and p = 1, respectively.

Also of interest is to notice that for the natural norm induced by the inner product,

shift-invariant kernels have the following property,

‖Φm‖ =
√

κ(0), ∀Φm ∈ Hκ. (3–4)

Since the norm in Hκ of the transformed spike times point is constant, all the event

coordinates are mapped to the surface of an hypersphere in Hκ. The space of transformed

event coordinates is called the manifold of P(T ). This provides a different perspective

of why the kernel used must be non-negative. Furthermore, the geodesic distance

corresponding to the length of the smallest path contained within this manifold (in

this case, the hypersphere) between two functions in this manifold, Φm and Φn, is given by

d(Φm, Φn) = ‖Φm‖ arccos

(
〈Φm, Φn〉
‖Φm‖ ‖Φn‖

)
=

√
κ(0) arccos

[
κ(tm, tn)

κ(0)

]
.

(3–5)

Put differently, from the geometry of the space of the transformed event coordinates,

the kernel function is proportional to the cosine of the angle between two points in this

space. Because the kernel is non-negative, the maximum angle is π/2, which restricts

the manifold of transformed spike times to a small area of the surface of the sphere.

With the kernel inducing the above metric, the manifold of the transformed points forms

a Riemannian space. This space is not a linear space. Its span however is obviously a

linear space. In fact, it equals the RKHS associated with the kernel. Computing with the

transformed points will almost surely yield points outside of the manifold of transformed
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event coordinates. This means that such points cannot be mapped back to the input space

directly. This restriction however is generally not a problem since most applications deal

exclusively with the projections of points in the space, and if a representation in the input

space is desired it may be obtained from the projection to the manifold of transformed

input points.

The kernels κ discussed this far operate with only two event coordinates. As in

commonly done in kernel methods, kernels on event coordinates can be combined to

define kernels that operate with whole realizations of point processes. Suppose that one

is interested in defining a kernel on point process realizations to measure similarity in the

event patterns [Chi and Margoliash, 2001; Chi et al., 2007]. This kernel could be defined

as

V (pi, pj) =


max

l=0,1,...,(Ni−Nj)

Nj∑
n=1

κ(tin+l − tjn), Ni ≥ Nj

max
l=0,1,...,(Nj−Ni)

Ni∑
n=1

κ(tin − tjn+l), Ni < Nj.

(3–6)

Basically, this kernel measures if the realizations of the point processes have a one-to-one

correspondence of the sequence of events. This occurs if the event coordinates occur with

high precision and high reliability between the two point processes. Since point processes

are defined here in terms of fixed duration, the maximum operation in the definition

searches for the best event-to-event correspondence.

3.2 Inner Products for Point Processes

In the end of the previous section it was briefly illustrated how inner products for

point processes can be built from kernels for spike times as traditionally done in machine

learning. Obviously, many other point process kernels that operate directly from data

realizations could be defined for diverse applications in a similar manner. However, in

doing so it is often unclear the statistical structure embodied or point process model

assumed by the kernel.
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Rather than doing this directly, in this section, general inner products for point

processes are defined from the intensity functions, which are fundamental statistical

descriptors of point processes. This bottom-up construction of the kernels for point

processes is unlike the previous approach taken in the previous section and is rarely taken

in machine learning, but it provides direct access to the properties of the kernels defined

and the RKHS they induce.

There is a great conceptual difference between the two approaches to design inner

products for point processes: from kernels on event coordinates and from conditional

intensity functions. In the first case, the inner product is defined directly for realizations of

point processes and therefore the focus is placed in the estimators from data, whereas

in the second case the inner product is primarily a statistical descriptor for which

the problem of estimation from realizations needs to addressed later. Although both

approaches may play a very important role in spike train methods, in this dissertation

we focus of the second case, presented in this section, since we feel it is a more principled

methodology.

3.2.1 Linear Cross-Intensity Kernels

In general, to completely characterize a point process the conditional intensity

function λ(t|Ht) is needed, where t ∈ T = [0, T ] denotes the time coordinate and Ht is

the history of the process up to time t. Consider two point processes, pi, pj ∈ P(T ), with

i, j ∈ N, and denote the corresponding conditional intensity functions by λpi
(t|H i

t) and

λpj
(t|Hj

t ), respectively. Assuming the point processes are defined in a finite parameter

space T , and the boundedness of the conditional intensity functions, we have that∫
T

λ2(t|Ht)dt < ∞. (3–7)

In words, conditional intensity functions are square integrable functions on T and, as

a consequence, are valid elements of an L2(T ) space. Obviously, the space spanned by

the conditional intensity functions, denoted L2(λpi
(t|H i

t), t ∈ T ), is contained in L2(T ).
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Therefore, we can easily define an inner product of the conditional intensity functions in

L2(λpi
(t|H i

t), t ∈ T ) as the usual inner product in L2(T ),

I(pi, pj) =
〈
λpi

(t|H i
t), λpj

(t|Hj
t )

〉
L2(T )

=

∫
T

λpi
(t|H i

t)λpj
(t|Hj

t )dt.
(3–8)

Although we defined the inner product in the space of conditional intensity functions,

it is in effect a function of the two point processes, and thus is a kernel function in the

space of point processes P(T ). The advantage in defining the inner product in terms of

the conditional intensity functions is that the resulting kernel incorporates the statistics of

the point processes directly. Moreover, the defined kernel can be utilized with any point

process model since the conditional intensity function is a complete characterization of

the point process [Cox and Isham, 1980]. Notice however that Equation 3–8 denotes a

functional inner product definition, in the sense that the conditional intensity functions

are in general well defined functions of t only for particular realizations of the point

processes.

The dependence of the conditional intensity functions on the whole history of the

process renders estimation of the previous kernel intractable from finite data, as almost

always occurs in applications. A possibility is to consider simplified point process models

which reduce the numbers of parameters needed to characterize the conditional intensity

functions. One can consider, for example, that

λ(t|Ht) = λ(t, t − t∗), (3–9)

where t∗ is the spike time immediately preceding t. This restricted form gives rise to

inhomogeneous Markov interval (IMI) processes [Kass and Ventura, 2001]. In this way it

is possible to estimate the conditional intensity functions from realizations of the point

processes, and then utilize the above inner product definition to operate with them. This

point process model is very interesting it is simple yet general enough for modeling beyond
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renewal processes, but since we aim to compare the general principles presented starting

from more typical approaches it will not be pursued in this paper. Needless to say, the

same principles discussed here can be directly utilized in applications, although at the

expense of computational complexity in the computation of the inner product as discussed

later.

Another way to deal with the memory dependence is to take the expectation over the

history of the process Ht which yields simply the intensity function solely depending on

time. That is,

λpi
(t) = EHi

t

{
λpi

(t|H i
t)

}
. (3–10)

This expression is a direct consequence of the general limit theorem for point processes

[Snyder, 1975] which, as introduced in Chapter 2, states that if multiple point processes

are combined they converge towards a Poisson point process. An equivalent but alternate

perspective is to merely assume directly Poisson processes to be a reasonable model for the

problem at hands. The difference between the two perspectives is that in the second case

the intensity functions can be estimated from single realizations in a plausible and simple

manner. In either perspective, the kernel becomes simply

I(pi, pj) =

∫
T

λpi
(t)λpj

(t)dt. (3–11)

Starting from the most general definition of inner product several kernels from

constrained forms of conditional intensity functions can be proposed for use in applications.

One can think that the definition of Equation 3–8 gives rise to a family of cross-intensity

(CI) kernels defined explicitly as an inner product, as is important for signal processing.

Specific kernels are obtained from Equation 3–8 by imposing some particular form on

how to account to the dependence on the history of the process and/or allowing for a

nonlinear coupling between spike trains. Two fundamental advantages of the construction

methodology is that it is possible to obtain a continuous functional space where no binning
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is necessary and that the generality of the approach allows for inner products to be crafted

to fit a particular problem that one is trying to solve.

From the suggested definitions, the memoryless cross-intensity (mCI) kernel defined

in Equation 3–11 clearly adopts the simplest form since the influence of the history of

the process is neglected by the kernel. Interestingly, this simple kernel defines an RKHS

that is equivalent to cross-correlation analysis so widespread, for example, in spike train

analysis [Paiva et al., 2008], but this derivation clearly shows that it is the simplest of

the cases. Still, the mCI kernel serves well as an example of the RKHS framework since

it provides a broad perspective to several other works presented in the literature and

suggests how methods can be reformulated to operate directly with point processes. In any

case, as will be shown in Chapters 6 and 7, the derived algorithms are typically applicable

for any kernel on point processes.

3.2.2 Nonlinear Cross-Intensity Kernels

The kernels defined in the previous section are linear operators in the space spanned

by the conditional intensity functions and are the ones that relate the most with the

present analysis methods. However, point process kernels can be made nonlinear by

introducing a nonlinear weighting between the conditional intensity functions in the

inner product. With this approach additional information can be extracted from the data

since the nonlinearity implicitly incorporates in the measurement higher-order couplings

between the estimated conditional intensity functions. This is of especial importance

for the study of doubly-stochastic point processes, since the nonlinear weighting kernel

basically aids the point process kernel to sense the higher-oder moments of the intensity

process.

In the example shown we shall consider, for ease of exposition, the intensity functions

directly (that is, the memoryless case). However, we remark that the methodology

followed can be easily extended to general point process models as above.

56



By analogy to how the Gaussian kernel is obtained from the Euclidean norm, we can

define a similar kernel for spike trains as

I∗
σ(pi, pj) = exp

[
−

∥∥λpi
− λpj

∥∥2

σ2

]
, (3–12)

where σ is the nonlinear weighting kernel size parameter and the norm naturally induced

by a linear point process kernel,
∥∥λpi

− λpj

∥∥ =
√〈

λpi
− λpj

, λpi
− λpj

〉
, was used. This

kernel is clearly nonlinear on the space of the intensity functions. On the other hand, the

nonlinear mapping in this kernel does not operate directly on the intensity functions but

on their norm and inner product and thus have reduced descriptive ability on the coupling

of their time structure.

An alternate nonlinear CI kernel definition for point processes is

I†
σ(pi, pj) =

∫
T
Kσ

(
λpi

(t), λpj
(t)

)
dt, (3–13)

where Kσ is a symmetric positive definite kernel with kernel size parameter σ. The

advantage of this definition is that the kernel measures the possibly nonlinear coupling

between the point process time structure expressed in the intensity functions. To verify

this consider as an example that the Gaussian kernel, Kσ(x) = exp [−x2/(2σ2)], was

utilized in the computation of the point process kernel. The Gaussian kernel has Taylor

series expansion

Kσ(x) =
∞∑

n=0

(−1)n

2nσ2nn!
x2 = 1 − x2

2σ2
+

x4

8σ4
− . . . (3–14)

Thus, this point process kernel depends on the norm of the spike trains (defined throught

the mCI kernel) but also on higher-order moments of the difference between the intensity

functions. In the remainder of this dissertation we shall refer to the nonlinear CI kernel in

Equation 3–13 as the nCI kernel.
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3.3 Properties of Cross-Intensity Kernels

3.3.1 Properties of Linear Cross-Intensity Kernels

In this section we present some relevant properties of the linear CI kernels defined

in the general form in Equation 3–8. In addition to the knowledge they provide, they are

necessary for establishing that the CI kernels are well defined, induce an RKHS with the

necessary mathematical structure for computation, and aid in the understanding of the

following sections. This section deals exclusively with CI kernels linear in the space of

conditional intensity functions, unless explicitly stated, and thus linearity shall be implicit.

Nonlinear CI kernels are studied in the next section.

Property 3.1. The linear CI kernels are symmetric, non-negative and linear operators in

the space of the intensity functions.

Because the CI kernels operate on elements of L2(T ) and correspond to the usual dot

product from L2, this property is a direct consequence of the properties inherited. More

specifically, this property guaranties the CI kernels are valid inner products.

Property 3.2. For any set of n ≥ 1 point processes, the CI kernel matrix

I =



I(p1, p1) I(p1, p2) . . . I(p1, pn)

I(p2, p1) I(p2, p2) . . . I(p2, pn)

...
...

. . .
...

I(pn, p1) I(pn, p2) . . . I(pn, pn)


,

is symmetric and non-negative definite.

Proof. The symmetry of the matrix results immediately from Property 3.1. By definition,

a matrix is non-negative definite if and only if aT Ia ≥ 0, for any aT = [a1, . . . , an] with

ai ∈ R. So, we have that

aT Ia =
n∑

i=1

n∑
j=1

aiajI(pi, pj), (3–15)
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which, making use of the general definition for CI kernels (Equation 3–8), yields,

aT Ia =

∫
T

 n∑
i=1

aiλpi
(t|H i

t)

(
n∑

j=1

ajλpj
(t|Hj

t )

)
dt

=

〈
n∑

i=1

aiλpi
(·|H i

t),
n∑

j=1

ajλpj
(·|Hj

t )

〉
L2(T )

=

∥∥∥∥∥
n∑

i=1

aiλpi
(·|H i

t)

∥∥∥∥∥
2

L2(T )

≥ 0.

(3–16)

Through the work of Moore [1916] and due to the Moore-Aronszajn theorem

[Aronszajn, 1950], the following two properties result as corollaries of Property 3.2.

Property 3.3. CI kernels are symmetric and positive definite kernels. Thus, by definition,

for any set of n ≥ 1 point processes and corresponding n scalars a1, a2, . . . , an ∈ R,

n∑
i=1

n∑
j=1

aiajI(pi, pj) ≥ 0. (3–17)

Property 3.4. There exists an Hilbert space for which a CI kernel is a reproducing kernel.

Actually, Property 3.3 can be obtained explicitly by verifying that the inequality

of Equation 3–17 is implied by Equation 3–15 and Equation 3–16 in the proof of

Property 3.2.

Property 3.2, Property 3.3 and Property 3.4 are equivalent in the sense that any of

these properties implies the other two. In our case, Property 3.2 is used to establish the

other two. The most important consequence of these properties, explicitly stated through

Property 3.4, is that a CI kernel induces a unique RKHS, denoted in general by HI . In

the particular case of the mCI kernel the RKHS is denoted HI .

Property 3.5. The CI kernels verify the Cauchy-Schwarz inequality,

I2(pi, pj) ≤ I(pi, pi)I(pj, pj) ∀pi, pj ∈ P(T ). (3–18)
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Proof. Consider the 2 × 2 CI kernel matrix,

I =

 I(pi, pi) I(pi, pj)

I(pj, pi) I(pj, pj)

 .

From Property 3.2, this matrix is symmetric and non-negative definite. Hence, its

determinant is non-negative [Harville, 1997, pg. 245]. Mathematically,

det(I) = I(pi, pi)I(pj, pj) − I2(pi, pj) ≥ 0,

which proves the result of Equation 3–18.

3.3.2 Properties of Nonlinear Cross-Intensity Kernels

We now prove that the nonlinear CI kernels defined in Section 3.2.2 are well

defined. That is, they denote inner products in some RKHS of point processes. The

two fundamental requirements are that the point process kernels are symmetric and

positive definite in the space of point processes.

Property 3.6. The point process kernel I∗
σ (defined in Equation 3–12) is a symmetric

positive definite kernel of point processes.

Proof. This function is obviously symmetric as the symmetry is inherited directly from the

properties of the norm. In light of Theorem 2.2 in Chapter 3 of Berg et al. [1984], to prove

the function is positive definite it suffices to prove that the norm of the difference between

two intensity functions is negative definite. By definition, a real function ζ is negative

definite if and only if it is symmetric and

n∑
i=1

n∑
j=1

cicjζ(xi, xj) ≤ 0, (3–19)

for all n ≥ 2, {x1, . . . , xn} ⊂ X and c1, . . . , cn ∈ K with
∑n

i=1 ci = 0. Let n ≥ 2. For all

n, consider the set of point processes {p1, . . . , pn} ⊂ P(T ), and c1, . . . , cn ∈ R such that
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∑n
i=1 ci = 0. Since the function is symmetric it remains to prove that

n∑
i=1

n∑
j=1

cicj

∥∥λpi
− λpj

∥∥2 ≤ 0. (3–20)

Using the norm induced by one of the linear CI kernels, yields

n∑
i=1

n∑
j=1

cicj

〈
λpi

− λpj
, λpi

− λpj

〉
=

n∑
i=1

n∑
j=1

cicj

[
〈λpi

, λpi
〉 − 2

〈
λpi

, λpj

〉
+

〈
λpj

, λpj

〉]
=

(
n∑

i=1

ci 〈λpi
, λpi

〉

)(
n∑

j=1

cj

)
︸ ︷︷ ︸

=0

−2

〈
n∑

i=1

ciλpi
,

n∑
j=1

cjλpj

〉

+

(
n∑

i=1

ci

)
︸ ︷︷ ︸

=0

(
n∑

j=1

cj

〈
λpj

, λpj

〉)

= −2

∥∥∥∥∥
n∑

i=1

ciλpi

∥∥∥∥∥ ≤ 0,

(3–21)

since the norm is, by definition, always positive.

Property 3.7. For any symmetric positive definite kernel Kσ, the nonlinear CI kernel I†
σ

(defined in Equation 3–13) is a symmetric positive definite kernel of point processes.

Proof. The symmetry of I†
σ is a direct consequence of the symmetry of the kernel Kσ.

Denote by {p1, . . . , pn} ⊂ P(T ) any set of n point processes, with n ≥ 2, and consider

coefficients a1, . . . , an ∈ R. To prove that I†
σ is positive define one needs to show that

n∑
i=1

n∑
j=1

aiajI
†
σ(pi, pj) ≥ 0. (3–22)

Substituting the definition of I†
σ in the previous equation yields,

n∑
i=1

n∑
j=1

aiajI
†
σ(pi, pj) =

n∑
i=1

n∑
j=1

aiaj

∫
T
Kσ(λpi

(t), λpj
(t))dt

=
n∑

i=1

n∑
j=1

aiaj

∫
T

〈
Υλpi (t)

, Υλpj (t)

〉
HK

dt,

(3–23)
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where the kernel Kσ was substituted by its inner product in the corresponding RKHS

HK, and Υλpi (t)
denotes the transformation of the intensity function value at time t (the

argument of Kσ) into HK. Utilizing the linearity of the integral and the inner product

operator leads to

n∑
i=1

n∑
j=1

aiajI
†
σ(pi, pj) =

∫
T

〈
n∑

i=1

aiΥλpi (t)
,

n∑
j=1

ajΥλpj (t)

〉
HK

dt

=

∫
T

∥∥∥∥∥
n∑

i=1

aiΥλpi (t)

∥∥∥∥∥
2

HK

dt ≥ 0,

(3–24)

which proves the property.

The following property follows immediately as a corollary:

Property 3.8. The nonlinear CI kernels, I∗
σ and I†

σ, each

(i) Induce an RKHS,

(ii) Give rise to non-negative definite Gram matrices, and

(iii) Verifies the Cauchy-Schwarz inequality.

These are because, as stated in the previous section, Property 3.8(i), Property 3.8(ii)

and the positive definiteness of the kernel are equivalent facts. Then, as shown in the

proof of Property 3.5, the Cauchy-Schwarz follows.

3.4 Estimation of Cross-Intensity Kernels

The problem of estimating the previously defined cross-intensity kernels is now

considered. Recall that this problem only poses itself for kernels defined in terms of the

statistical descriptors of point processes, whereas point processes kernels built from kernels

on event coordinates are in effect estimators. This will be clear from our presentation and,

in fact, the relationship between perspectives will be observed in one of the cases.

3.4.1 Estimation of General Cross-Intensity Kernels

From the point process kernel definitions, is should be clear that for evaluation of CI

kernels one needs to estimate first the conditional intensity function from realizations of

the point processes. A possible approach is the statistical estimation framework recently
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proposed by Truccolo et al. [2005] for spike trains. Briefly, it represents the point process

realizations as realizations of a Bernoulli random process, and then utilizes a generalized

linear model (GLM) to fit a conditional intensity function to the data. This is done by

assuming that the logarithm of the conditional intensity function has the form

log λpi
(t̂n|H i

n) =

q∑
m=1

θmgm(νm(t̂n)), (3–25)

where t̂n is the nth discrete-time instant, gm’s are general transformations of independent

functions νm(·), θm’s are the parameter of the GLM and q is the number of parameters.

Thus, GLM estimation can be used under a Poisson distribution with a log link function.

The terms gm(νm(t̂n)) are called the predictor variables in the GLM framework and, if

one considers the conditional intensity to depend only linearly on the history of the events

then the gm’s can be simply delays. In general the intensity can depend nonlinearly on the

history or external factors. Based on the estimated conditional intensity function, any of

the inner products introduced in Section 3.2 can be evaluated numerically.

Although quite general, the approach by Truccolo et al. [2005] has a main drawback:

since q must be larger that the average inter-spike interval a (very) large number of

parameters need to be estimated thus requiring long spike trains (> 10 seconds). Notice

that non-parametric estimation of the conditional intensity function without greatly

sacrifice the temporal precision requires small time intervals, which means that q and

therefore the realizations used for estimation must have longer duration.

In spite of these difficulties, we maintain the importance of the RKHS framework and

these point process kernel definitions. For more efficient computation these kernels may

make use of developments in conditional intensity function estimation procedures will may

expedite their use in practical applications.

3.4.2 Estimation of the mCI Kernel

In the particular case of the mCI kernel, defined in Equation 3–11, a much simpler

estimator can be derived. We now focus on this case. Since we are interested in estimating
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the mCI kernel from single realizations of the point processes, and for the reasons

presented before, we will assume that the realizations belong to Poisson processes. Then,

using kernel smoothing [Reiss, 1993; Dayan and Abbott, 2001; Richmond et al., 1990] for

the estimation of the intensity function we can derive an estimator for the point process

kernel. Again, the advantage of this route is that a statistical interpretation is available

while simultaneous approaching the problem from a practical point of view. Moreover,

in this particular case the connection between the mCI kernel and κ will now become

obvious.

According to kernel smoothing intensity estimation, given a realization of point

process pi comprising of event coordinates {tim ∈ T : m = 1, . . . , Ni} the estimated

intensity function is

λ̂si
(t) =

Ni∑
m=1

h(t − tim), (3–26)

where h is the smoothing function. This function must be non-negative and integrate to

one over the real line (just like a probability density function (pdf)). Commonly used

smoothing functions are the Gaussian, Laplacian and α-function, among others.

From a filtering perspective, Equation 3–26 can be seen as a linear convolution

between the filter impulse response given by h(t) and the realization written as a sum of

Dirac functionals centered at the event locations. In particular, binning is nothing but

a special case of this procedure in which h is a rectangular window and the spike times

are first quantized according to the width of the rectangular window (cf. Section 2.4.1.2).

Moreover, it is interesting to observe that intensity estimation as shown above is directly

related to the problem of pdf estimation with Parzen windows [Parzen, 1962] except for a

normalization term, a connection made clear by Diggle and Marron [1988].

Consider realizations of point processes pi, pj ∈ P(T ) with estimated intensity

functions λ̂pi
(t) and λ̂pj

(t) according to Equation 3–26. Substituting the estimated

intensity functions in the definition of the mCI kernel (Equation 3–11) yields the
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estimator,

Î(pi, pj) =

Ni∑
m=1

Nj∑
n=1

κ(tim − tjn), (3–27)

where κ is the kernel obtained by the autocorrelation of the intensity estimation function

h with itself. A well known example for h is the Gaussian function in which case κ is also

the Gaussian function (with σ scaled by
√

2). Another example for h is the one-sided

exponential function which yields κ as the Laplacian kernel. In general, if a kernel is

selected first and h is assumed to be symmetric, then κ equals the autocorrelation of h and

thus h can be found by evaluating the inverse Fourier transform of the square root of the

Fourier transform of κ.

The accuracy of this point process kernel estimator depends only on the accuracy

of the estimated intensity functions. If enough data is available such that the estimation

of the intensity functions can be made exact then the mCI kernel estimation error is

zero. Despite this direct dependency, the estimator effectively bypasses the estimation

of the intensity functions and operates directly on the event coordinates of the whole

realization without loss of resolution and in a computationally efficient manner since it

takes advantage of the typically sparse occurrence of events.

As Equation 3–27 shows, if κ is chosen such that it satisfies the requirements in

Section 3.1, then the mCI kernel ultimately corresponds to a linear combination of κ

operating on all pairwise differences of event coordinates, one pair at a time. In other

words, the mCI kernel is the expectation of the linear combination of pairwise inner

products between event coordinates. Put in this way, we can now clearly see how the mCI

inner product estimator builds upon the inner product for event coordinates, κ, presented

in Section 3.1.

3.4.3 Estimation of Nonlinear (Memoryless) Cross-Intensity Kernels

As shown in the previous section, the estimator of the mCI kernel results naturally

by substituting the kernel intensity function estimator in the mCI kernel definition. For

the related nonlinear CI kernels presented in Section 3.2.2 this matter is slightly more
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complicated due to the nonlinearity introduced in the kernel definition. In this section we

briefly suggest how these nonlinear CI kernels can be estimated.

3.4.3.1 Estimation of I∗
σ

The nonlinear CI kernel defined by Equation 3–12 lends itself to a very simple

estimator. Indeed, this kernel definition relies on the computation of the natural norm

induced by the inner product associated with the mCI kernel (but the norm induced by

any of the cross-intensity kernels can be considered in general). The induced norm is

∥∥λpi
− λpj

∥∥2

HI
=

〈
λpi

− λpj
, λpi

− λpj

〉
HI

= 〈λpi
, λpi

〉 − 2
〈
λpi

, λpj

〉
+

〈
λpj

, λpj

〉
= ‖λpi

‖2 − 2
〈
λpi

, λpj

〉
+

∥∥λpj

∥∥2
.

(3–28)

Therefore, the computational bottleneck in the evaluation of this kernel is the computation

of the three inner products corresponding to the norm. From then on, one only needs

to compute the exponential function with this norm (scaled) once. For inhomogeneous

Poisson processes, this can be immediately done using the estimator for the mCI kernel

described in Section 3.4.2 to first evaluate the norm. Thus, the computational complexity

is of the same order.

3.4.3.2 Estimation of the nCI kernel, I†
σ

Evaluation of the nonlinear CI kernel in Equation 3–13, however, does not build on

our previous findings. The reason for this is that the kernel Kσ nonlinearly weighs the

temporal relationship between the two intensity functions, and therefore we cannot obtain

an analytical expressing to the integral on the combination of smoothing functions.

Thus we will propose an estimator which relies on a particular form of the intensity

function estimator. The key idea is to simplify the problem by dividing time in intervals

during which the interaction among intensity functions is constant. This is achieved

simply by utilizing a rectangular pulse as the smoothing function. Again, the focus here in

the inhomogeneous Poisson case. In the more general case of conditional intensity function
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Figure 3-1. Estimation of difference of intensity functions for evalution of nonlinear kernel
in Equation 3–13.

estimation using the GLM framework, the point process is made discrete-time which

automatically introduces this simplification. Nevertheless, in the estimator presented time

needs not to be discretized.

Consider a symmetric, positive definite and shift-invariant kernel Kσ and that a

rectangular pulse smoothing function is used for kernel smoothing intensity estimation.

If Kσ is taken to be shift-invariant (as occurs for the commonly used kernels), then it is

only sensitive to the difference of the arguments. Therefore, it is easy to verify that there

exist a small finite number of transitions in the value of the difference between intensity
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Table 3-1. Outline of the algorithm for estimation of the nCI kernel, I†
σ.

Step 1 Define,

S† = [ti1 − θ, . . . , tiNi
− θ, ti1 + θ, . . . , tiNi

+ θ, tj1 − θ, . . . , tjNj
− θ, tj1 + θ, . . . , tjNj

+ θ],

and the corresponding incremental sequence,

δ = [1, 1, . . . , 1︸ ︷︷ ︸
Ni times

,−1,−1, . . . ,−1︸ ︷︷ ︸
Ni times

,−1,−1, . . . ,−1︸ ︷︷ ︸
Nj times

, 1, 1, . . . , 1︸ ︷︷ ︸
Nj times

].

Step 2 Sort S† in ascending order, and apply the same reordering to δ.
Step 3 Set n = {Number of negative times in S†}, ∆ =

∑n−1
i=1 δi, and I† = t0 = 0.

While n < 2(Ni + Nj) and S†
n < T

1. I† = I† + (S†
n − t0) ×Kσ(∆/(2θ))

2. t0 = S†
n

3. ∆ = ∆ + δn

4. n = n + 1
end
I† = I† + (T − t0) ×Kσ(∆/(2θ)).

functions, as depicted in Figure 3-1. For two point processes pi, pj with realizations

{ti1, . . . , tiNi
} and {tj1, . . . , t

j
Nj
}, the changes in the difference of the intensity function occur

at times [ti1−θ, . . . , tiNi
−θ, ti1+θ, . . . , tiNi

+θ, tj1−θ, . . . , tjNj
−θ, tj1+θ, . . . , tjNj

+θ]. At each of

these times, the difference will either increase or decrease by 1/(2θ). To keep track of this

we create a sequence with ones for the event times of pi minus θ and event times of pj plus

θ, and -1 for the event times of pi plus θ and event times of pj minus θ (the choice of signs

is arbitrary and can be reversed since Kσ is symmetric). By reordering the sequence of

times, and applying the same reordering to the sequence of 1 and -1, we obtain a sequence

of intervals with constant value on which the integral is simply the interval length times

Kσ(∆/(2θ)), where ∆ is the sum of the difference increments up to that interval. The

estimator is summarized in Table 3-1.

The computational bottleneck of this estimator is the sorting operation which has

computational complexity with order O(NiNj log2(NiNj)). This means that estimating

the nCI kernel is considerably more complex than estimating the mCI kernel, which is
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Figure 3-2. Relation between the original space of point processes P(T ) and the various
Hilbert spaces. The bi-directional double-line connections denote congruence
between spaces.

O(NiNj). Nevertheless, the proposed estimator is quite efficient considering that the

integral cannot be simplified analytically.

3.5 RKHS Induced by the Memoryless Cross-Intensity Kernel and Congruent
Spaces

Some considerations about the RKHS space HI induced by the mCI kernel and

congruent spaces are made in this section. The relationship between HI and its congruent

spaces provides alternative perspectives and a better understanding of how the mCI kernel

can be utilized for computation with point processes. Figure 3-2 provides a diagram of the

relationships among the various spaces discussed next.

Some of these relationships extend directly to more general CI kernels. Therefore,

although this section focus on the spaces associated with the mCI kernel, we will mention

if similar connections hold for other point process kernels whenever applicable.
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3.5.1 Space Spanned by Intensity Functions

In the introduction of the mCI kernel the usual dot product in L2(T ), the space of

square integrable intensity functions defined on T , was utilized. The definition of the

inner product in this space provides an intuitive understanding to the reasoning involved.

L2(λpi
(t), t ∈ T ) ⊂ L2(T ) is clearly an Hilbert space with inner product defined in

Equation 3–11, and is obtained from the span of all intensity functions. Notice that this

space also contains functions that are not valid intensity functions resulting from the

linear span of the space (intensity functions are always non-negative). However, since our

interest is mainly on the evaluation of the inner product this is of no consequence. The

main limitation is that L2(λpi
(t), t ∈ T ) is not an RKHS. This should be clear because

elements in this space are functions defined on T , whereas elements in the RKHS HI must

be functions defined on P(T ).

Despite the differences, the spaces L2(λpi
(t), t ∈ T ) and HI are closely related. In

fact, L2(λpi
(t), t ∈ T ) and HI are congruent. We can verify this congruence explicitly since

there is clearly a one-to-one mapping,

λpi
(t) ∈ L2(λpi

(t), t ∈ T ) ←→ Λpi
(p) ∈ HI ,

and, by definition of the mCI kernel,

I(pi, pj) =
〈
λpi

, λpj

〉
L2(T )

=
〈
Λpi

, Λpj

〉
HI

. (3–29)

Actually, the congruence between the two space holds for any linear cross-intensity

kernel since the inner product is the same in both spaces. For the nonlinear CI kernels,

for example, the two space are still closely related but the inner product is not directly

available in L2(λpi
(t), t ∈ T ) and therefore the two spaces are not congruent. A direct

consequence of the basic congruence theorem is that the two spaces have the same

dimension [Parzen, 1959].
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3.5.2 Induced RKHS

In Section 3.3.1 it was shown that the mCI kernel is symmetric and positive definite

(Property 3.1 and Property 3.3, respectively). Consequently, by the Moore-Aronszajn

theorem [Aronszajn, 1950], there exists an Hilbert space HI for which the mCI kernel

evaluates the inner product and is a reproducing kernel (Property 3.4). This means that

I(pi, ·) ∈ HI for any pi ∈ P(T ) and, for any ζ ∈ HI , the reproducing property holds

〈ζ, I(pi, ·)〉HI
= ζ(pi). (3–30)

As a result the kernel trick follows,

I(pi, pj) = 〈I(pi, ·), I(pj, ·)〉HI
. (3–31)

Written in this form, it is easy to verify that the point in HI corresponding to a spike

train pi ∈ P(T ) is I(pi, ·). In other words, given any spike train pi ∈ P(T ), this spike

train is mapped to Λpi
∈ HI , given explicitly (although unknown in closed form) as

Λpi
= I(pi, ·). Then Equation 3–31 can be restated in the more usual form as

I(pi, pj) =
〈
Λpi

, Λpj

〉
HI

. (3–32)

It must be remarked that HI is in fact a functional space. More specifically, that

points in HI are functions of point processes; that is, they are functions defined on P(T ).

This is a key difference between the space of intensity functions L2(T ) explained before

and the RKHS HI , in that the latter allows for statistics of the transformed spike trains to

be estimated as functions of spike trains.

In light of Property 3.4 and Property 3.8(i), similar considerations can the drawn for

any of the point process kernels presented in this work. Naturally, the functional space

and corresponding functional mapping will be different for different kernels, but the same

mathematical structure exists. Since the structure to perform computation is the same, an

algorithm derived in this space can be utilized using any point process kernel.
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3.5.3 Memoryless CI Kernel and the RKHS Induced by κ

The mCI kernel estimator in Equation 3–27 shows the evaluation written in terms

of elementary kernel operations on event coordinates. This fact alone provides an

interesting perspective on how the mCI kernel uses the event statistics. To see this

more clearly, consider κ to be chosen according to Section 3.1 as a symmetric positive

definite kernel, then it can be substituted by its inner product (Equation 3–1) in the mCI

kernel estimator, yielding

Î(pi, pj) =

Ni∑
m=1

Nj∑
n=1

〈
Φi

m, Φj
n

〉
Hκ

=

〈
Ni∑

m=1

Φi
m,

Nj∑
n=1

Φj
n

〉
Hκ

.

(3–33)

When the number of samples approaches infinity (so that the intensity functions and,

consequently the mCI kernel, can be estimated exactly) the mean of the transformed event

coordinates approaches the expectation. Hence, Equation 3–33 results in

I(pi, pj) = Ni Nj

〈
E

{
Φi

}
, E

{
Φj

}〉
Hκ

, (3–34)

where E {Φi}, E {Φi} denotes the expectation of the transformed event coordinates and

Ni, Nj are the expected number of events in realizations from point processes pi and pj,

respectively.

Equation 3–34 explicitly shows that the mCI kernel can be computed as a (scaled)

inner product of the expectation of the transformed event coordinates in the RKHS

Hκ induced by κ. In other words, there is a congruence G between Hκ and HI in this

case given explicitly in terms of the expectation of the transformed event coordinates as

G (Λpi
) = NiE {Φi}, such that

〈
Λpi

, Λpj

〉
HI

=
〈
G (Λpi

), G (Λpj
)
〉
Hκ

= Ni Nj

〈
E

{
Φi

}
, E

{
Φj

}〉
Hκ

. (3–35)
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Recall that the transformed event coordinates form a manifold (the subset of an

hypersphere) and, since these points have constant norm, the kernel inner product depends

only on the angle between points. This is typically not true for the average of these points

however. Observe that the circular variance of the transformed event coordinates for point

process pi is [Mardia and Jupp, 2000]

var(Φi) = E
{〈

Φi
m, Φi

m

〉
Hκ

}
−

〈
E

{
Φi

}
, E

{
Φi

}〉
Hκ

= κ(0) −
∥∥E

{
Φi

}∥∥2

Hκ
.

(3–36)

So, the norm of the mean transformed event coordinates is inversely proportional to the

variance of the elements in Hκ. This means that the inner product between two point

processes depends also on the dispersion of these average points. This fact is important

because data reduction techniques, for example, heavily rely on optimization with the data

variance. For instance, kernel principal component analysis [Schölkopf et al., 1998] directly

maximizes the variance expressed by Equation 3–36 [Paiva et al., 2006].

3.5.4 Memoryless CI Kernel as a Covariance Kernel

In Section 3.3.1 it was proved that the mCI kernel is indeed a symmetric positive

definite kernel. As reviewed in Appendix A, Parzen [1959] showed that any symmetric

and positive definite kernel is also a covariance function of a random process defined in

the original space of the kernel (a review of these ideas can be found in Wahba [1990,

Chapter 1]). This means that for the mCI, and in general for any of the point process

kernels considered, there exists a space of random processes are defined on P(T ) for which

the point process kernel is a covariance operator.

Let X denote this random process. Then, for any pi ∈ P(T ), X(pi) is a random

variable on a probability space (Ω,B, P ) with measure P . As proved by Parzen, this

random process is Gaussian distributed with zero mean and covariance function

I(pi, pj) = Eω {X(pi)X(pj)} . (3–37)
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Notice that the expectation is over ω ∈ Ω since X(pi) is a random variable defined on Ω, a

situation which can be written explicitly as X(pi, ω), pi ∈ P(T ), ω ∈ Ω. This means that

X is actually a doubly stochastic random process. An intriguing perspective is that, for

any given ω, X(pi, ω) corresponds to an ordered and almost surely non-uniform random

sampling of X(·, ω). The space spanned by these random variables is L2(X(pi), pi ∈ P(T ))

since X is obviously square integrable (that is, X has finite covariance).

The RKHS HI induced by the mCI kernel and the space of random functions

L2(X(pi), pi ∈ P(T )) are congruent. This fact is obvious since there is clearly a

congruence mapping between the two spaces. In light of this theory we can henceforward

reason about the mCI kernel also as a covariance function of random variables directly

dependent on the spike trains with well defined statistical properties. Allied to our

familiarity and intuitive knowledge of the use of covariance (which is nothing but

cross-correlation between centered random variables) this concept can be of great

importance in the design of optimal learning algorithms that work with spike trains.

This is because linear methods are known to be optimal for Gaussian distributed random

variables.

As mentioned above, similar considerations can be made for any of the point process

kernels, although the Gaussian random processes in the covariance are different for each

since they characterize the statistics of the point process model considered by the point

process kernel.

3.6 Point Process Distances

The concept of distance is very useful in classification and analysis of data, and point

processes are no exception. The main aim of this section is to show that inner products for

point processes can be utilized to easily define distances for point processes in a rigorous

manner, and indeed naturally induce at least two forms of distances for point processes.

This section does not aim at proposing any particular measure but to highlight this

natural connection and convey the generality of RKHS framework by suggesting how
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distances can be formulated from basic principles if needed. Due to their relevance in

neurophysiological studies, these ideas are also particularized for the mCI kernel to show

that some of the measures proposed in this context are simply special cases of the RKHS

framework.

3.6.1 Norm Distance

The fact that HI is an Hilbert space and therefore possesses a norm suggests

an obvious definition for a distance between point processes. In fact, for the linear

cross-intensity kernels, since L2(T ) is also an Hilbert space this fact would have sufficed.

The distance between two point processes or, in general, any two points in HI , is defined

as

dND(pi, pj) =
∥∥Λpi

− Λpj

∥∥
HI

=
√〈

Λpi
− Λpj

, Λpi
− Λpj

〉
HI

=
√

〈Λpi
, Λpi

〉 − 2
〈
Λpi

, Λpj

〉
+

〈
Λpj

, Λpj

〉
=

√
I(pi, pi) − 2I(pi, pj) + I(pj, pj).

(3–38)

where Λpi
, Λpi

∈ HI denotes the transformed point processes in the RKHS. From the

properties of the norm and the Cauchy-Schwarz inequality (Property 3.5) it immediately

follows that dND is a valid distance since, for any spike trains pi, pj, pk ∈ P(T ), it satisfies

the three distance axioms:

(i) Symmetry: dND(pi, pj) = dND(pj, pi);

(ii) Positiveness: dND(pi, pj) ≥ 0, with equality holding if and only if pi = pj;

(iii) Triangle inequality: dND(pi, pj) ≤ dND(pi, pk) + dND(pk, pj).

This distance is basically a generalization of the idea behind the Euclidean distance in a

continuous space of functions.

3.6.2 Cauchy-Schwarz Distance

The previous distance is the natural definition for distance whenever an inner product

is available. However, as for other L2 spaces, alternatives measures for point processes

can be defined. In particular, based on the Cauchy-Schwarz inequality (Property 3.5
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and Property 3.8) we can define the Cauchy-Schwarz (CS) distance between two point

processes as

dCS(pi, pj) = arccos
I(pi, pi)I(pj, pj)

I2(pi, pj)
. (3–39)

From the symmetry of the inner products and the Cauchy-Schwarz inequality it follows

that dCS is symmetric and always positive, and thus verifies the first two axioms of

distance. Moreover, since dCS is the angular distance between points it also verifies the

triangle inequality.

The major difference between the normed distance presented in the previous section

and the CS distance is that the latter is not an Euclidean measure. Indeed, because it

measures the angular distance between the spike trains it is a Riemannian metric. This

utilizes the same idea expressed in Equation 3–5 in presenting the geodesic distance

associated with any symmetric positive definite kernel.

3.6.3 Spike Train Measures

Several spike train measures have been proposed in the literature [Victor and

Purpura, 1997; van Rossum, 2001; Schreiber et al., 2003] and they play an important

role in neurophysiological studies. Since spike trains are realizations of point processes

the above ideas can also be applied to measure similarity or dissimilarity between spike

trains. Indeed, it is insightful to verify that two well established spike train measures can

be obtained directly as special cases of the two point process distances presented for the

simplest of the point process kernels considered, the mCI kernel.

Since the inner product denotes by the mCI kernel is defined in L2(T ), the norm

distance could obviously also be formulated directly and with the same result in L2(T ).

Then, if one considers this perspective with a causal decaying exponential function as

the smoothing kernel for intensity estimation then we immediately observe that dND

corresponds, in this particular case, to the distance proposed by van Rossum [2001].

Using instead a rectangular smoothing function the distance then resembles the distance

proposed by Victor and Purpura [1997], as pointed by Schrauwen and Campenhout [2007],
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although its definition prevents an exact formulation in terms of the mCI kernel. Finally,

using a Gaussian kernel the same distance used by Maass et al. [2002] is obtained. Notice

that although it had already been noticed that other cost (i.e. kernel) functions between

spike times could be used instead of the initially described [Schrauwen and Campenhout,

2007], the framework given here fully characterizes the class of valid kernels and explains

their role in the time domain. Moreover, ultimately the mCI kernel estimator can be

utilized for efficient computation using κ to be the Laplacian, triangular, or Gaussian

kernel, respectively, for the three cases just described.

The Cauchy-Schwarz distance can also be compared with the “correlation measure”

between spike trains proposed by Schreiber et al. [2003]. In fact, it can be observed that

the latter corresponds to the argument of the arc cosine and thus denotes the cosine of an

angle between spike train, with norm and inner product computed with the mCI kernel

estimator using the Gaussian kernel. Notice that Schreiber’s et al. “correlation measure”

is only a pre-metric since it does not verify the triangle inequality. But, in dCS this is

ensured by the arc cosine function.

A more detailed exposition of these inter-relationships can be found in the comparison

study in Appendix B.
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CHAPTER 4
A STATISTICAL PERSPECTIVE OF THE RKHS FRAMEWORK

This chapter provides an alternative perspective to the RKHS framework, namely,

by verifying the construction of an RKHS as obtained from conventional statistical

descriptors of interdependence. More specifically, it is shown the relation between

cross-correlation and RKHS theory, especially noticeable when its generalized form

presented here is compared to the mCI kernel.

The hopefully insightful perspective provided in this chapter has direct consequences

for statistical analysis methods. This is exemplified in the second part of the chapter, by

showing that the mCI kernel can be utilized to formulate and estimate the cross-intensity

function (CIF) [Brillinger, 1976] and spike triggered average (STA) [Dayan and Abbott,

2001] of one point process with regards to the other. More that simply showing the

relationship for the mCI kernel, we to aim to explicitly show the limitation of current

approaches to the Poisson model, and incite further developments through the perspective

provided here.

4.1 Generalized Cross-Correlation and the mCI Kernel

Binned point processes are discrete-time random processes. Therefore, as introduced

in Section 2.4.2 for spike trains, the cross-correlation is defined in the usual way as the

expectation of the lagged product of the number of events per bin. Hence, assuming

ergodicity, the cross-correlation of binned point processes pi and pj is habitually estimated

with

Cbin
ij [l] =

1

M

M∑
n=1

Npi
[n]Npj

[n + l], (4–1)

where M is the number of bins and Npi
[n], Npj

[n] are the number of events in the nth

bin for point processes pi and pj, respectively. Equation 4–1 clearly shows that Cbin
ij is an

inner product of the binned point processes. In RKHS theory the mapping into the RKHS

is often unknown, but in this context it is readily noticeable that binning implements

the mapping. However, binning of point processes discretizes the space of events and is
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therefore undesirable. This raises the question of what is binning actually doing? And,

correspondingly, can we utilize a better way to do it?

In essence, binning estimates the density of events at a given time, that is, it attempts

to estimate the instantaneous firing rate (apart from a normalization by the bin size)

[Dayan and Abbott, 2001]. Hence, in its general form, cross-correlation can be defined

directly in terms of the intensity functions of the point processes,

Cij(θ) = E
{
λpi

(t)λpj
(t + θ)

}
= lim

T→∞

1

2T

∫ T

−T

λpi
(t)λpj

(t + θ)dt,
(4–2)

where λpi
(t) and λpj

(t) denotes the intensity functions of point processes pi and pj,

respectively. This is a functional inner product in an infinite dimensional space. We might

think that Cbin
ij is finite dimensional approximation of this functional measure. We shall

refer to this definition as the generalized cross-correlation (GCC) [Paiva et al., 2008], to

distinguish from the binned counterpart.

In the statistical literature the conventional approach for intensity function estimation

of point processes is kernel smoothing Reiss [1993], with clear advantages in the

estimation Kass et al. [2003]. See Section 2.4.1.2 for a review on intensity estimation

with kernel smoothing. So, if the event locations of a point process pi in the event space

P(T ) = [0, T ] are denoted {tim : m = 1, . . . , Ni}, where Ni is the number of events of a

realization of pi, the kernel smoothed estimated intensity function is given by

λ̂pi
(t) =

Ni∑
m=1

hτ (t − tim), (4–3)

where h is the smoothing kernel function with size parameter τ . Substituting these

intensity estimations in the definition of the generalized cross-correlation (Equation 4–2)

and limiting the evaluation to the finite domain of the event space [0, T ] yields the
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estimator

Ĉij(θ) =
1

T

Ni∑
m=1

Nj∑
n=1

κτ

(
tim − tjn + θ

)
, (4–4)

where κτ is the kernel obtained by the convolution of the intensity estimation kernel h

with itself, and τ is the kernel size (or bandwidth) parameter. Notice that Cbin
ij is a special

case of Equation 4–4 in which the spike times are first quantized and then the GCC

evaluated with a rectangular kernel.

From our presentation it should be clear that the so-called GCC equals the mCI

kernel, apart from the normalization for the width of the event space. This is clearly

observable by comparing the GCC definition in Equation 4–2 with the mCI kernel

definition in Equation 3–11, or alternatively from their estimators in Equation 3–27 and

Equation 4–4.

Of immediate consequence this perspective suggests a direct replacement for (binned)

cross-correlation in point process analysis, with spike train analysis in particular. As an

example, this idea has been explored to construct continuous-time cross-correlograms for

spike train analysis [Park et al., 2008] which benefit of the direct estimation on the spike

times (i.e., the event coordinates), thus providing much higher precision, and in a fraction

of the time required by explicitly smoothing.

Most importantly, the observation of this equivalence of the GCC to the mCI kernel

reveals the limitations of current methodologies. This means that all current cross-

correlation methods have descriptive power at most equivalent to only the simplest of the

cross-intensity kernel definitions given here. The mCI kernel can accurately quantify at

most interactions in the rate functions, equivalent to a inhomogeneous Poisson process

model. On the other hand, verifying this close relationship brings forth that cross-intensity

kernels are in fact cross-correlation operators for generalized point process models.

Therefore, we believe CI kernels represent the future of point process analysis.
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For spike train analysis, the kernel size in the mCI kernel has a particular useful

interpretation in practice. Notice that Equation 4–3 can be interpreted as the convolution

of the spike train with a window given by the smoothing function h, emulating the

smoothing process in the neuron cell membrane. Therefore, the size parameter τ

determines the smoothing introduced by h and the kernel κ, and thus regulates the scale

at which the mCI kernel (or GCC) estimator interprets the neuronal coupling expressed

in the intensity function, between the extremes of synchrony in neuron firings (for small

kernel size) or firing rate (large kernel size).

4.2 Relevance for Statistical Analysis Methods

4.2.1 Relation to the Cross Intensity Function

The cross-intensity function (CIF) is the second-order association moment between

two point processes. It was originally proposed by Brillinger [1976] and was applied to

spike train analysis by Brillinger and colleagues (Brillinger [1992] and references therein)

and others [Hahnloser, 2007].

Statistically, the cross-intensity function (CIF) is the conditional probability of an

event occurring at a given location in the event space for a point process pj given the

occurrence of an event in the conditioning point process pi at some specific location. It is

defined as

ϑpj |pi
(θ) = lim

δ→0+

1

δ
Pr[NB(θ + tk, θ + tk + δ) = 1|tk ∈ pi], (4–5)

where NB is the counting process associated with pj and tk ∈ pi expresses that tk is an

event of a realization of pi.

Naturally, the conditional formulation of CIF means that ϑpj |pi
(θ) is not a symmetric

function. In fact, noting that the (instantaneous) intensity function of an inhomogeneous

Poisson process pj can be written as

λpj
(t) = lim

δ→0+

1

δ
Pr[NB(t, t + δ) = 1], (4–6)
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leads to the observation that the definition of CIF defines a conditional intensity function,

ϑpj |pi
(θ) = λpj

(θ + tk|tk ∈ pi), (4–7)

where tk is the “closest” event of pi to θ.

From Equation 4–7 results that CIF can be written as

ϑpj |pi
(θ) = λpj

(θ|pi)

= EtAm∈pi

{
λB(θ + tAm)

}
≈ 1

NA

NA∑
m=1

λB(θ + tAm).

(4–8)

Estimating the intensity function of pj from a realization with kernel smoothing

λ̂B(t) =

NB∑
n=1

h(t − tBn ), (4–9)

and substituting this estimate in Equation 4–8, yields an estimator for CIF

ϑ̂pj |pi
(θ) = λ̂B(θ|pi) =

1

NA

NA∑
m=1

NB∑
n=1

h(θ + tAm − tBn ). (4–10)

This equation clearly shows that ϑpj |pi
(θ) is the intensity function induced in pj through

the occurrence of an event in pi. Note that the error in this estimator depends only on the

estimation of the intensity function of pj and the expectation over events of pi. In other

words, this estimator is unbiased since both operations can be done exactly for infinite

data.

Conversely, similar arguments can be employed to derive that

ϑ̂pi|pj
(θ) = λ̂A(θ|pj) =

1

NB

NB∑
m=1

NA∑
n=1

h(θ + tBm − tAn ). (4–11)

Comparing Equation 4–10 and Equation 4–11 with the mCI kernel estimator in

Equation 3–27 it is possible to verify that they are fundamentally the same expect for

a scaling (by 1/NA), the introduction of a lag parameter, and the use of the smoothing

kernel directly (instead of its autocorrelation).
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4.2.2 Relation to the Spike Triggered Average

An alternative interpretation that stems from Equation 4–7 is that CIF can be

thought of as a event-triggered expectation of the intensity function of pj around events in

pi. That is,

ϑpj |pi
(θ) = λpj

(θ + tk|tk ∈ pi)

= E∀tk∈pi

{
λpj

(θ + tk)
}

≈ 1

NA

NA∑
m=1

λpj
(θ + tAm).

(4–12)

where E∀tk∈pi
{·} denotes the expectation over all possible events of pi. This shows

the equivalence to the CIF and therefore that the mCI kernel can also be utilized for

estimation.

In neurophysiological studies this corresponds to what is called the spike-triggered

average (STA) [Dayan and Abbott, 2001]. Simply put, STA is a peri-event diagram of a

continuous quantity in which the synchronizing events are the firing (i.e., spikes) from a

neuron.

It must the remarked that both the CIF and STA are concepts limited for data

analysis to the descriptive power of intensity functions, and thus to Poisson models, as can

be expected from the close relationship to the mCI kernel. However, as noted earlier about

the relationship between the mCI kernel and the GCC, this perspective suggests that the

cross-intensity kernels could be utilized to greatly extend these concepts beyond Poisson

point processes.

4.2.3 Illustration Example

The relationships just discussed theoretically are now illustrated through a simple

simulation. The simulated example was crafted to replicate the dataset of L3 and L10

neurons from experiments with Aplysia utilized by Brillinger [1992].

Two 10 second-long spike trains were generated as Poisson processes. pi was

generated as an inhomogeneous Poisson process with rate 20 spk/s, and was used as
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Figure 4-1. (a) Modulation in firing induced in pj through the spikes in pi. (b) Spikes in
time of pj around the occurence of spikes in pi (marked by the vertical dotted
line). (c) First second of reference spike train, pi, intensity function of pj with
effects induced by pi, and corresponding realization of pj.
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the reference spike train (equivalence to a L10 neuron). The goal of the CIF function is

to study cross-neuron induced modulations in the intensity function. More specifically,

whenever a spike occurs in pi it introduces a modulation (shown in Figure 4-1(a) for

this simulation) in the intensity function of pj (equivalent to a L3 neuron). Figure 4-1(c)

depicts this mechanism, and can be perceived in the resulting spike trains shown in

Figure 4-1(b).

As introduced in the previous sections, and shown by Equation 4–7, the CIF

corresponds to an average of the intensity function of pj with respect to the spikes in

pi. This is shown in Figure 4-2(a). Correspondingly, the mCI kernel as a function of the

lag evaluated for the two spike trains yields the same (scaled) result. These are shown in

Figure 4-2(b)–(c). Notice that if the mCI kernel result is divided by the average number of

spikes of pi in a spike train (≈ 200 spikes = (20 spk/s)×(10s), cf. Equation 4–10) yields an

average firing rate of 20 spk/s, as expected. Finally, if one estimates the reverse condition,

that is, ϑpi|pj
(θ), Equation 4–11 proves that from an estimation standpoint this is merely a

matter of mirroring the, mCI kernel result, if the intensity estimation smoothing function

is symmetric (as is imposed by the elementary kernel used to estimate the mCI kernel).

The causal relationship between the neurons is immediately apparent from the causality of

the mCI kernel as a function of the lag.
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(a) Spike-triggered average of the estimated intensity function λpj (·) with
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(b) CI kernel estimated with the Laplacian kernel
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(c) CI kernel estimated with the Gaussian kernel

Figure 4-2. (a) Average intensity function estimated from the “trials” shown in
Figure 4-1(b). It corresponds to a spike-triggered average of the intensity
function of pj with regards to the spikes in pi. (b)–(c) CI kernel as a function
of the lag estimated with Laplacian and Gaussian kernels respectively.
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CHAPTER 5
APPLICATIONS IN NEURAL ACTIVITY ANALYSIS

As unequivocally stated in this dissertation’s title and detailed in chapter 1, this work

can be directly applied for neural activity analysis, specifically on spike train analysis.

Following the considerations presented in Chapter 4, we now study the application of these

ideas for spike train analysis.

In essence, this chapter provides some immediate developments for spike train analysis

for use by the practitioner. For ease of direct comparison to current techniques we will

base our presentation in the generalized cross-correlation (GCC), but recall that GCC

and the mCI kernel are fundamentally the same apart from the normalization. Therefore,

the considerations for future improvements are equally applicable, pending on future

developments on conditional intensity estimation.

5.1 Generalized Cross-Correlation as a Neural Ensemble Measure

By its very nature, a spike train is realization of a point process (Section 2.3).

Therefore it should seem obvious that all the theory presented before can be applied, as a

specific application, for spike train analysis. In this section, some ideas regarding the use

of GCC for spike train data analysis are put forward. Even in this case, the perspective

presented in Chapter 4 allows for developments obscured by the common presentation

found in the literature.

Before proceeding, it must be remarked for this application the meaning of the size

parameter of the smoothing function, or correspondingly of the kernel κ utilized in the

GCC estimator. In this case the size parameter has a well defined physical meaning;

it selects the time scale at which the analysis is to be performed. In other words, the

size parameter is to be selected according to the firing characteristics known a priori

of the neuron and/or the feature of interest for the analysis at hand. An important

consequence of the use of kernel smoothing for intensity estimation in this framework is

that it seamlessly integrates the differences between spike rates and spike times without
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discretization of time. Put differently, the use of kernel smoothing makes it easy to zoom

into the feature of interest and puts the focus on the time structure of the spike trains as

the central parameter been quantified as spike train similarity,

This characteristic can be very useful in spike train analysis, for example, to measure

synchrony between spike trains. In computational neuroscience one of the commonly

used descriptors of the relation between two spike trains is synchrony. It is obvious that

since the information of spike trains is contained in the spike times, synchrony quantifies

this relationship somewhat even though there is no metric assigned. However, it is not

totally fulfilling as the different definitions in the literature demonstrate: synchrony

[Freiwald et al., 2001], synchrony at a lag [Lindsey and Gerstein, 2006], polychronization

[Izhikevich, 2006]. For this reason, the definition of synchrony can be substituted by

the general concept of similarity as measured by GCC (or the mCI kernel) as proper

time-scale. Moreover, the use of point process distances between two spike trains as given

in Section 3.6 allows for a full featured metric space if necessary.

To measure similarity between spike trains the GCC estimator in Equation 4–4 is

used. Like any estimator, the evaluated value is a random variable which approaches

the expected value as more data becomes available. On the other hand, from a practical

standpoint the length of the recording is often limited. Anyway, it is desirable to keep the

integration interval to a minimum for improved resolution.

We propose to solve this problem through ensemble averaging. If M denotes the

number of ensemble spike trains under analysis, the ensemble averaged GCC is,

C̄(θ) =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

Ĉij(θ). (5–1)

In this way, the integration interval can be reduced as the number of spike trains increases

without sacrifice of the statistical accuracy. In general, the above equation depends

on the lag (as the usual cross-correlation), but for the analysis done next the zero lag

shall be considered. This corresponds to the situation of synchrony. In practice, one
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might need to time align the spike trains by first estimating the lag using the continuous

cross-correlogram (CCC) [Park et al., 2008], for example.

Of course, an important question that must be considered is which spike trains should

be averaged together as constituents of the same ensemble. The clustering algorithm

presented in Chapter 6 can be of use to answer this question.

5.2 Empirical Analysis of GCC Statistical Properties

The statistical properties of GCC with regards to jitter in the spike timings and the

number of neurons are now analyzed. The behavior of GCC with respect to these two

parameters is very important for spike train analysis, especially in synchrony studies.

In the following examples there is the need to generate simulated spike trains under

different synchrony (or correlation) conditions. Synchronous spike trains were generated

using the multiple interaction process (MIP) proposed by Kuhn et al. [2003, 2002]. In

the MIP model an initial spike train is generated as a realization of a Poisson process.

All spike trains are derived from this one by copying spikes with a probability ε. The

operation is performed independently for each spike and for each spike train. The resulting

spike trains are also Poisson processes. If γ was the firing rate of the initial spike train

then the derived spikes trains will have firing rate εγ. Furthermore, it can be shown that ε

is also the count correlation coefficient [Kuhn et al., 2003]. A different interpretation for ε

is that, given a spike in a spike train, it quantifies the probability of a spike co-occurrence

in another spike train. In this sense, we shall refer to ε as the synchrony level. Note that

an alternative manner of quantifying synchrony could be through the CS distance, in

which a distance of zero corresponds to perfect synchrony (i.e., ε = 1).

5.2.1 Robustness to Jitter in the Spike Timings

In a physiological context the idea of precisely synchronous spikes is unlikely to be

found. Thus, it is important to characterize the behavior of the GCC estimator when

jitter is present in the spike timings. This was done with a modified MIP model where

jitter, modeled as zero-mean independent and identically distributed (i.i.d.) Gaussian
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Figure 5-1. Change in CIP versus jitter standard deviation in synchronous spike timings.
For the case with independent spike trains, the error bars for one standard
deviation are also shown. The estimation kernel κ was the Laplacian kernel
with size 2ms (top) and 5ms (bottom).
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noise, was added to the individual spike timings. The effect was then studied in terms

of the synchrony level and kernel size (of κ). Figure 5-1 shows the average GCC for 10

Monte Carlo runs of two spike trains, 10 seconds long, and with constant firing rate of

20 spikes/s. In the simulation, the synchrony level was varied between 0 (independent) to

0.5 (i.e., 50% of spikes were synchronous), and for a kernel size of 2ms and 5ms. The jitter

standard deviation varied between the ideal case (no-jitter) to 15ms.

For a small estimator kernel size the GCC estimator measures the coincidence of the

spike timings. As a consequence, the presence of jitter in the spike timings decreases the

expected value of GCC. Nevertheless, the results in Figure 5-1 support the statement

that the measure is indeed robust to large levels of jitter when compared to the kernel

size, and is capable of detecting the existence of synchrony among neurons. Of course,

increasing the kernel size decreases the sensitivity of the measure for the same amount of

jitter. Furthermore, it is also shown that even small levels of synchrony can be statistically

discriminated from the independent case as suggested by the error bars in the figure. (The

difference in scale between the figures is a consequence of the normalization of κ, which

depends on the kernel size.)

5.2.2 Sensitivity to Number of Neurons

The effect of the number of spike trains used for ensemble averaging is now analyzed.

This effect was studied with respect to two main factors: the synchrony level of the spike

trains and the kernel size of the GCC estimator κ. In the first case, the kernel size was

2ms, whereas in the second case considered only independent spike trains. The results

are shown in Figure 5-2 for the estimated GCC averaged over all pair combinations of

neurons. The simulation was repeated for 1000 Monte Carlo runs using 1 second long

spike trains simulated as homogeneous Poisson processes with firing rate 20 spikes/s.

As illustrated in the figure, the variance in the GCC estimator decreases dramatically

with the increase in the number of spike trains employed in the analysis. Recall that

the number of pair combinations over which the averaging is performed increases with
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The analysis was performed for different levels of synchrony with kernel size
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trains. In both situations the theoretical value of GCC for independent spike
trains is shown (dashed line).
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Figure 5-3. Mean and standard deviation of GCC versus the number of spike trains used
for spatial averaging for different synchrony levels, corresponding to the first
scenario in Figure 5-2.

M(M − 1), where M is the number of spike trains. As expected, this improvement is

most pronounced in the case of independent spikes trains. In this situation, the variance

decreases proportionally to the number of averaged pairs of spike trains. This is shown

by the dashed line in the plots of Figure 5-2. Whenever the spike trains are correlated,

the improvement on the variance of the estimator is smaller due to a non-ideal averaging

situation, reaching a nearly extreme situation for ε = 0.5 where ensemble averaging is

almost useless. In any case, such high values of synchrony seem unlikely to be found

in neurophysiological experiments. These results support the role and importance of

ensemble averaging as a principled method to reduce the variance of the GCC estimator.

Finally, the sensitivity of GCC to the synchrony level should be remarked. In

Figure 5-3 the standard deviation was superimposed to the ensemble averaged GCC.

It is observable a clear distinction between, at least, the four smaller synchrony levels, i.e.,

ε ∈ [0, 0.3]. This means that the GCC estimator has a high degree of accuracy in this

93



interval when averaged over a number of neurons as small as 4, supporting our claim that

GCC can be used as a synchrony index.

5.3 Instantaneous Cross-Correlation

The GCC is a more general form of cross-correlation that does not require binning

but it still needs a finite interval of data to operate. It is therefore still dependent on an

ergoricity assumption. As a function of time, the integrand of the GCC (Equation 4–2),

which we shall refer to as the instantaneous cross-correlation (ICC), provides a more

appropriate representation. ICC is a continuous function of the spike timings and

describes temporal structure of the inhomogeneous firings allowing for a direct assessment

of similarity in time. One might think of it as a scalar inner product along each of the

dimensions indexed by time. Therefore, the ICC is defined as

c̃ij(t, θ) = λ̂pi
(t)λ̂pj

(t + θ), (5–2)

where λ̂pi
(t), λ̂pj

(t) are the estimated intensity functions from spike trains corresponding

to point processes pi and pj.

For methodologies that can be applied online, only causal intensity estimation

smoothing functions can be considered. We propose to use the exponential function,

h(t) = (1/τ) exp [−t/τ ] u(t), (5–3)

where u(·) is the step function. The exponential function provides both graded interactions

and a time scale for the intensity estimation by controlling the time constant τ . Of course

the ideas to be presented are not limited to the decaying exponential smoothing function,

but it was chosen for its biological plausibility, since it can be interpreted as evoked

post-synaptic potentials in a neuron, its wide use throughout neuroscience Dayan and

Abbott [2001], and its computational simplicity, since computing the next value depends

only on the present value and if a spike occurs in the meantime.
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Figure 5-4. Diagram outlining the idea and procedure for the computation of the ICC.
On top it is shown two spike trains for which the ICC is to be computed,
followed by the intensity estimation with the decaying exponential function
(represented by H(s)). The two estimated intensity functions are then
multiplied together to obtain the ICC. The position of synchronous spikes
is marked as red circles in the figure.

Using the exponential function, the intensity function at time t estimated from a spike

train is

λ̂pi
(t) =

1

τ

∑
tim≤t

exp

(
−t − tim

τ

)
u(t − tim). (5–4)

This is nothing but the filtering of a spike train by a first order IIR filter. Then, the ICC

can be computed by instantaneously multiplying the two estimated intensity functions.

Notice that this two layer evaluation process can be computed very easily, and is especially

suited for hardware implementation.

For small values of the size parameter τ the ICC quantifies statistically our intuition

of synchrony, graded by the decaying exponential function and followed by a coincidence

detection operator implemented by the product. When two neurons spike synchronously
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the product of the estimated intensities at that time will be high, with a maximum if they

spike exactly at the same time, but if the spikes are separated by more than ≈ 5τ then the

ICC is nearly zero (Figure 5-4). In this respect, the ICC resembles the “gravity force” in

the gravity transform framework Gerstein et al. [1985]; Gerstein and Aertsen [1985], but

the present work provides a statistical interpretation for the estimator and much broader

perspective not available before.

5.3.1 Stochastic Approximation of GCC

As the formulation of ICC suggests, c̃ij is a stochastic approximation of the GCC

under ergodicity. This is easily verified by taking the expectation of Equation 5–2 over

time. In particular, the average ICC over a time interval [0, T ] with a exponential function

results is

1

T

∫ ∞

0

c̃ij(t, θ)dt =
1

Tτ 2

Ni∑
m=1

Nj∑
n=1

∫ ∞

max(tim,tjn)

exp

[
−|tAm − tBn + θ|

τ

]
, (5–5)

where the integration goes up to infinity to account for the infinite support of the

exponential function but only spike times in the interval [0, T ] are included. The

evaluation of the integral involves determining which spike firing, tim or tjn, occurs later

to determine the effective lower integration limit. Solving the integral for both situations

(i.e., tim ≤ tjn or tim > tjn), however, allows to verify that the difference between the

time instants in both situations is positive, which can be summarized in the form of the

Laplacian kernel. That is,

1

T

∫ ∞

0

c̃AB(t, θ)dt =
1

T

NA∑
m=1

NB∑
n=1

1

2τ
exp

(
−|tAm − tBn + θ|

τ

)

=
1

T

NA∑
m=1

NB∑
n=1

κτ

(
tAm − tBn + θ

)
= ĈAB(θ),

(5–6)

where, in this case, κτ denotes the Laplacian kernel. Note that the exponential function

gives rise to the Laplacian kernel which verifies all the requirements for Ĉij to represent a

well defined inner product. If, for example, a Gaussian function of bandwidth σ had been
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used as the smoothing function for intensity estimation then the resulting kernel κ would

also be a Gaussian kernel with bandwidth
√

2σ. However, with the Gaussian function we

would loose the important advantages of ease of computation and causality.

5.3.2 ICC as a Neural Ensemble Measure

The ICC exploits the temporal nature of the spike trains and enables instantaneous

estimation of synchrony because no temporal averaging is done. The price paid is that,

for a single pairs of neurons, variability in the spike times is directly translated into the

ICC and thus its estimation is quite “noisy” due to events occurring by chance. Instead

of averaging ICC over time which yields the GCC in a time interval, an alternative way

to reduce the variance of this estimator is to compute the expectation over the neural

ensemble,

c̄(t, θ) = E {c̃AB(t, θ)} , (5–7)

where E {·} denotes the expectation over all pairs of neurons.

The ensemble averaged ICC is a spatio-temporal measure of the ensemble cooperation

over time. In this form, and due to the exchange of time for ensemble averaging, the ICC

is capable of detecting the presence of dynamic cell assemblies in the ensemble with high

temporal resolution. However, as in Section 5.1, it raises the problem of neural selection to

evaluate the ensemble average.

5.3.3 Data Examples

Three examples of the application of ICC are now presented. The first two are in

simulated paradigms and the third in a recording of motor neurons from the M1 cortex of

rat performing a behavioral task. In these examples the analysis is focused on synchrony

mainly because it is an application that naturally takes advantage of the high resolution in

time of the ICC, but we remark that ICC could also be utilized for studies of correlations

in the firing rates in principle.
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5.3.3.1 ICC as a synchronization measure

The main goals of this example are: first, to show that the mean value of ICC is

sensitive to the synchrony level on that data, second, that this measurement is effective for

single-realizations, and, finally, to showcase the use of GCC as a synchrony index; in other

words, a descriptor of the synchrony level.

For this example, we generated 10 homogeneous spike trains using the multiple

interaction process (MIP) Kuhn et al. [2003]. The MIP model allows for multiple spike

trains to be generated according to a selected synchrony level, ε, which is the count

correlation coefficient and quantifies the probability of a spike co-occurrence in another

spike train.

Figure 5-5 shows one realization of the generated spike trains with varying levels

of synchrony. All simulated spike trains have average firing rate 20 spikes/s. The figure

shows the ICC averaged for each time instant over all pair combinations of spike trains.

The time constant, τ , of the exponential for intensity estimation was chosen to be 2ms. To

verify Equation 5–6, the bottom plot shows the average value of the mean ICC. This was

computed with a causal 250ms long sliding window in 25ms steps. To establish a relevance

of the values shown, the expectation and the expectation plus two standard deviations

are also shown, assuming independence between spike trains. The mean and standard

deviation, assuming independence, are 1 and
√(

1
2τλ

+ 1
)2 − 1, respectively. The expected

value of the ICC for a given synchrony level is 1 + ε/(2τλ), with λ the firing rate of the

two spike trains, and is also shown in the plot for reference. Finally, the ensemble averaged

GCC computed for each second of data is also shown.

It is noticeable from the figure that the ICC estimated synchrony increases as

measured by ICC. Moreover, the averaged ICC is very close to the theoretical expected

value and is typically below the statistical upper bound under an independence assumption

as given by the line indicating the expectation plus two standard deviations. The delayed

increase in the averaged ICC is a consequence of the causal averaging of ICC. It is equally
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Figure 5-5. Analysis of the behavior of ICC as a function of synchrony in simulated
coupled spike trains. (Top) Level of synchrony used in the simulation of
spike trains. (Upper middle) Raster plot of firings. (Lower middle) Ensemble
averaged ICC. (Bottom) Time average of ICC in the upper plot computed
with a causal rectangular window 250ms long in steps of 25ms (dark gray).
For reference, it is also displayed the expected value (dashed line) and this
value plus two standard deviations (dotted line) for independent neurons,
together with the expected value during moments of synchronous activity
(thick light gray line), as obtained analytically from the level of synchrony
used in the generation of the dataset. Furthermore, the mean and standard
deviation of the ensemble averaged GCC scaled by T measured from data in
one second intervals is also shown (black).
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remarkable to verify that GCC matches precisely the expected values from ICC as given

analytically. This shows a significant advantage of the GCC/ICC as it can be used for

analysis of data providing not only detection ability but also the possibility to actually

measure the synchrony level with a high degree of accuracy.

5.3.3.2 Synchronization of pulse-coupled oscillators

In this example, we show that ICC can quantify synchrony in a spiking neural

network of leaky-integrate-and-fire (LIF) neurons designed according to Mirollo and

Strogatz Mirollo and Strogatz [1990]1 and the ICC results compare favorably with the

extended cross-correlation for multiple neurons. The network is initialized in a random

condition and is proven to synchronize over time (Fig. 5-6). The synchronization is

essentially due to leakiness and the weak coupling among the oscillatory neurons.

The raster plot of neuron firings is shown in Fig. 5-6. There are two main observations:

the progressive synchronization of the firings associated with the global oscillatory

behavior of the network, and the local grouping that tends to preserve local synchronizations

that either entrain the full network or wash out over time, as expected from theoretical

studies of the network behavior Mirollo and Strogatz [1990]. The ICC depicts this

behavior precisely: the synchronization increases monotonically, with a period of fast

increase in the first second followed by a plateau and slower increase as time advances.

Moreover, it is possible to observe in the first 1.5s the formation of a second group of

synchronized neurons which slowly merges into the main group. In addition, the envelope

of ICC reveals the coherence in the membrane potentials quantified by the information

potential (IP). The IP is an information theoretic quantity inversely proportional to

1 The parameters for the simulation are: 100 neurons, resting and reset membrane
potential -60 mV, threshold -45 mV, membrane capacitance 300 nF, membrane resistance
1 MΩ, current injection 50 nA, synaptic weight 100 nV, synaptic time constant 0.1 ms and
all to all excitatory connection.
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Figure 5-6. Evolution of synchrony in a spiking neural network of pulse-coupled oscillators.
(Top) Raster plot of the neuron firings. (Middle) ICC over time. The inset
highlights the merging of two synchronous groups. (Bottom) Information
potential of the membrane potentials. This is a macroscopic variable
describing the synchrony in the neurons’ internal state.
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Figure 5-7. Zero-lag cross-correlation computed over time using a sliding window 10 bins
long, and bin size 1ms (top) and 1.1ms (bottom).

entropy Pŕıncipe et al. [2000]. It was computed with

IPθ =
1

M2

M∑
i=1

M∑
j=1

exp(−d(θi, θj)/2σ
2) (5–8)

with σ = 75mV.2 The IP measures synchrony of the neuron’s internal state, which is only

available in simulated networks. Yet the results show that ICC was able to successfully

and accurately extract such information from the observed spike trains.

In Fig. 5-7 we also present the zero-lag cross-correlation over time, averaged through

all pairwise combinations of neurons. The cross-correlation was computed with a sliding

window 10 bins long, sliding 1 bin at a time. Results are shown for bin sizes of 1ms

and 1.1ms. It is notable that although cross-correlation captures the general trends of

synchrony, it masks the plateau and the final synchrony and it is highly sensitive to the

bin size as shown in the figure, unlike ICC. In other words, the results for the windowed

cross-correlation highlight the importance of working in “continuous” time and without

time averaging for robust spike train analysis.

2 The distance used in the Gaussian kernel was d(θi, θj) = min (|θi − θj|, 15mV − |θi − θj|),
where θi is the membrane potential of the ith neuron. This wrap-around effect expresses
the phase proximity of the neurons before and after firing.
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5.3.3.3 Analysis of neural synchronous activity in motor neurons

In this last example, the ICC is utilized to analyze the presence of synchronous

activity in the motor cortex of a rat’s brain. Throughout the literature, synchronous

activity has been shown to provide additional information about motor movement when

compared to firing rate modulation pattern analysis alone, and including when no firing

rate modulations are noticeable [Vaadia et al., 1995; Hatsopoulos et al., 1998; Riehle et al.,

1997]. Indeed, synchronous neural activity seems to be an widespread characteristic of the

brain and can be found in a number of cortices, such as the auditory [Wagner et al., 2005;

Carr and Konishi, 1990] and the visual cortices [Freiwald et al., 2001], for example.

Multichannel neuronal firing times from a male Sprague-Dawley rat were simultaneously

recorded during a conditioned behavioral task at the University of Florida McKnight

Brain Institute. The rat was chronically implanted with two 2×8 arrays of micro-electrodes

placed bilaterally in the forelimb region of the primary motor cortex (1.0mm anterior,

2.5mm lateral of bregma [Donoghue and Wise, 1982]). Neuronal activity was collected

with a Tucker-Davis recording rig with sampling frequency of 24414.1Hz and digitized to

16 bits of resolution. The firing times were recorded from individual neurons spike sorted

with an online algorithm employing a combination of thresholding and template-based

techniques. From sorting, a total of 44 single neurons were recorded, 24 neurons from

the left hemisphere and 20 neurons from the right hemisphere. Simultaneously, the rat

performed a go no-go lever pressing task in an operant conditioning cage (Med-Associates,

St. Albans, VT, USA). The task consisted of choosing and pressing one out of two

levers (left or right) depending on a LED visual stimulus to obtain a water reward. The

queue and lever press signals were recorded simultaneously with the neural activity

with sampling frequency 381.5Hz. See Sanchez et al. [2005] for additional details on the

experimental configuration.

ICC was applied to this dataset to investigate for the presence of synchronous neural

activity across the ensemble. Figure 5-8 shows some trials with the ensemble ICC. From
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Figure 5-8. ICC and neuron firing raster plot on a single realization, showing the
modulation of synchrony around the lever presses. The ICC was averaged
throughout the neurons pairs, as given by Equation 5–7, separately for each
hemisphere: left (blue) and right (green). The left plots show left lever presses
and right plots show right lever presses.
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Figure 5-9. Windowed cross-correlation of selected 6 pairs of neurons, for the same
segments shown in Figure 5-8. The cross-correlation was computed with a
200ms sliding window over 1ms bins. Four of the neuron pairs, two from each
hemisphere, are known to synchronize and are shown in dark gray and light
gray solid line for the left and right hemispheres, respectively. The remaining
two, one from each hemisphere, do not synchronize strongly and are shown in
dotted line. The left plots show left lever presses and right plots show right
lever presses.
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Figure 5-10. Spatially averaged windowed cross-correlation, for the same segments shown
in Figure 5-8. The cross-correlation for each neuron pair was computed
with a 200ms sliding window over 1ms bins. Similar to ICC, the spatial
average was done throughout all neuron pair combinations, separately for
each hemisphere: left (dark gray) and right (light gray). The left plots show
left lever presses and right plots show right lever presses.
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the result a systematic increase when the lever is released can be observed. Moreover,

while the lever was being pressed the ensemble synchrony was observed to be significantly

smaller than synchrony before and after. Actually, in this dataset, visual inspection of

the raster plots would yield such conclusions, but ICC provides a quantitative method

to translate the visual evaluation. Furthermore, examining the raster plots we can verify

the presence of ensemble synchronized activity reoccurring in a periodic manner after the

lever is released. Notice that the ensemble ICC captures the presence of this oscillatory

synchronized activity, seen in the envelope of ICC in Figure 5-8, directly from a single trial

and with high temporal resolution.

For comparison, we show the cross-correlation computed at zero-lag with a 200ms

sliding window over 1ms bins [Hatsopoulos et al., 1998]; first, for only some selected pairs

of neurons (Figure 5-9), and then spatially averaged (Figure 5-10) as proposed for ICC.

Although the presence of synchrony is also successfully captured with cross-correlation,

the presence of any periodic modulation in synchrony is not noticeable. This can be

expected since the cross-correlation requires stationarity over time and uses time averaging

to reduce the randomness of the estimator. These two factors filter out any existing

periodicities in the modulation, which may represent a great deal of information. This

imposes up front a lower bound on the frequencies that can analyzed. This effect is most

visible in Figure 5-10 where spatial averaging greatly improves the estimation as the

variance of the estimator is reduced, but the temporal averaging prevents the modulation

in synchrony to be clearly noticeable. These figures highlight the importance of the

spatial averaging proposed for ICC, in opposition to the time averaging employed in

cross-correlation.

The high temporal resolution of the ICC will be wasted in cases where the experimental

characteristics do not display high temporal synchrony or the experimental conditions do

not allow high precision in temporal measurements. One case is the averaging across trials.

Many times, the resolution of the time markers is insufficient with regard to the sampling

107



−1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

−1 0 1 2 3
0

0.005

0.01

0.015

0.02

Time (s)

Figure 5-11. Trial averaged ICC (upper plot) and cross-correlation (lower plot) time
locked to lever release. The trial averaged ICC is shown for neurons from the
left hemisphere (light gray) and right hemisphere (dark gray). Also shown in
the plot is the trial averaged ICC smoothed with a 200ms long rectangular
window for neurons from the left hemisphere (solid line) and right hemisphere
(dashed line). The cross-correlation was computed with a 200ms sliding
window over 1ms bins. The triggering event is marked in the figures by time
zero.
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rate of the neural data collection, or the experimental effects appear asynchronous with

the stimulus. However, even in this case the smoothing of the ICC with a lowpass filter

will provide results comparable to the cross-correlation function. To illustrate this point,

the ICC and its lowpass version (filtered with a rectangular window 200ms long), and

the (spatially averaged) cross-correlation were averaged throughout trials synchronized

with a lever press. The resulting peri-event plots are shown in Figure 5-11. From the

figures, one can conclude that the averaged ICC contains the same information as the

cross-correlation where the modulation of synchrony at the lever press is clearly visible as

mentioned earlier.

5.4 Peri-Event Cross-Correlation Over Time

The ICC just described is a simple tool to detect and characterize the evolution of

correlation with time. Despite the single trial capability of ICC, it is sometimes desired

to characterize the interaction among the two neurons as a function of the event onset.

Again, averaging over time is not desirable. In this section the peri-event cross-correlation

over time (PECCOT) is presented. The PECCOT aims to be a tool to analyze and

visualize the evolution of synergistic information over time in a convenient way.

5.4.1 Method

The main difficulty in estimating cross-correlation is that in practice only stochastic

estimates of the underlying intensity functions are available from spike trains. To

obtain statistical reliability, the traditional approach is to average the instantaneous

cross-correlation in the argument of expectation over a time interval. The problem with

this approach is that it trades time resolution for statistical reliability. A more principled

approach is to average over realizations, as expressed in the definition of cross-correlation.

There are fundamentally two principled approaches to achieve this:

(i) Average over the neural ensemble; or

(ii) Average over trials.
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Each of these approaches implies a particular assumption and provides a specific trade-off.

Averaging over the ensemble requires that multiple spike trains are assumed part of

the same ensemble, which might have to be found a priori, and one trades “spatial” or

ensemble resolution for statistical reliability. Conversely, averaging over trials can only

be applied to paradigms where trial repetition is available, and although it quantifies

the coupling for each pair of neurons (high “spatial” resolution), it needs to assume

stationarity among trials (that is, all trials are realizations of the same underlying

process). In spite of that, in both approaches the time resolution is preserved since no

integration/averaging over time is involved.

The results presented above where based on averaging over the ensemble. For

experimental paradigms with multiple realizations, the second approach is now considered.

Instead of averaging over time, the PECCOT averages the instantaneous cross-correlation

(ICC) over instances of the event. As a consequence, the PECCOT is able to characterize

with high temporal resolution the interactions over time among pairs of neurons. This is

conceptually similar to how the peri-event time histogram (PETH) is obtained, but here

the quantity expresses neuronal interactions.

Therefore the algorithm for estimation of the PECCOT is as follows:

1. For each realization of the event,

(a) Estimate the intensity function of each neuron in an time interval around the
event onset, [−T, T ] (zero corresponding to the event onset), according to
Equation 4–3.

(b) Compute the instantaneous cross-correlation for each pair of neurons. At the
kth realization, between neurons i and j, the instantaneous cross-correlation is,

c
(k)
ij (t) = λ̂(k)

pi
(t)λ̂(k)

pj
(t),

where λ̂
(k)
pi (t), λ̂

(k)
pi (t) are the estimated intensity functions for the kth realization.

2. Average the instantaneous cross-correlation for each pair of neurons across
realizations.
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Figure 5-12. Modulation of intensity with the event for each neuron.

Careful examining the algorithm one may recognize the same form that leads to the

main diagonal of the JPSTH [Aertsen et al., 1989] which typically expresses the neural

interactions. The difference however is that here the computation is done explicitly,

and thus much more efficiently. Also, by focusing only on this function, analysis of the

overall result is much simpler since the result of all pairs of neurons may be summarized

in a single plot. Nevertheless, as for the JPSTH, it is also possible to compute other

diagonals by introducing the dependency to a lag between λ̂
(k)
pi (t) and λ̂

(k)
pi (t). Moreover,

the statistical procedure proposed by Aertsen et al. [1989] for normalization of the JPSTH

can be applied for normalization of the PECCOT, with the intensity function estimated by

kernel smoothing.

5.4.2 Data Examples

Two data examples of the analysis with PECCOT are now shown. First a simulated

dataset is utilized to show the method does capture the desired feature in the data. In

the second example the same recording of motor neurons analyzed in Section 5.3.3.3 was

analyzed with the PECCOT.
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Figure 5-13. Centered PECCOT for the three neuron pairs around the lever.

5.4.2.1 Simulation

To illustrate and validate the method just proposed we consider a simple simulated

example. Three neurons with base firing rate 20 spk/s were generated. All of these

neurons modulated their firing rate in the time vicinity of the event, as shown in

Figure 5-12, and here generated with an inhomogeneous Poisson model. In addition,

neurons A and B tended to fire synchronously approximately 0.12s before the event. This

coupling was introduced in the generated spike trains by selecting the nearest spike of A to

0.12s before the event as a reference and moving the closest spike in B to the same time

(with a 1ms zero mean Gaussian jitter added), if the two spikes differ by less than 50ms

(baseline inter-spike interval). Neuron C spiked independently of both A and B. A total of

100 event realizations (trials) where generated.

The constructed dataset was analyzed by PECCOT with a Gaussian smoothing

function of width σ = 5ms. The computed result is shown in Figure 5-13. The result was

centered by removing the expected coincidence levels merely due to rate modulations. The
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Figure 5-14. Centered JPSTH for each neuron pair.
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PECCOT marks the presence of synchronous activity between neurons A and B with a

strong peak in the cross-correlation roughly 0.12s before the event onset, as expected given

the construction of the dataset. Moreover, the instantaneous cross-correlation between

neuron C and others does not show any significant peak, only the effect of firing rate

modulations.

For comparison, we also computed the JPSTH for the same neuron pairs (shown

in Figure 5-14) using NeuroExplorer (Littleton, MA). For ease of comparison, the bin

size was set to 5ms. Again, we observe a strong peak between A and B approximately

0.12s before the event. Several interactions are visible for the other two pairs. However,

carefully examining the scales one notices that the peak is about two times higher in

the first case. These results highlight the difficulty in analyzing multiple JPSTH plots,

especially with an increasing number of neuron pairs. On the other hand, by displaying

the result of all neuron pairs in a single plot under the same scale, the PECCOT greatly

simplifies this analysis.

5.4.2.2 Event-related modulation of synchronous activity

The PECCOT is now demonstrated for the analysis of couplings in the neuronal

firings of neurons in forelimb region of M1 of a rat performing a behavioral task. The same

dataset as in Section 5.3.3.3 was utilized. Specifically, we wanted to verify if the neurons’

synchronous firing patterns modulated with movement onset.

To test this hypothesis the centered PECCOT3 was computed in a neighborhood

of two seconds before and after the lever presses. The smoothing function for intensity

function estimation was a Gaussian function with width σ = 5ms. For visualization

purposes, the centered PECCOT was further smoothed with a Gaussian window of width,

σ = 10ms. To analyze possible differences in synchrony modulation between left and right

3 Centering was utilized to remove the effect of very different firing rates and their
modulations.
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Figure 5-15. Centered PECCOT around the lever press onset. The two columns
correspond to neurons from the left and right hemispheres, respectively, and
two rows correspond to the situation in which either the left or right lever
was pressed, respectively.

lever presses (since the two levers are usually pressed with different paws) and between

hemispheres, the situations are considered separately. A total of 93 left lever presses and

45 right lever presses were used for averaging. The results are shown in Figure 5-15 and

Figure 5-16. In the first figure PECCOT was shown as in Figure 5-13, while in the second

we opted to display the results in the form of a color coded figure due to the large number

of neuron pairs, making it easier to visualize the overall modulation and identify the most

relevant neuron pairs.

It can be observed that the synchrony among neurons in the left hemisphere is far

more widespread than in the right hemisphere, for both left or right level presses. It can
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Figure 5-16. Centered PECCOT around the lever press onset. Like Figure 5-15 but in
image form. Each line corresponds to the PECCOT of a pairs of neuron with
amplitude color coded.

be clearly observed that in all situations there is considerable interaction among neurons

before the lever press instant and that these interactions are almost entirely suppressed

immediately after. Approximately one second after the lever press instant the synchrony

increases again. Interestingly, it should be remarked that this time interval corresponds

approximately to the average duration of a lever press, after which the rat receives a water

reward if the correct lever was pressed. Moreover, we notice lever press specific synchrony

modulation with depressions around 1.4s, 0.95s, 0.8s, 0.45s and 0.3s before a left lever

press, and a major depression around 1.25s before a right lever press. These modulations

are present at the same time in both hemispheres. Also, in the images it is apparent that

the interactions between neurons tend to be phase locked and have a periodic component
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in the theta range (3–8Hz). Although we have not investigated the reason for this periodic

phase locking of synchrony, these results may provide further evidence on the role of

low frequency rhythms commonly found in meso- and macroscopic recordings as “clock

signals” for synchronization of multiple brain regions.
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CHAPTER 6
CLUSTERING OF SPIKE TRAINS

Having an RKHS framework for point processes is important because it facilitates

the development of new methods to operate with point processes, and their realizations.

Moreover, all of these methods are developed under the same principles provided by this

general theory.

To exemplify the use of point process kernels proposed under the RKHS framework,

in the following we show how a clustering algorithm for spike trains can be obtained

naturally from any of the point process kernel definitions here presented. Comparing

these ideas with previous clustering algorithms for spike trains we find that they result

in simpler methods, derived in an integrated manner, with a clear understanding of the

features being accounted for, and greater generality. It must be remarked that although

this chapter shall consider spike trains, it is immaterial the exact nature of the realizations

of point processes to be clustered.

Note that the primary emphasis here is to illustrate the elegance and usefulness of

the RKHS framework rather than merely propose another algorithm. In spite of that, it

will be shown through multiple simulations that the spike train algorithm presented here

performs as good or better than other algorithms in the literature despite its simplicity.

6.1 Algorithm

In the literature a few algorithms have been proposed for clustering of spike trains.

Examples are the methods proposed by Paiva et al. [2007] and Fellous et al. [2004]. Both

of these algorithms rely on measures between spike trains. Paiva et al. [2007] utilized

van Rossum’s distance [van Rossum, 2001], but it is pointed out that Victor-Purpura’s

(VP) distance [Victor and Purpura, 1996, 1997] could be used as well. In turn, Fellous

et al. [2004] used instead the “correlation-based measure” proposed by Schreiber et al.

[2003]. Nevertheless, as shown in Section 3.6.3, either of the measures used in the previous

clustering algorithms can be reformulated in terms of the mCI kernel. More than simply
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a reformulation of the distances, this raises the question: “Can the RKHS framework be

utilized to derive clustering algorithms is an integrated manner?” The answer is yes. For

the purpose of this example we will show how spike train kernels defined in the RKHS

framework provide the means to do clustering of spike trains. The algorithm will be

based on the ideas of spectral clustering, since kernels naturally quantify affinity. Spectral

clustering is advantageous for the purpose of this example since the evaluation of the

affinity between spike trains by point process kernels and the actual clustering procedure

are conceptually distinct. It is possible to extend other clustering algorithms although one

must introduce the inner product directly into the computation which slightly complicates

matters.

Spectral clustering of spike trains operates in two major steps. First, the affinity

matrix of the spike trains is computed. Let {s1, s2, . . . , sn} denote the set of n spike

trains to be clustered into k clusters. The affinity matrix is an n × n matrix describing

the similarity between all pairs of spike trains. The second step of the algorithm is to

apply spectral clustering to this affinity matrix to find the actual clustering results.

In particular, the spectral clustering algorithm proposed by Ng et al. [2001] was used

for its simplicity and minimal use of parameters. The clustering algorithm, presented

step-by-step, is presented in Table 6-1. The reader is referred to Ng et al. [2001] for

additional details on the spectral clustering algorithm.

Clearly, the defining step for the use of this algorithm is how to evaluate affinity

between spike trains. Since inner products inherently quantify similarity, any of the kernels

proposed can be used, and in particular the mCI and nCI kernels, for which we provide

results. Geometrically, this role of the kernel can be understood since the inner product

is sensitive to the norm and angular distance of the two spike trains in the RKHS. In

this situation the affinity matrix is simply the Gram matrix of the spike trains computed

with the spike train kernel. Note that the cross-correlation (CC) of binned spike trains

is in itself an inner product of spike trains and therefore could be used as well. Indeed,
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Table 6-1. Step-by-step description of the algorithm for clustering of spike trains. These
are basically the steps of the spectral clustering algorithm.

1. Compute the affinity matrix A ∈ Rn×n from the n spike trains. The ijth entry of the
affinity matrix is given by,

aij =

{
Î(si, sj), if i 6= j
0, otherwise

(6–1)

where Î(pi, pj) denotes the estimator of any point process kernel, evaluated for spike
trains si and sj.

2. Construct D as a diagonal matrix with the ith element of the main diagonal equal to
the sum of all elements in the ith row of A (or column, since A is symmetric). That
is,

di =
n∑

j=1

aij.

3. Evaluate the matrix
L = (D− 1

2 )A(D− 1
2 ).

4. Find x1, x2, . . . , xk, the k eigenvectors of L corresponding to the largest eigenvalues,
and form the matrix X = [x1, x2, . . . , xk] ∈ Rn×k.

5. Define Y ∈ Rn×k as the matrix obtained from X after normalizing each row to unit
norm. Consequently,

yij =
xij√∑n
j=1 x2

ij

.

6. Interpreting Y as a set of n points in Rk, cluster these points into k clusters with
k-means or similar algorithm.

7. Assign to the ith spike train the same label of the ith point (row) of Y .
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Eggermont [2006] utilized this idea in his analysis. However, binning quantizes the spike

times and is therefore introduces boundary artifacts in the analysis, as we will show later.

Compared to the method proposed by Paiva et al. [2007] the algorithm shown

here is simpler since no transformation to map the distance evaluation to a similarity

measurement and the need to adjust the corresponding parameter is avoided. Since

distances are derived concepts and, usually, can be defined in terms of inner products, the

approach taken is much more straightforward and principled. Moreover, the algorithm

can be generalized merely by using a different point process kernel. Even the simple

mCI kernel explicitly unveils a broader potential of the algorithm. In particular, unlike

the formulation of Paiva et al. [2007] which was apparently restricted to clustering of

spike trains by synchrony, our knowledge based on the mCI kernel reveals this is not

true. Rather it is merely a matter of kernel size. Furthermore, there is a close connection

between point process kernels and kernels on spike times (i.e., event coordinates), either by

construction or in estimation (as Section 3.4.2 elicits), and thus suggests that a multitude

of kernels on spike times can be used in place of the Laplacian kernel associated with

van Rossum’s distance (cf. Section 3.6.1). These ideas shall be illustrated next with some

simulation experiments.

6.2 Comparison to Fellous’ Clustering Algorithm

The clustering algorithm of spike trains by Fellous et al. [2004] is perhaps the most

well established method in the literature. Therefore, this algorithm will now be compared

with the clustering algorithm we just described. This allows to assess which algorithm is

better, and if clustering ability might have lost in using the RKHS framework.

The algorithm by Fellous et al. [2004] is somewhat similar in principle to the above

algorithm, but with important differences. For reference, the clustering algorithm is now

given. The algorithm operates in three steps:
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1. Compute the similarity matrix using Schreiber’s et al. correlation-based measure
[Schreiber et al., 2003].

2. Reshape the similarity matrix with a sigmoid function to increase the entropy of the
histogram of similarity values.

3. Apply fuzzy C-means (FCM) to the similarity matrix by taking each column (or
row) as an input point.

The first step corresponds to the computation of the affinity matrix that we had described

earlier. The second step was motivated by the work of Bell and Sejnowski [1995] and,

according to the authors, aimed to improve the clustering performance. The last step uses

FCM (or fuzzy K-means; they are the same), to obtain the actual clustering. Basically,

this uses the idea that neighboring spike trains are reciprocally close and therefore the

similarity between two spike trains is small at the same row (or column) of the column of

the similarity matrix.

For the comparison, the same surrogate dataset utilized in Fellous et al. [2004]

was used. The dataset is available at http://www.cnl.salk.edu/~fellous/data/

JN2004data/data.html. The dataset includes three scenarios with 2, 3 and 5 clusters.

There are a total of 100 situations for each scenario corresponding to multiple levels of

extra spikes (non-synchronous spikes aimed to confuse the clustering) and multiple levels

of jitter in the synchronous spikes. In each situation, the dataset comprises 30 Monte

Carlo runs, each with 35 spike trains to be clustered.

Both clustering algorithms were implemented in Matlab. The results for the algorithm

proposed were computed with the mCI kernel estimator using the Gaussian kernel with

width 5ms, as indicated in Fellous et al. [2004, pg. 2992]. For reshaping of the similarity

matrix the procedure in Fellous et al. [2004, pg. 2999] was followed.

From Figure 6-1, Figure 6-2, and Figure 6-3 one can clearly verify that the method

proposed here and using the mCI kernel estimator achieves much better performance.

Even though the results are somewhat comparable for the two cluster problem, with a

difference smaller than 6%, for a higher number of clusters this improvement is as high
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Figure 6-1. Comparison of clustering performance between the clustering algorithm
proposed here and Fellous’ algorithm for two clusters. In the left column the
results for the clustering using the mCI kernel with the Gaussian kernel are
shown. In the middle column the results are for Fellous’ algorithm. The right
column shows the difference between the two methods (first minus second).
The upper row shows the results as a function of the jitter standard deviation
for multiple number of extra spikes (legend on the right), and the bottom row
shows the same results from the reciprocal perspective.
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Figure 6-2. Comparison of clustering performance between the clustering algorithm
proposed here and Fellous’ algorithm, like Figure 6-1, but for three clusters.
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Figure 6-3. Comparison of clustering performance between the clustering algorithm
proposed here and Fellous’ algorithm, like Figure 6-1, but for five clusters.

as 25% for three clusters and 50% for five clusters! The primary reason for this should

the direct use of the whole similarity/affinity matrix in the second method. Note that the

implementation embeds the n-dimensional similarity vectors in an n-dimensional space.

Consequently, this space is necessarily sparse. Even though it performs acceptably for a

small number of clusters, as the number of clusters is increased the sparsity within cluster

for the dimensionally of the space greatly hinders the clustering performance. Of course

using a larger kernel would mitigate the problem somewhat by introducing correlations

among dimensions but would limit the analysis for the problem initially intended by

Fellous and colleagues.

The role or relevance of the similarity matrix reshaping always intrigued us.

Thus, this was investigated in our simulation, although these results are not shown for

conciseness. It was found that this transformation had a minimal impact, and actually the

results tended to be slightly better without it.

124



6.3 Simulations

This section aims primarily to compare the use of multiple point process kernels. First

the clustering using the mCI kernel, the nonlinear kernel definition in Equation 3–12, and

the (binned) cross-correlation (CC). In Section 6.2, the mCI and nCI kernels are compared

for the clustering of renewal point processes.

6.3.1 Clusters Characterized by Firing Rate Modulation

In this simulation example the defining feature of each cluster is similarity in the

intensity function underlying each spike train. Specifically, this means that for each cluster

an intensity function was generated, in this particular case chosen to be a sinusoidal with

1Hz frequency. These intensity functions were then utilized to generate one second long

inhomogeneous Poisson spike trains. Since the spike trains for each cluster were generated

according to the same intensity function, ideally, the evaluation of the point process

kernels would yield the maximum value for spike trains within cluster and a different value

for the remaining spike trains. However, since the data is limited there is some variance in

the evaluation of the kernel which leads to clustering errors. Of course, if the spike trains

are made longer this variability is decreased and therefore the clustering performance

is improved. The clustering performance also depends on how different the two clusters

are. In our case the differentiating characteristic between clusters is the phase difference

between the two sinusoidal intensity functions.

In the simulation, the clustering performance was measured as the value of the

relative phase was varied over the interval [0◦, 180◦] in steps of 20 degrees. For each

value, the clustering performance results were averaged over 100 Monte Carlo runs, each

comprising 100 spike trains randomly distributed over the two clusters. Performance

results are also given using three different kernel sizes 25ms, 50ms and 100ms, in the

estimation of the point process kernels and van Rossum’s distance. The kernel sizes were

purposely chosen large (that is, on the order of the average inter-spike interval) since by

the problem formulation it is known that the distinguishing feature is a smooth intensity
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Figure 6-4. Clustering performance as a function of the phase difference in the intensity
function. In the left column the results for the clustering using the mCI kernel
with the Laplacian and rectangular kernels are shown. Likewise, in the middle
column it is shown the results for the algorithm using van Rossum’s distance
(σ = 10) and the cross-correlation (top and bottom rows, respectively). The
right column shows the difference between the clustering performance using
the mCI kernel and the corresponding method on the middle column (of the
same row). In each plot, clustering performance results are shown for three
kernel sizes specified in the legend (for the cross-correlation interpret “kernel
size” as “bin size”).
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function. Results for point process kernels using a rectangular kernel, with width given by

the kernel size, are also shown for comparison with a CC-based inner product. The goal

is to illustrate the limitations incurred in a discrete time representation as imposed by

binning. Notice that the rectangular “kernel” is not positive definite. Nevertheless, it can

be utilized in estimation just like the tanh function is utilized in kernel methods [Schölkopf

et al., 1999].

Figure 6-4 shows the clustering performance results using the mCI kernel evaluated

with both the Laplacian and rectangular kernels. These results are contrasted with the

approach in Paiva et al. [2007], for the optimum size of the Gaussian function (σ = 10),

and utilizing CC as the inner product. Note that the similarity measure utilized in

Paiva et al. [2007], corresponds in effect to the nonlinear point process kernel definition

in Equation 3–12. The Laplacian and rectangular kernels used to evaluate the point

process kernels were selected to approximate the kernel function on spike times implicit

in the measure we were comparing against. As shown in the figure, the implementation

utilizing the mCI kernel not only is simpler but also outperforms the competing algorithms

by up to nearly 10%. This improvement is most noticeable for small phase differences;

that is, when discrimination among clusters is the most difficult. Most importantly, the

generality of point process kernels allows to experiment with many different kernels on

spike times. In this paradigm, between the Laplacian and rectangular kernels, the best

results are achieved with the Laplacian kernel. Anyway, it is shown that even utilizing the

rectangular kernel the performance can be considerably improved with regards to the use

of the CC, only because no binning is utilized.

6.3.2 Clusters Characterized by Synchronous Firings

In contrast to the previous scenario, we now consider the case when clusters are

characterized through synchronized spikes among their spike trains. In other words, a

dependency is imposed in the underlying process generating spike trains within a cluster

such that a spike is added simultaneously into more than one spike train with some
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Figure 6-5. Clustering performance as a function of the synchrony level between spike
trains within cluster in the jitter-free case. The results are shown in the
same form as for Figure 6-4, with results using the mCI kernel in the left
column, van Rossum’s distance and CC in middle column and difference in
performance in the right.

probability. Since each cluster is generated independently so are the resulting spike trains

between clusters.

Like the previous simulation, the idea here is to parameterize the synchrony of spike

trains within clusters and verify the clustering performance based on this parameter. In

our case, this is regulated quite simply by the probability that the generating process

introduces a spike into more than one spike train at the same time. In the following we

shall refer to this probability as the “synchrony level,” defined as the (expected) ratio of

synchronous spikes with regards to the overall spike rate. In our case we modeled this

situation through cluster wide synchronous spikes with an average occurrence εγ spk/s,
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Figure 6-6. Clustering performance as a function of the jitter standard deviation. Again,
the results are shown in the same structure as Figure 6-4. However, for each
plot in this case, clustering performance results are provided for two values
of the synchrony level and, for each synchrony level, for three kernel sizes as
indicated in the legend.

where ε and γ are the synchrony level and final average spike rate for the spike trains,

respectively. By ‘cluster wide synchronous spikes’ we mean that synchronous spikes are

introduced in all spike trains within a cluster at the same time. This process is then

added to an independently generated homogeneous Poisson spike train with average spike

rate (1 − ε)γ. Notice that the resulting spike trains are still Poisson distributed and

with average spike rate γ. However, the reader might think that the underlying intensity

function for each clusters has most of the time a constant value of (1 − ε)γ, except at the

times of the synchronous wide spikes where scaled impulses are present integrating to εγ.

It is worth pointing out that clustering of spike trains corresponding to this paradigm is a
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common problem. In fact, this was the main motivation and application for the work by

Fellous et al. [2004].

Two situations were considered for analysis. In the first, synchronous spikes match

perfectly so that the kernel (or bin) size can be made as close to zero as desired.

Indeed the best performance is expected as the kernel size is made smaller since there

is better discrimination of true synchronous spikes than from spikes that occur by chance.

Conversely, as the kernel size is increased more spikes occurring by chance are accounted

for, thus increasing the “noise” and variability of the measurement. In the second case,

the synchronous spikes were jittered independently with zero-mean Gaussian noise before

they were introduced into each spike train. Unlike the first situation which depicts an

improvable scenario, this situation aims at understanding how the algorithm perform

under some variability in the synchronous spikes as is often encountered in practice.

For the simulation, 100 spike trains were generated at a time according to the process

described before and distributed randomly over two clusters. As a result of the process

above, spike trains had constant average spike rate of 20 spk/s and were one second long.

Results were obtained by averaging over 100 Monte Carlo runs in the first situation (no

jitter) and 500 Monte Carlo runs in the second situation (with jitter). This procedure

was repeated for each synchrony level and for three different kernel sizes, 2ms, 5ms and

10ms. Compared to the experiment in Section 6.3.1, in this case the kernel sizes were

chosen small compared to the average inter-spike interval (∼ 50ms) since in the paradigm

formulation it was stated that clusters were characterized by synchrony. Alternatively,

this can the thought of in terms of the problem in estimating the intensity function we

depicted earlier, which happens to be implicitly taken into consideration by the mCI

kernel.

The clustering performance results are given in Figure 6-5 and Figure 6-6, for the

jitter-free and with jitter situations, respectively. In both figures it can be observed

once again that the clustering results using the point process kernels evaluated with the
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Laplacian kernel are better than with the rectangular kernel. However, the algorithm using

the mCI kernel performs similarly to the algorithm based on van Rossum’s distance, in

either situation. In the case of the comparison with the CC-based algorithm the latter

performs better in the noise-free case. However, Figure 6-6 shows that this is only true for

small (< 2ms) standard deviations of the jitter noise smaller. As the jitter is incorporated,

even small variability in the synchrony in the spikes leads to significant losses in the

performance using CC. This shows the particularly significant negative impact of using

binned spike trains for synchrony-based clustering under realistic scenarios.

Although, as remarked above, the method by Paiva et al. [2007] utilized one of the

nonlinear point process kernels proposed, the results are not better than with the mCI

kernel. It must be emphasized that such behavior was expected for the reasons presented

in Section 3.2.2. Basically, because the nonlinearity plays a minimal role in extending

the capabilities of the mCI kernel this definition, similar to the role of sigmoid function

reshaping in Fellous’ algorithm. For true nonlinear behavior on the space of intensity

functions the nCI kernels needs to be used, with great modeling advantages as shown next.

6.3.3 Clustering of Renewal Processes by mCI and nCI Kernels

The goal of this simulation example is to show the importance of point process

kernels that go beyond the first cross-moment (i.e., cross-correlation) between spike trains.

For this reason, we applied the algorithm proposed here for clustering of spike trains

generated as homogeneous renewal point processes with a gamma inter-spike interval (ISI)

distribution. This model was chosen since the Poisson process is a particular case and thus

can be directly compared.

A three cluster problem is considered, in which each cluster is defined by the ISI

distribution of its spike trains (Figure 6-7(a)). In other words, spike trains within the

cluster were generated according to the same point process model. All spike trains were

1s long and with constant firing rate 20 spk/s. For each Monte Carlo run, a total of

100 spike trains randomly assigned to one of the clusters were generated. The results
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Figure 6-7. Comparison of clustering performance using mCI and nCI kernels for a three
cluster problem.
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statistics were estimated over 500 Monte Carlo runs. For both the mCI and nCI kernels,

the Gaussian function was used as smoothing function with results for three values of the

smoothing width, 2, 10 and 100ms. In addition, the Gaussian kernel was utilized for Kσ in

the computation of the nCI kernel, with results for kernel sizes σ = 1 and σ = 10.

The results of the simulation are shown in Figure 6-7(c). The cluster with shape

parameter θ = 1 contained Poisson spike trains, spike trains with shape parameter

θ = 3 were more regular, and θ = 0.5 gave rise to more irregular (i.e. “bursty”) spike

trains. The results with the mCI kernel are at most 1.4% better, on average, than random

selection. This low performance is not entirely surprising since all spike trains have the

same constant firing rate. Using the nCI kernel with the larger smoothing width yielded

an improvement of 14.7% for σ = 10 and 18% for σ = 1, on average. Smaller values of

σ did not improve the clustering performance (σ = 0.1 resulted in the same performance

as σ = 1), demonstrating that the selection of kernel size σ for the nCI kernel is not very

problematic. But, most importantly, the results show that even though the formulation

depends only on the memoryless intensity functions, in practice, the nonlinear kernel Kσ

allows for different spike train models to be discriminated. This improvement is due to the

fact that Kσ enhances the slight differences in the estimated intensity functions due to the

different point process model expressed in the spike trains (Figure 6-7(b)).

6.4 Application for Neural Activity Analysis

To conclude this chapter, we briefly present some results on the application of this

algorithm to the neural activity analyzed in Chapter 5. As mentioned then, clustering be

coupled with the ICC analysis to determine which neurons to consider as an ensemble so

that averaging over the ensemble can be done.

As was observed in Section 5.3.3.3, there is interesting modulation of synchrony in the

motor neurons about 0.25 ∼ 0.4 seconds after the lever is released. Therefore, clustering

was applied to the set of spike trains (one for each neuron) in the interval [0.5, 1.5]

(seconds) after the lever was release, using the mCI kernel with a Laplacian estimation
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Figure 6-8. Clustering of neural activity following a lever release, assuming 4 clusters. The
spike trains correspond to the moments after the lever presses in Figure 5-8.
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kernel of width 2ms. The results are shown in Figure 6-8 for the same lever presses shown

in Figure 5-8, considering 4 clusters. One of major difficulties when applying clustering

to real datasets such as this one is how to choose the number of clusters. This is greatly

complicated by the fact that all clusters share some similarity, and thus becomes quite

complicated where to place a boundary. In this case, the value was chosen after trying

values from 3 to 5. For this dataset, 4 clusters seems to provide a good overall distinction

(visually judged from the raster plot) between clusters. (Effectively, we tried to prevent

any two clusters from looking quite similar.) The problem with establishing a boundary

might signify that fuzzy methods needs to be utilized, maybe simply by replacing K-means

by fuzzy K-means in the effective clustering step of the spectral clustering algorithm.

From Figure 6-8 it can be verified that the clustering algorithm separates neurons

based on both firing rate and synchrony, despite the small kernel size. This is very

important because if ICC is applied to each cluster this results allows for different

time-scales to be utilized for each cluster and enhances the various moments when

synchrony occurs within cluster and across clusters. For example, in the raster plot it can

observed the main synchrony rhythm also shown in the ICC plots in Figure 5-8 (e.g., red

cluster in the first plot) but, in addition, it reveals other higher-frequency rhythms (e.g.,

yellow cluster in the first plot). Together with ICC analysis for each cluster, matching

the ICC with LFP activity, and/or simply correlating these findings with the spatial

placement of the micro-electrodes might reveal the role this neuronal coupling.
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CHAPTER 7
PRINCIPAL COMPONENT ANALYSIS

To further illustrate the importance of the RKHS framework shown here for

computation with point processes, in the following we derive the algorithm to perform

principal component analysis (PCA) of realizations of point processes, and of spike trains

in particular. As in Chapter 6, although we consider spike trains due to main motivation

of this work, the ideas are applicable to any one-dimensional point process.

The PCA algorithm will be derived from two different perspectives. First, PCA will

be derived directly in the RKHS induced by a point process kernel. This perspective shows

the usefulness of the RKHS framework for optimization, and highlights that optimization

with realizations of point processes is possible by the definition of an inner product for

the point process realizations, and more specifically through the mathematical structure

provided by the RKHS. This is also the traditional approach in the functional analysis

literature Ramsay and Silverman [1997] and has the advantage of being completely

general, regardless of the actual point process kernel definition used. A well known

example of discrete PCA done in an RKHS is kernel PCA [Schölkopf et al., 1998].

In the second approach we will derive PCA in the space spanned by the intensity

functions utilizing the inner product defined in this space. Thus, this perspective is

applicable only for linear CI kernels. The derivation shown here considers the mCI kernel

but the same can be derived in terms of the conditional intensity functions for general

linear CI kernels. Since for these point process kernels the RKHS is congruent to this

space the inner products in the two spaces are isometric, and therefore the outcome will

be found to be the same. However, this approach has the advantage that it explicitly

makes available the eigenfunctions as (scaled) intensity functions. This is important in

many neurophysiological studies since the researcher is often interested in understanding

the undergoing process in the neuronal network, as expressed by the intensity functions.

Note that, in general, the eigenfunctions are not available in the RKHS because the
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transformation to the RKHS is unknown. However, this approach is possible here due to

the linearity of the space spanned by the intensity functions with the inner product we

defined.

7.1 Optimization in the RKHS

Suppose we are given a set of spike trains, {s1, s2, . . . , sN}, for which we wish to

determine the principal components. Computing the principal components of the spike

trains directly is not feasible because we would not know how to define a principal

component (PC), however, this is a trivial task in an RKHS.

Let {Λsi
∈ HI , i = 1, . . . , N} be the set of elements in the RKHS HI corresponding

to the given spike trains. Note that, correctly speaking, Λ· denotes the transformation

for a point process into the RKHS, and for which the inner product is the point process

kernel. In spite of that, this chapter deals exclusively with point process realizations and

therefore, with some abuse of notation, Λsi
shall be used to denote the “transformed spike

trains.” Then, the inner product of Λsi
’s is in effect the estimator of the point process

kernel.

Denote the mean of the transformed spike trains as

Λ̄ =
1

N

N∑
i=1

Λsi
, (7–1)

and the centered transformed spike trains (i.e., with the mean removed) can be obtained

as

Λ̃si
= Λsi

− Λ̄. (7–2)

PCA finds an orthonormal transformation providing a compact description of

the data. Determining the principal components of spike trains in the RKHS can be

formulated as the problem of finding the set of orthonormal vectors in the RKHS such

that the projection of the centered transformed spike trains {Λ̃si
} has the maximum

variance. This means that the principal components can be found by solving the following

optimization problem in the RKHS: a function ξ ∈ HI (i.e., ξ : P(T ) −→ R) is a principal
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component if it maximizes the cost function

J(ξ) =
N∑

i=1

[
Projξ(Λ̃si

)
]2

− ρ
(
‖ξ‖2 − 1

)
(7–3)

where Projξ(Λ̃si
) denotes the projection of the ith centered transformed spike train onto ξ,

and ρ is the Lagrange multiplier to the constraint
(
‖ξ‖2 − 1

)
imposing that the principal

components have unit norm. To evaluate this cost function one needs to be able to

compute the projection and the norm of the principal components. However, in an RKHS,

an inner product is the projection operator and the norm is naturally defined. Thus, the

above cost function can be expressed as

J(ξ) =
N∑

i=1

〈
Λ̃si

, ξ
〉2

HI

− ρ
(
〈ξ, ξ〉HI

− 1
)
, (7–4)

Because in practice we always have a finite number of spike trains, ξ is restricted to

the subspace spanned by the centered transformed spike trains {Λ̃si
}. Consequently, there

exist coefficients b1, . . . , bN ∈ R such that

ξ =
N∑

j=1

bjΛ̃sj
= bT Λ̃ (7–5)

where bT = [b1, . . . , bN ] and Λ̃(t) =
[
Λ̃s1(t), . . . , Λ̃sN

(t)
]T

. Substituting in Equation 7–4

yields

J(ξ) =
N∑

i=1

(
N∑

j=1

bj

〈
Λ̃si

, Λ̃sj

〉)(
N∑

k=1

bk

〈
Λ̃si

, Λ̃sk

〉)

+ ρ

(
1 −

N∑
j=1

N∑
k=1

bjbk

〈
Λ̃si

, Λ̃sk

〉)

= bT Ĩ2b + ρ
(
1 − bT Ĩb

)
.

(7–6)
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where Ĩ is the Gram matrix of the centered spike trains; that is, the N × N matrix with

elements

Ĩij =
〈
Λ̃si

, Λ̃sj

〉
=

〈
Λsi

− Λ̄, Λsj
− Λ̄

〉
=

〈
Λsi

, Λsj

〉
− 1

N

N∑
l=1

〈Λsi
, Λsl

〉 − 1

N

N∑
l=1

〈
Λsl

, Λsj

〉
+

1

N2

N∑
l=1

N∑
n=1

〈Λsl
, Λsn〉 .

(7–7)

In matrix notation,

Ĩ = I − 1

N
(1NI + I1N) +

1

N2
1NI1N , (7–8)

where I is the Gram matrix of the inner product of spike trains Iij =
〈
Λsi

, Λsj

〉
, and 1N is

the N × N matrix with all ones. This means that Ĩ can be computed directly in terms of I

without the need to explicitly remove the mean of the transformed spike trains.

From Equation 7–6, finding the principal components simplifies to the problem of

estimating the coefficients {bi} that maximize J(ξ). Since J(ξ) is a quadratic function its

extrema can be found by equating the gradient to zero. Taking the derivative with regards

to b (which characterizes ξ) and setting it to zero results in

∂J(ξ)

∂b
= 2Ĩ2b − 2ρĨb = 0, (7–9)

and thus corresponds to the eigendecomposition problem1

Ĩb = ρb. (7–10)

This means that any eigenvector of the centered Gram matrix is a solution of Equation 7–9.

Thus, the eigenvectors determine the coefficients of Equation 7–5 and characterize the

principal components. It is easy to verify that, as expected, the variance of the projections

1 Note that the simplification in the eigendecomposition problem is valid regardless if
the Gram matrix is invertible or not, since Ĩ2 and Ĩ have the same eigenvectors and the
eigenvalues of Ĩ2 are the eigenvalues of Ĩ squared.
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onto each principal component equals the corresponding eigenvalue squared. So, the

ordering of ρ specifies the relevance of the principal components.

To compute the projection of a given input spike train s onto the kth principal

component (corresponding to the eigenvector with the kth largest eigenvalue) we need only

to compute in the RKHS the inner product of Λs with ξk. That is,

Projξk
(Λs) = 〈Λs , ξk〉HI

=
N∑

i=1

bki

〈
Λs , Λ̃si

〉
=

N∑
i=1

bki

(
I(s, si) −

1

N

N∑
j=1

I(s, sj)

)
.

(7–11)

We emphasize once more that no property specific of a point process kernel was

utilized in the derivation. Indeed, it utilizes only the linear vector space structure provided

by the RKHS for optimization and computation. Therefore, any of the point process

kernels proposed in this dissertation can be utilized.

7.2 Optimization in the Space Spanned by the Intensity Functions

As before, let {s1, s2, . . . , sN} denote the set of spike trains for which we wish to

determine the principal components, and {λsi
(t), t ∈ T , i = 1, . . . , N} the corresponding

intensity functions. The mean intensity function is

λ̄(t) =
1

N

N∑
i=1

λsi
(t), (7–12)

and therefore the centered intensity functions are

λ̃si
(t) = λsi

(t) − λ̄(t). (7–13)

Again, the problem of finding the principal components of a set of data can be

stated as the problem of finding the eigenfunctions of unit norm such that the projections

have maximum variance. This can be formulated in terms of the following optimization

problem. A function ζ(t) ∈ L2(λsi
(t), t ∈ T ) is a principal component if it maximizes the
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cost function

J(ζ) =
N∑

i=1

[
Projζ(λ̃si

)
]2

− γ
(
‖ζ‖2 − 1

)
=

N∑
i=1

〈
λ̃si

, ζ
〉2

L2

− γ
(
‖ζ‖2 − 1

)
,

(7–14)

where γ is the Lagrange multiplier constraining ζ to have unit norm. It can be shown

that ζ(t) lies in the subspace spanned by the intensity functions {λ̃si
(t), i = 1, . . . , N}.

Therefore, there exist coefficients b1, . . . , bN ∈ R such that

ζ(t) =
N∑

j=1

bjλ̃sj
(t) = bT r̃(t). (7–15)

with bT = [b1, . . . , bN ] and r̃(t) =
[
λ̃s1(t), . . . , λ̃sN

(t)
]T

. Substituting in Equation 7–4 yields

J(ζ) =
N∑

i=1

(
N∑

j=1

bj

〈
λ̃si

, λ̃sj

〉)(
N∑

k=1

bk

〈
λ̃si

, λ̃sk

〉)

+ γ

(
1 −

N∑
j=1

N∑
k=1

bjbk

〈
λ̃si

, λ̃sk

〉)

= bT Ĩ2b + γ
(
1 − bT Ĩb

)
.

(7–16)

where Ĩ is the gram matrix of the centered intensity functions (i.e., Ĩij =
〈
λ̃si

, λ̃sj

〉
L2

).

Therefore, this derivation is only valid for point process kernels for which the inner

product is explicitly defined in the space of intensity functions (in general, conditional

intensity functions).

As expected, since in this case the RKHS and the space of intensity functions are

congruent because the inner product produces the same result, this cost function yields

the same solution. However, unlike the previous, this presentation has the advantage

that it shows the role of the eigenvectors of the gram matrix and, most importantly, how

to obtain the principal component functions in the space of intensity functions. From

Equation 7–15, the coefficients of the eigenvectors of the gram matrix provide a weighting
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Figure 7-1. Spike trains used for evaluation of the eigendecomposition coefficients of PCA
algorithm (A), and for testing of the result (B). In either case, the first half of
spike trains corresponds to the first template and the remaining to the second
template.

for the intensity functions of each spike trains and therefore expresses how important

a spike train is to represent others. In a different perspective, this suggests that the

principal component functions should reveal general trends in the intensity functions of the

input spike trains.

7.3 Results

7.3.1 Comparison with Binned Cross-Correlation

To illustrate the algorithm just derived, and to compare the use of the mCI kernel

with binned cross-correlation (CC) in this task, we performed a simple experiment. We

generated two template spike trains comprising of 10 spikes uniformly random distributed

over an interval of 0.25s. In a specific application these template spike trains could

correspond, for example, to the average response of a culture of neurons to two distinct

but fixed input stimuli. For the computation of the coefficients of the eigendecomposition

(“training set”), we generated a total of 50 spike trains, half for each template, by
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(b) First two eigenvectors of the eigendecomposi-
tion of the Gram matrix.

Figure 7-2. Eigendecomposition of the centered Gram matrix Ĩ.

randomly copying each spike from the template with probability 0.8 and adding zero

mean Gaussian distributed jitter with standard deviation 3ms. For testing of the obtained

coefficients, 200 spike trains were generated following the same procedure. The simulated

spike trains are shown in Figure 7-1.

According to the PCA algorithm derived previously, we computed the eigendecomposition

of the matrix Ĩ as given by Equation 7–8 so that it solves Equation 7–10. The evaluation

of the mCI kernel was estimated from the spike trains according to Equation 3–27, and

computed with a Gaussian kernel with size 2ms. The eigenvalues {ρl, l = 1, . . . , 100}

and first two eigenvectors are shown in Figure 7-2. The first eigenvalue alone accounts

for more than 26% of the variance of the dataset in the RKHS space. Although this

value is not impressive, its importance is clear since it is nearly 4 times higher than the

second eigenvalue (6.6%). Furthermore, notice that the first eigenvector clearly shows the

separation between spike trains generated from different templates (Fig. 7-2(b)). This

again can be seen in the first principal component function, shown in Figure 7-3, which

reveals the location of the spike times used to generate the templates while discriminating

between them with opposite signs. Around periods of time where the spike from both
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Figure 7-3. First two principal component functions (i.e., eigenfunctions) in the space of
intensity functions. They are computed by substituting the coefficients of the
first two eigenvectors of the Gram matrix in Equation 7–15.
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(b) Projection of the spike trains in the testing set.

Figure 7-4. Projection of spike trains onto the first two principal components using
mCI kernel. The different point marks differentiate between spike trains
corresponding to each one of the classes.
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templates overlap the first principal component is zero. As can be seen from the second

principal component function, the role of the second eigenvector is to account for the

dispersion in the data capable of differentiate spike trains generated from different

templates, especially around the times where they overlap.

Both datasets, for evaluation and testing, where projected onto the first two principal

components. Figure 7-4 shows the projected spike trains. As noted from the difference

between the first and second eigenvalues, the first principal component is the main

responsible for the dispersion between classes of the projected spike trains. This happens

because the direction of maximum variance is the one that passes through both clusters

of points in the RKHS due to the small dispersion within class. The second principal

component seems to be responsible for dispersion due to the jitter noise introduced in the

spike trains, and suggests that other principal components may play a similar role.

A more specific understanding can be obtained from the considerations done in

Section 3.5.3. There, the congruence between the RKHS induced by the mCI kernel, HI ,

and the RKHS induced by κ, Hκ, was utilized to show that the mCI kernel is inversely

related to the variance of the transformed spike times in Hκ. In this dataset and for

the kernel size utilized, this guaranties that the value of the mCI kernel within class is

always smaller than inter class. This is a reason why in this scenario the first principal

component always suffices to project the data in a way that distinguishes between spike

trains generated each of the templates.

PCA was also applied to this dataset using binned spike trains. Although cross-correlation

is an inner product for spike trains and therefore the above algorithm could have been

used, for comparison the conventional approach was followed [Richmond and Optican,

1987; McClurkin et al., 1991]. That is, to compute the covariance matrix with each binned

spike train taken as a data vector. This means that the dimensionality of the covariance

matrix is determined by the number of bins per spike train, which may be problematic if

long spike trains are used or small bin sizes are needed for high temporal resolution.
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Figure 7-5. Eigendecomposition of the covariance matrix.
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Figure 7-6. Projection of spike trains onto the first two principal components of
the covariance matrix of binned spike trains. The different point marks
differentiate between spike trains corresponding to each one of the templates.
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The results of PCA using bin size of 5ms are shown in Figure 7-5 and Figure 7-6.

The bin size was chosen to provide a good compromise between temporal resolution and

smoothness of the eigenfunctions (important for interpretability). Comparing these results

the ones using the mCI kernel, the distribution of the eigenvalues is quite similar and the

first eigenfunction does reveals somewhat of the same trend as in Figure 7-3. The same

is not true for the second eigenfunction, however, which looks much more jaggy. In fact,

as Figure 7-6 shows, in this case the projections along the first two principal directions

are not orthogonal. This means that the covariance matrix does not fully express the

structure of the spike trains. It is noteworthy that this is not only because the covariance

matrix is being estimated with a small number of data vectors. In fact, when the binned

cross-correlation was utilized directly in the above algorithm as the inner product the

same effect was observed, meaning that the binned cross-correlation does not characterize

the spike train structure in sufficient detail. Since the binned cross-correlation and the

mCI kernel are conceptually equivalent apart from the discretization introduced by

binning, this proves the ill effects of this preprocessing step for analysis and computation

with spike train, and point process realizations in general.

7.3.2 PCA of Renewal Processes

PCA is, in essence, a filtering operation. Therefore, the mCI and nCI kernels are now

compared for PCA of renewal processes. Basically, a paradigm similar to the one utilized

in the previous section was employed. Two datasets were generated: for computation of

the eigendecomposition (i.e., “training”) with 50 spike trains, and for testing with 200

spike trains. For each dataset, the spike trains were generated from two renewal point

process models with gamma distributed inter-spike intervals (shape parameter θ = 0.5 and

θ = 3), one half from each model. All spike trains were 1 second long and with mean firing

rate 20 spk/s. The simulated spike trains are shown in Figure 7-7.

Then, the algorithm derived in Section 7.1 was applied using both the mCI and nCI

kernel. Recall that the PCA algorithm is independent of the point process kernel used,
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Figure 7-7. Spike trains from renewal point processes for comparison of mCI with nCI
kernel. (A) “Training” spike trains for evaluation of the eigendecomposition
coefficients of the PCA algorithm, and (B) for testing of the result (B). Each
dataset (training and testing) is divided in two halves, each corresponding to
one of the renewal point process models.

the only difference is which kernel is used to compute the Gram matrix of the spike trains.

The results of the eigendecomposition are shown in Figure 7-8. Although the spike train

variability is concentrated in a smaller number of dimensions for the mCI kernel than

the nCI kernel, there a clear distinctions between the contribution of the first and second

principal components in the latter case (first PC almost twice as important as second

PC). This can be judged more easily in the first eigenvector of the eigendecomposition,

which in the case of the nCI kernel shows that the first principal component separates

spike trains generated from different renewal point process model. The relevance of this

observation can asserted in the projections of the dataset, shown in Figure 7-9. For the

mCI kernel case, the projections from the two point process models overlap greatly,

being only noticeable the higher dispersion of spike trains from the first renewal model

(θ = 0.5) due to their more irregular firing. For case using the nCI kernel, however, the
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(a) Eigenvalues of the mCI Gram matrix.
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(b) First two eigenvectors of the mCI Gram
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(c) Eigenvalues of the nCI Gram matrix.
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(d) First two eigenvectors of the nCI Gram matrix.

Figure 7-8. Eigendecomposition of the Gram matrix, for the mCI and nCI kernels.

first principal component alone is responsible for the separation between spike trains from

the two renewal models, as had been noted in Figure 7-8(d).

These results verify once more the generality of the nCI kernel, by being able to

quantify and discriminate between renewal point process models. More importantly,

the projection results in Figure 7-9 reveal that the use of point process kernels capable

of coping with the point process model is very important in ensuring that the data is

transformed into the RKHS while preserving the model differences. Put differently, a

proper point process kernel for a given model certifies that the RKHS is rich enough so
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(c) Projection of the training set spike trains using
nCI kernel.
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(d) Projection of the testing set spike trains using
nCI kernel.

Figure 7-9. Projection of renewal spike trains onto the first two principal components
using mCI and nCI kernels. The different point marks differentiate between
spike trains corresponding to each one of the templates.
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that linear suffice in analysing and processing the transformed data in this space. Because,

in practice the true underlying point process model is unknown the safest choice is to

whenever possible to test using the most general point process kernel and compare with

simpler kernels to infer about the complexity of the underlying model.
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CHAPTER 8
CONCLUSION AND TOPICS FOR FUTURE DEVELOPMENTS

8.1 Conclusion

The peculiar nature of point process has made the application of conventional

signal processing methods to their realizations difficult and imprecise to apply from

first principles. In this respect, binning is currently the standard approach since it

transforms the point process into a discrete-time random process such that conventional

signal processing methods can be used. However, binning is an imprecise mapping since

information is irreversibly lost from the point process realizations (see, for example,

Section 7.3.1). The most powerful methodologies to point process analysis are based

on statistical approaches since the distributions are estimated directly, thus, fully

characterizing the point process. But such methodologies face serious shortcomings

when multiple point processes and their couplings are considered simultaneously, since

they are only practical using an assumption of independence. Nevertheless, processing

of multiple point processes is very important for practical applications, such as neural

activity analysis, with the widespread use of multielectrode array techniques.

This dissertation presents a reproducing kernel Hilbert space (RKHS) framework

for the analysis of point processes that has the potential to improve the set of methods

and algorithms that can be developed for point process analysis. The main goal of this

dissertation was to present the fundamental theory in order to establish a solid foundation

and hopefully entice further work along this line of reasoning. Indeed, the dual role of the

dissertation is to elucidate the set of possibilities that are open by the RKHS formulation

and to link the theory to methods that are in common use. So further work is needed to

bring the possibilities open by RKHS theory to fruition in point process signal analysis.

The core concept of RKHS theory is the concept of inner product which is also

the fundamental operator for signal processing with point processes. Therefore much

of the contributions of this work at the theoretical level focused on showing how point

152



process kernels could be defined, in terms of kernels on event coordinates or the statistical

descriptors of the point processes. The latter approach is, in a sense, an extension of

the early work of Parzen [1959] on stochastic processes to point processes by defining

bottom-up the structure of the RKHS on the statistics of the point processes; that is, the

conditional intensity functions (in general). This result provides a solid foundation for

future work both for practical algorithm development but also on a simple way to bring

into the analysis more realistic assumptions about the statistics of point processes. Indeed

we show that the Poisson statistical model is behind the simplest definition of the RKHS

(the memoryless cross-intensity kernel) and that this RKHS provides a linear space for

doing signal processing with point processes. However, the same framework can be applied

to inhomogeneous Markov interval of even more general point process models which only

now are beginning to be explored. We would like to emphasize that building a RKHS

bottom-up is a much more principled approach than the conventional way that RKHS are

derived in machine learning, where the link to data statistics is only possible at the level of

the estimated quantities, not the statistical operators themselves.

Another theoretical contribution is to show the flexibility of the RKHS framework.

Indeed it is possible to define alternate, and yet unexplored, RKHS for point process

analysis that are not linearly related to the intensity functions. Obviously, this will provide

many possible avenues for future research and there is the hope that it will be possible

to derive systematic approaches to tailor the RKHS definition to the goal of the data

analysis. There are basically two different types of RKHS that mimic exactly the two

methodologies being developed in the machine learning and signal processing literatures:

kernels that are data independent (κ) and kernels that are data dependent (CI kernels).

Specifically for point processes, we show in a specific case how that the former may be

used to compose the latter, but they work with the data in very different ways. But

what is interesting is that these two types of RKHS provide different features in the

transformation to the space of functions. The former is a macroscopic descriptor of the
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spike time intervals that may be usable in coarse analysis of the data. The latter is a

functional descriptor of the data but it is harder to compute. In current methods only the

latter is being pursued in the form of binned cross-correlation, but by analogy with the

large impact of kernel methods in statistical learning, an equally important impact of the

former may be expected. And yet, the theory and the operators presented this far will

form the foundations for such future developments.

There are also practical implications of the RKHS methodology presented in this

dissertation. Since the RKHS is a vector space with an inner product, all the conventional

signal processing algorithms that involve inner product computations can be immediately

implemented for point processes in the RKHS. This was illustrated in Chapters 6 and 7,

by deriving algorithms for clustering and PCA, but many other applications are possible,

such as filtering. Note that the clustering algorithm shown could also be derived using

common distances measures that have been defined as has been done before [Paiva

et al., 2007]. But we stress the elegance of the proposed formulation that first defines

the structure of the space (the inner product) and then leaves for the users the design

of their intended algorithm, unlike the approaches presented so far which are specific for

the application. The same can be observed in the derivation of the PCA algorithm where

the derivation occurs in the RKHS and in a way that is independent of the actual RKHS

induced by the point process kernel. This is advantageous as advances in point process

kernels may be incorporated in the derived algorithms upon their availability, without the

need to restructure the implementation. This was done for both clustering and PCA for

the comparison of the mCI and nCI kernels. Indeed, in both cases only the nCI showed

sensitivity to the parameters of the renewal point processes. Since in practice the true

point process model is unknown, the nCI kernel is preferable as it can accommodate

point process models beyond Poisson. The trade-off in doing so is that, in the case of the

nonlinear CI kernels defined, another kernel size parameter (of Kσ) needs to be selected,

even though in our experiments the results depended on this parameter quite coarsely.
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The RKHS framework is also of high relevance for development of point process

analysis tools. It was shown that the simplest of the CI kernels considered is fundamentally

equal to the generalized cross-correlation (GCC) which extends the more common binned

cross-correlation. This exposes the limitations of current methodologies as it brings

forth the implicit dependence on the Poisson point process model. Therefore, current

approaches can accurately quantify at most interactions in the rate functions. The

good news are that point process kernels capable of coping with more general point

process models were shown here. These kernels are properly defined covariance functions

(Section 3.5.4) which current analysis often utilize. Hence, they can replace binned

cross-correlation (or GCC) without major changes in current paradigms.

There are still other topics that need to be researched for a fully systematic use of

the technique. Perhaps the most important one for practical applications is the kernel

size parameter of the kernel function. The theory shows clearly the role of this free

parameter; that is, it sets the scale of the transformation by changing the inner product.

So it provides flexibility to the researcher, but also suggests the need to find tools to help

set this parameter according to the data and the analysis goal. From a neurophysiological

perspective, which is particularly important in this work, the kernel size has a biological

interpretation. Because the kernel function utilized in the estimation is associated with

the filtering of the point process, and the similarity of this step to the spike-to-membrane

potential conversion, the kernel size can be interpreted as the time constant of the cell

membrane resistive-capacitive network.

8.2 Topics for Future Developments

As said earlier, this dissertation aimed primarily to present the fundamental theory

and provide examples for the reproducing kernel Hilbert space (RKHS) framework we

propose for processing of point processes. However, there still several topics that need

work to further complete this research and better establish the value of the RKHS

framework. There are two main topics for future developments:
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1. Filtering in the RKHS; and

2. Data efficient CI kernel estimators.

Filtering is the most important signal processing operation for use of the RKHS

framework in BMIs, which first motivated this work. As reviewed in Section 2.4.3,

the vast majority of current BMIs apply traditional linear/nonlinear filtering methods

to binned spike trains but, as shown for the PCA results in Section 7.3.1, the binned

cross-correlation does not fully characterize the structure of spike trains. Although

conceptually it implements the same idea, the mCI kernel estimator yielded a more

consistent outcome and therefore its use in BMIs has the potential to improve current

results. These may be improved further by utilizing the nCI kernel. But even if the mCI

kernel is used there is a significant improvement over current methodologies as the analysis

can be implemented across timescales naturally by incorporating the estimator with

multiple kernel sizes. Put differently, the kernel size in the point process kernel estimator

can be utilized as a continuous parameter that measures the interactions of the neurons at

various timescales.

The difficulties in developing a procedure for filtering in this case are fundamentally

the same as with other kernel methods, namely the need for regularization. In this

regard, recent developments suggest that this step may avoided explicitly in online

implementations if stochastic gradients are utilized (since the gradient regularizes

the optimization). Formally, PCA may be utilized since the dimensionally reduction

regularizes the Gram matrix.

The second topic is that of developments of the CI point process kernels, and most

specifically their estimators. In spite of the successful results using the nCI kernel, this

kernel was not truly designed for point processes beyond Poisson and hence its sensitivity

is somewhat limited especially as the complexity of the point process model increases.

Nevertheless, it is hoped that these results will stem further developments and lead to

the design of data efficient CI kernel estimators. A crucial step in deriving an estimator
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for a CI kernel is the estimation of the conditional intensity function, as can be noticed

in Section 3.4. For estimation of the rate function, kernel smoothing can be used quite

efficiently. But current methods for estimation of the conditional intensity function are

data intensive which prevents a more widespread use of CI kernels capable of coping with

general point process models. Therefore, I believe that the solution might involve the

use of semi-parametric models of the history evolution in conjunction with the nonlinear

kernels ideas to enhance the dimensionality of the point process kernel memory.
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APPENDIX A
BRIEF INTRODUCTION TO RKHS THEORY

In this appendix, we briefly review some basic concepts of kernel methods and RKHS

theory necessary for the understanding of this dissertation. The presentation here is meant

to be as general and introductory as possible, so the notation was purposely chosen to be

different from the one used throughout this document.

The fundamental result in RKHS theory is the well-known Moore-Aronszajn theorem

[Aronszajn, 1950; Moore, 1916]. Let K denote a generic symmetric and positive definite

function of two variables defined on some space E. That is, a function K(·, ·) : E × E → R

which verifies:

(i) Symmetry: K(x, y) = K(y, x), ∀x, y ∈ E.

(ii) Positive definiteness: for any finite number of l ∈ N points x1, x2, . . . , xl ∈ E, and any
corresponding l coefficients c1, c2, . . . , cl ∈ R,

l∑
m=1

l∑
n=1

cmcnK(xm, xn) ≥ 0. (A–1)

These are sometimes called Mercer conditions [Mercer, 1909]. Then the Moore-Aronszajn

theorem [Aronszajn, 1950; Moore, 1916] guaranties that there exists a unique Hilbert

space H of real valued functions on E such that, for every x ∈ E,

(i) K(x, ·) ∈ H, and

(ii) for any f ∈ H
f(x) = 〈f(·), K(x, ·)〉H . (A–2)

The identity on Equation A–2 is called the reproducing property of K, and, for this reason,

H is said to be an RKHS with reproducing kernel K.

Two essential corollaries of this theorem can be observed. First, since both K(x, ·)

and K(y, ·) are in H, we get from the reproducing property that

K(x, y) = 〈K(x, ·), K(y, ·)〉H . (A–3)
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Hence, K evaluates the inner product in this RKHS. This identity is the kernel trick, well

known in kernel methods, and the main tool for computation in this space. Second, a

consequence of the previous properties which can be explicitly seen in the kernel trick is

that, given any point x ∈ E, the representer of evaluation in the RKHS is Ψx(·) = K(x, ·).

Notice that the functional transformation Ψ from the input space E into the RKHS H

evaluated for a given x, and in general any element of the RKHS, is a real function defined

on E.

The seminal work by Parzen [1959] provides a quite interesting perspective to RKHS

theory (a review is presented in Wahba [1990, Chapter 1]). In his work, Parzen proved

that for any symmetric and positive definite function there exists a space of Gaussian

distributed random variables defined on the same domain for which this function is the

covariance function. Assuming stationarity and ergodicity, this space might just as well

be thought of as a space of random processes. In other words, any kernel inducing an

RKHS denotes simultaneously an inner product in the RKHS and a covariance operator in

another space. Furthermore, it is established that there exists an isometric isomorphism,

that is, a one-to-one inner product-preserving mapping, also called a congruence, between

these two spaces which are thus said to be congruent. This is an important result as it

sets up a correspondence between the inner product due to a kernel in the RKHS to our

intuitive understanding of the covariance function and associated linear statistics. Simply

put, due to the congruence between the two spaces an algorithm can be derived and

interpreted in any of the spaces.
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APPENDIX B
A COMPARISON OF BINLESS SPIKE TRAIN MEASURES

B.1 Introduction

Spike train similarity measures or, conversely, dissimilarity measures are important

tools to quantify the relationship among pairs of spike trains. Indeed, the definition

of such a measure can be essential for classification, clustering or other forms of spike

train analysis. For example, just by using a distance (dissimilarity) measure it is

possible to decode the applied stimulus from a spike train [Victor and Purpura, 1996,

1997; Wohlgemuth and Ronacher, 2007]. This is possible because the measure is used

to quantify how much the spike train differs from a “template” or sets of reference

spike trains for which the input stimulus is known and, hence, classified accordingly

(Figure B-1). However, naturally the success of this classification is dependent of the

discriminative ability of the measure.

A traditional measure of similarity between two spike trains is to measure the

(empirical) cross-correlation of the binned spike trains [Brown et al., 2004]. However,

to avoid the difficulties associated with binning and to prevent estimation errors of

information when binning is done, binless spike train dissimilarity measures have been

proposed. Three well known such measures which we shall consider for comparison are

Victor-Purpura’s (VP) distance [Victor and Purpura, 1996, 1997]1 , van Rossum’s distance

[van Rossum, 2001] and the correlation-based measure proposed by Schreiber et al. [2003].

These measures have been utilized in different neurophysiological paradigms (Victor

[2005] and references within) and for different tasks, such as classification [Victor and

Purpura, 1996, 1997] and clustering of spike trains [Fellous et al., 2004; Paiva et al., 2007;

1 Actually, in their works, Victor and Purpura [1996, 1997] proposed not one but
several spike train distances. Namely, Dspike[q], Dinterval[q], Dcount[q] and Dmotif [q]. In
this study, and as in most references to their works, VP distance refers to Dspike[q] for a
fair comparison to the other distances considered in this study.
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 responses to stimulus B

 response to unlabeled stimulus

Figure B-1. Typical experimental setup for classification using spike train dissimilarities.
In this setup the measure is utilized to quantify the dissimilarity between the
new spike train and the reference spike trains for each of the stimulus. Then,
the unlabeled stimulus is inferred as the one corresponding to the class for
which the new spike train has smaller average dissimilarity.

Toups and Tiesinga, 2006]. However, we feel that in neither of these works was the choice

of the measure used have been properly argued versus the candidates. This is perhaps

because, to the authors knowledge, a systematic comparison has not yet been attempted

in the literature. The work by Kreuz et al. [2007] compares the ISI distance proposed in

that paper with several spike train measures, including the ones considered in this work.

However, this is done only for synchrony of spike trains generated under a special model

with quite strong couplings among neurons. This chapter fills this void by comparing the

above mentioned spike train measures in multiple paradigms and under realistic scenarios.

As will be shown from the presentation in Section B.2, each measure implies a

given kernel function that measures similarity in terms of a single pair of spike times.

Another issue addressed here was to what extent this kernel affects the performance of

each measure. Therefore, inspired by the ideas introduced in Chapter 3, the measures are

first extended to a set of four kernels and compared for all of these. By evaluating the

measures using all of these kernels the comparison is made kernel independent and shows

the connection and generality of the principles used in designing the measures.
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B.2 Binless Spike Train Dissimilarity Measures

B.2.1 Victor-Purpura’s Distance

Historically, Victor-Purpura’s (VP) distance [Victor and Purpura, 1996, 1997]

was the first binless distance measure proposed in the literature. Two key design

considerations in the definition of this distance were that it needed to be sensitive to

the absolute spike times and would not correspond to Euclidean distances in a vector

space. The first consideration was due to the fact that the distance was initially to be

utilized to study temporal coding and its precision in the visual cortex. As stated by the

authors, the basic hypothesis is that a neuron is not simply a rate detector but can also

function as a coincidence detector. Within this respect the distance is well motivated by

neurophysiological ideas. The second consideration is because, in this way it is “not based

on assumptions about how responses should be scaled or combined” [Victor and Purpura,

1996].

The VP distance defines the distance between spike trains as the cost in transforming

one spike train into the other. Three elementary operations in terms of single spikes are

established: moving one spike to perfectly synchronize with the other, deleting a spike,

and inserting a spike. Once a sequence of operations is set, the distance is given as the

sum of the cost of each operation. The cost in moving a spike at tm to tn is q|tm − tn|,

where q is a parameter expressing how costly the operation is. Because a higher q means

that the distance increases more when a spike needs to be moved, the distance as a

function of q expresses the precision of the spike times. The cost of deleting or inserting a

spike is set to one.

Since the transformation cost for the spike trains is not unique, the distance is not

yet well defined. Moreover, this criterion needs to guarantee the fundamental axioms of a

distance measure for any spike trains si, sj and sk:

(i) Symmetry: d(si, sj) = d(sj, si)

(ii) Positiveness: d(si, sj) ≥ 0, with equality holding if and only if si = sj

(iii) Triangle inequality: d(si, sj) ≤ d(si, sk) + d(sk, sj).
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To ensure the triangle inequality and uniqueness of the distance between any two spike

trains, the sequence which yields the minimum cost in terms of the operations is used.

Therefore, the VP distance between spike trains si and sj is defined as

dVP(si, sj) , min
C(si↔sj)

∑
l

Kq

(
tici[l]

, tjcj [l]

)
, (B–1)

where C(si ↔ sj) is the set of all possible sequences of elementary operations that

transform si to sj, or vice-versa, and c(·)[·] ∈ C(si ↔ sj). That is, ci[l] denotes the index

of the spike time of si manipulated in the lth step of a sequence. Kq(t
i
ci[l]

, tjcj [l]
) is the cost

associated with the step of mapping the ci[l]th spike of si at tici[l]
to tjcj [l]

, corresponding to

the cj[l]th spike of sj, or vice-versa. In other words, Kq is a distance metric between two

spikes.

Suppose two spike trains with only one spike each, the mapping between the two spike

trains is achieved through the three above mentioned operations and the distance is given

by

Kq(t
i
m, tjn) = min

{
q|tim − tjn|, 2

}
=

 q|tim − tjn|, |tim − tjn| < 2/q

2, otherwise.

(B–2)

This means that if the difference between the two spike times is smaller than 2/q the cost

is linearly proportional to their time difference. However, if the spikes are farther apart it

is less costly to simply delete one of the spikes and insert it at the other location. Shown

in this way, Kq is nothing but a scaled and inverted triangular kernel applied to the spike

times. This perspective of the elementary cost function is key to extend this cost to other

kernels, as we will present later.

At first glance it would seem that the computational complexity would be unbearable

because the formulation of the algorithm describes the distance in terms of a full search

through all allowed sequences of elementary operations. Luckily, efficient dynamic
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Figure B-2. Spike train and corresponding filtered spike train utilizing a causal
exponential function (Equation B–4).

programming algorithms were developed which reduce it to a more manageable level

of O(NiNj) [Victor and Purpura, 1996], i.e., the scaled product of the number of spikes in

the spike trains whose distance is being computed.

B.2.2 van Rossum’s Distance

Similar to the VP distance, the distance proposed by van Rossum [2001] utilizes the

full resolution of the spike times. However, the approach taken is conceptually simpler and

more intuitive. Simply put, van Rossum’s distance [van Rossum, 2001] is the Euclidean

distance between the exponentially filtered spike trains.2

A spike train si defined on the time interval [0, T ] and spike times {tim : m =

1, . . . , Ni} can be written as a continuous-time signal as a sum of time-shifted impulses,

si(t) =

Ni∑
m=1

δ(t − tim), (B–3)

where Ni is the number of spikes in the recording interval. In this perspective, the filtered

spike train is the sum of the time-shifted impulse response of the smoothing filter, h(t),

2 Filtered spike trains correspond to what is often referred to as “shot noise” in the
point processes literature [Papoulis, 1965, Section 16.3].
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and can be written as

fi(t) =

Ni∑
m=1

h(t − tim). (B–4)

For the smoothing filter, van Rossum [2001] proposed to use a causal decaying exponential

function, written mathematically as h(t) = exp(−t/τ)u(t), with u(t) being the Heaviside

step function (illustrated in Figure B-2). The parameter τ in van Rossum’s distance

controls the decay rate of the exponential function and, hence, the amount of smoothing

that is applied to the spike train. Thus, it determines how much variability in the spike

times is allowed and how it is combined into the evaluation of the distance. In essence,

τ plays the reciprocal role of the q parameter (Equation B–2) for the VP distance. The

choice for the exponential function was due to biological considerations. The idea is

that an input spike will evoke a post-synaptic potential at the stimulated neuron which,

simplistically, can be approximated through the exponential function [Dayan and Abbott,

2001].

In terms of their filtered counterparts, it is easy to define a distance between the

spike trains. An intuitive choice is the usual Euclidean distance, L2([0, T ]), between square

integrable functions. The distance between spike trains si and sj is therefore defined as

dvR(si, sj) , 1

τ

∫ ∞

0

[fi(t) − fj(t)]
2 dt. (B–5)

van Rossum’s distance also seems motivated by the perspective of a neuron as a

coincidence detector. This perspective may be induced by the definition. When two

spike trains are “close” more of their spikes will be synchronized, which translates into

a smaller difference of the filtered spike trains and therefore yields a smaller distance.

Despite this formulation, the multi-scale quantification capability of the distance was

noticed before by van Rossum [2001]. The behavior transitions smoothly from a count

of non-coincidence spikes to a difference in spike count as the kernel size τ is increased.

This perspective can be obtained from Equation B–4 if one notices that it corresponds

to kernel intensity estimation with function h [Reiss, 1993]. In more broad terms one can
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thus think of van Rossum’s distance as the L2([0,∞)) distance between the estimated

intensity functions at time scale τ . Thus, van Rossum’s distance can be used to measure

the dissimilarity between spike trains at any time scale simply by selecting τ appropriately.

Evaluation of the distance is numerically straightforward, as it directly implements

Equation B–5. But explicit computation of the filtered spike trains and integral in a

discrete-time simulation is computationally more intensive than evaluating the VP

distance which depends only on the number of spikes in the spike trains. Furthermore,

the computation burden would increase proportionally to the length of the spike trains

and inversely proportional to the simulation step. However, as shown by Paiva et al.

and utilized in Paiva et al. [2007], van Rossum’s distance can be evaluated in terms of a

computationally effective estimator with order O(NiNj), given as

dvR(si, sj) =
1

2

 Ni∑
m=1

Ni∑
n=1

Lτ (t
i
m − tin) +

Nj∑
m=1

Nj∑
n=1

Lτ (t
j
m − tjn)

 +

Ni∑
m=1

Nj∑
n=1

Lτ (t
i
m − tjn), (B–6)

where Lτ (·) = exp(−| · |/τ) is the Laplacian kernel. Thus, this distance can be computed

with the same computational complexity as the VP distance.

B.2.3 Schreiber et al. Induced Divergence

The third dissimilarity measure considered in this paper is derived from the

correlation-based measure proposed by Schreiber et al. [2003]. Like van Rossum’s distance,

the correlation measure was also defined in terms of the filtered spike trains. Instead

of using the causal exponential function, however, Schreiber and coworkers proposed to

utilize the Gaussian kernel. The core idea of this correlation measure is the concept of dot

product between the filtered spike trains. Actually, in any space with an inner product

two types of quadratic measures are naturally induced: the Euclidean distance, and a

correlation coefficient-like measure, due to the Cauchy-Schwarz inequality. The former

corresponds to the concept utilized by van Rossum, whereas the latter is conceptually

equivalent to the definition proposed by Schreiber and associates. So, in this sense, the

two measures are directly related. Nevertheless, it must be emphasized that, like the VP
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distance, this measure is non-Euclidean since it is an angular metric of filtered spike trains

[Paiva et al.].

In defining the measure, write the filtered spike trains as

gi(t) =

Ni∑
m=1

Gσ/
√

2(t − tim), (B–7)

where Gσ/
√

2(t) = exp[−(t)2/σ2] is the Gaussian kernel. Notice the dependence of the

filtering on σ which plays in this case the same role as τ in the exponential function

in van Rossum’s distance, and is inversely related to q in VP distance. Assuming a

discrete-time implementation of the measure, then the filtered spike trains can be seen as

vectors, for which the usual dot product can be used. Based on this, the Cauchy-Schwarz

(CS) inequality guaranties that

|~gi · ~gj| ≤ ‖~gi‖ ‖~gj‖ , (B–8)

where gi, gj are the filtered spike trains in vector notation, and ~gi · ~gj and ‖~gi‖, ‖~gi‖

denotes the filtered spike trains dot product and norm, respectively. The norm is

given as usual by ‖~gi‖ =
√

~gi · ~gi. Because by construction the filtered spike trains are

non-negative functions, the dot product is also non-negative. Consequently, rearranging

the Cauchy-Schwarz inequality yields the correlation coefficient-like quantify,

r(si, sj) =
~gi · ~gj

‖~gi‖ ‖~gj‖
, (B–9)

proposed by Schreiber et al. [2003]. Notice that like the absolute value of the correlation

coefficient, 0 ≤ r(si, sj) ≤ 1. Equation B–9, however, takes the form of a similarity

measure. Utilizing the upper bound, a dissimilarity can be easily derived,

dCS(si, sj) = 1 − r(si, sj) = 1 − ~gi · ~gj

‖~gi‖ ‖~gj‖
. (B–10)

In light of the perspective presented here we shall hereafter refer to dCS as the CS

dissimilarity measure.
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The CS dissimilarity, like the previous two measures, can also be utilized directly

to measure dissimilarity in the firing rates of spike trains merely by choosing a large

σ. Similar to van Rossum’s distance, this is shown explicitly in the formulation of the

measure in terms of the inner product of intensity functions, with the time scale specified

by σ.

An important difference with regards to the VP and van Rossum’s distances needs

to be pointed out. dCS is not a distance measure. Although it is trivial to prove that it

verifies the symmetry and positiveness axioms, the measure does not fulfill the triangle

inequality. Nevertheless, since it guaranties the first two axioms it is what is called in the

literature a pre-metric [Pekalska and Duin, 2005].

In the definition of the measure and, more importantly, in the utilization of the

concept of the dot product the filtered spike trains were considered finite-dimensional

vectors [Schreiber et al., 2003]. If this näıve approach is taken, then the computational

complexity in evaluating the measure would suffer from the same limitations as the direct

implementation of van Rossum’s distance. But, like the latter, a data effective method can

be obtained in the same way to compute the distance [Paiva et al.],

dCS(si, sj) = 1 −

∑Ni

m=1

∑Nj

n=1 exp
[
− (tim−tjn)2

2σ2

]
√(∑Ni

m,n=1 exp
[
− (tim−tin)2

2σ2

]) (∑Nj

m,n=1 exp
[
− (tjm−tjn)2

2σ2

]) . (B–11)

Evaluating the distance using this expression has a computational complexity of order

O(NiNj), just like the two previously presented measures.

B.3 Extension of the Measures to Multiple Kernels

From the previous presentation it should be observable that each measure was

originally associated with a particular kernel function which measures the similarity

between two spike times. Interestingly, the kernel function is found to be different in

all three situations. In any case, it is remarkable that the measures are conceptually

different irrespective of the differences in the kernel function. To further complete our
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study we were also interested in verifying the impact of different kernel functions in

each measure. In this section we further develop these ideas. In particular, we present

the details involved in replacing the default kernel for each dissimilarity measure and,

whenever pertinent, intuitively explain how this approach reveals the connections between

the measures. It should be remarked that similar considerations have been presented

previously by Schrauwen and Campenhout [2007], although under a different analysis

paradigm.

In Section B.2.1 the distance between two spikes for the VP distance is defined

through the function Kq. This distance represents the minimum cost in transforming a

spike into the other in terms of the elementary operations defined by Victor and Purpura.

As briefly pointed out, this function is equivalent to having

Kq(t
i
m, tjn) = 2

[
1 − κ1/q(t

i
m − tjn)

]
, (B–12)

where κα is the triangular kernel with parameter α,

κα(x) =

 1 − |x|/(2α), |x| < 2α

0, |x| ≥ 2α,
(B–13)

which is, in essence, a similarity measure of the spike times. Notice that this perspective

does not change the non-Euclidean properties of the VP distance since those properties

are a result of the condition in Equation B–1. Put in this way, it seems obvious that other

kernel functions may be used in place of the triangular kernel, as briefly alluded by Victor

and Purpura [1997].

The kernel in the VP distance is not explicit in the definition. Rather, is the cost

associated with the three elementary operations. Similarly, in van Rossum’s distance

and CS dissimilarity measure the perspective of a kernel operating on spike times is

not explicit in the definition. The difference however is that the kernel arises naturally

as an immediate byproduct of the filtering of the spike trains. This result is noticeable
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Figure B-3. (a) Kernels utilized in this study and (b) the corresponding Kq function
induced by each of the kernels.

in the expressions for computational efficient evaluation given by Equation B–6 and

Equation B–11. Again, and just as proposed for the VP distance, alternative kernel

functions can be utilized in the evaluation of the dissimilarity measures instead of the

proposed kernel by the original construction.

As said earlier, each of the spike train measures considered here was defined with a

different kernel function. To provide a systematic comparison, each measure was evaluated

with four kernels: the triangular kernel in Equation B–13, and the Laplacian, Gaussian,
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and rectangular kernels,

Laplacian: κτ (x) = exp

(
−|x|

τ

)
(B–14)

Gaussian: κσ(x) = exp

(
− x2

2σ2

)
(B–15)

Rectangular: κα(x) =

 1, |x| < α

0, |x| ≥ α,
(B–16)

For reference, these four kernels and induced distance function Kq in terms of each of the

kernels are depicted in Figure B-3. In this way each measure was evaluted for the kernel it

was originaly defined and the other kernels for a fair comparison.

Note that if other kernels where to be chosen these would have to be symmetric,

maximum at the origin, and always positive, to ensure the symmetry and positiveness

of the measure. Additionally, for the VP distance to be well posed, the kernels need to

be concave so that the optimization in Equation B–1 garanties the triangle inequality.

However, the Gaussian and rectangular kernels are not concave and thus for these kernels

the VP measure is a pre-metric. This means that when these kernels are used the resulting

dissimilarity is not a well defined distance. Nevertheless, we utilize these kernels here

regardless since our aims are to study the effect of the this kernel of the discrimination

ability, and also to compare the measures appart this factor.

It is interesting to consider the consequences in terms of the filtered spike trains

associated with the choice of each of the four kernels presented. As motivated by van

Rossum [2001], the biological inspiration behind the idea in utilizing filtered spike trains

is that they can be thought of as post-synaptic potentials evoked at the efferent neuron.

In this sense, kernels are mathematical representations of the interactions involved with

this idea. As shown before, the Laplacian function results from the autocorrelation of a

one-sided exponential function. Likewise, the Gaussian function (with kernel size scaled by
√

2) results from its own autocorrelation. The triangular results from the autocorrelation

of the rectangular function. The smoothing function associated with the rectangular

171



20 25 30 35 40 45 50 55
0

0.02

0.04

0.06

0.08

0.1

0.12

laplacian
gaussian
triangular
rectwin

10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

laplacian
gaussian
triangular
rectwin

0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

12

14

16

18

20

laplacian
gaussian
triangular
rectwin

Figure B-4. Estimated pdf of the measures for each kernel considered (green) and
corresponding fitted Gaussian pdf (blue). The pdf was estimated by a
normalized histogram of the evaluation of the measure with kernel/bin size
2ms for 1000 pairs of uncorrelated spike trains with mean firing rate 20 spk/s
and jitter noise of 3ms. (Details can be found in Section B.4.3.)

function corresponds to the inverse of the square root of a sinc function. Based on these

observations it seems to us that the Laplacian kernel is, from the four kernels considered,

the most biologically plausible.

B.4 Results

In this section results are shown for the three dissimilarity measures introduced in

terms of a number of parameters: kernel function, firing rate, kernel size, and, in the last

paradigm presented, synchrony and jitter of the absolute spike times.

Three simulation paradigms are studied. In each paradigm we will be interested in

verifying how well can the dissimilarity measurements discriminate differences in spike

trains with regards to a specific feature. To quantify the discrimination ability of each

measure in a scale-free manner, the results shall be presented and analyzed in terms of a

discriminant index defined as

ν(A,B) =
d̄(A,B) − d̄(A,A)√
σ2

d(A,B) + σ2
d(A,A)

, (B–17)

where d̄(A,A), d̄(A,B) denotes the mean of the dissimilarity measure evaluated between

spike trains from the same and different situations, respectively, and σ2
d(A,A), σ2

d(A,B)

denotes the corresponding variances. The use of a discriminant index was chosen instead
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of, for example, ROC plots for ease of display and analysis, and because in this way

the conclusions drawn here are classifier-free. ν(A,B) quantifies how well the outcome

of the measure can be used to differentiate the situation A from the situation B. In

terms of Figure B-1, think that
[
d̄(A,A), σ2

d(A, A)
]

characterizes the distribution of

the dissimilarity measure evaluation for spike trains in response to stimulus A, and[
d̄(A,B), σ2

d(A,B)
]

characterizes a similar distribution but in which the dissimilarities are

evaluated between a spike train evoked by stimulus A and a spike train evoked by stimulus

B. This is supported by the fact that the distribution of the evaluation of the measures

can be reasonably fitted to a Gaussion pdf (Figure B-4). Therefore, the discriminant index

is utilized in the simulated experimental paradigms to compare how well the dissimilarity

distinguishes spike trains generated under the same versus different conditions, with

regards to a parameter specifying how different spike trains from different stimulus are.

The discriminant index ν is conceptually similar to that of the Fisher linear discriminant

cost [Duda et al., 2000]. A key difference however is that the absolute value is not used.

This is because negative values of the index correspond to unreasonable behavior of the

measure; that is, the dissimilarity measure yields smaller values between spike trains

generated under difference conditions than spike trains generated for the same condition.

Obviously, intuitively the desired behavior is that the dissimilarity measure yields a

minimum for spike trains generated similarly.

For contrast to the binless dissimilarity measures considered, results are also presented

for a binned cross-correlation based dissimilarity measure, denoted dCC. This measure

is defined just like the CS dissimilarity through Equation B–10. The difference is that

now ~gi and ~gj are finite dimensional vectors corresponding to the binned spike trains and,

thus, ~gi · ~gj is the usual Euclidean dot product between two vectors. Notice that dCC is

in essence equivalent to quantize the spike times (with quantization step equal to the bin

size) and evaluating dCS using the rectangular kernel, with kernel size equal to half the

bin size. Hence, dCC can be alternatively computed utilizing Equation B–11. The former
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Figure B-5. Value of the dissimilarity measures for each kernel considered as a function
of the modulating spike train firing rate. All dissimilarity evaluation are with
regards to an homogeneous spike train with average rate 20 spk/s. For each
measure and kernel, results are given for four different kernel sizes (shown in
the legend) in terms of the measure average value plus or minus one standard
deviation. The statistics of the measures were estimated over 1000 randomly
generated pairs of spike trains.

approach is more advantageous for large bin size whereas the latter is computationally

more effective for smaller bin size (larger number of bins).

B.4.1 Discrimination of Difference in Firing Rate

The first paradigm considered was intended to analyze the characteristics of each

measure with regards to the firing rate of one spike train relatively to another of fixed

firing rate. The key point was to understand if the measures could be used to differentiate

two spike trains of different firing rates. This is important because neurons have been

found to often encode information in the spike train firing rates [Adrian, 1928; Dayan
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Figure B-6. Discriminant index of the dissimilarity measures for each kernel as a function
of the modulating spike train firing rate. See the results in Figure B-5 for
reference. The different curves are for different kernel sizes (shown in the
legend).

and Abbott, 2001; Rieke et al., 1999]. To simplify matters, all spike trains were simulated

as one second long homogeneous Poisson processes. Although this simplification is

unrealistic, it allows a first analysis without the introduction of additional effects due

to modulation of firing rates in the spike trains. The scenario where the firing rates

are modulated over time is considered in the next section. Another important factor in

the analysis is the spike train length. Naturally, in this scenario, the discrimination of

the measures is expected to improve as the spike train length is increased since more

information is available. In practice however this value is often smaller than one second.

Thus, the value was chosen as a compromise between a reasonable value for actual data

analysis and good statistical illustration of the properties of each measure.
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In our study, simulations were made for each dissimilarity measure utilizing each of

the four described kernels. In each case, the analysis was repeated for four kernel sizes, 10,

25, 50 and 100 milliseconds. The kernel sizes used were purposely chosen relatively large

since firing rate information can only be extracted at a slower time scale. The results are

shown in Figure B-5 in terms of mean values plus or minus one standard deviation, as

estimated from 1000 randomly generated spike train pairs. For each pair, one of the spike

trains was generated at a reference firing rate of 20 spk/s, whereas the firing rate of the

other was one of 2.5 to 40 spk/s, in steps of 2.5 spk/s.

Utilizing the estimated statistics, the discrimination provided by the measures

was evaluated in terms of the discrimination index ν (Equation B–17) with regards to

the results when both spike trains have firing rate 20 spk/s. The results are shown in

Figure B-6. The results for VP and van Rossum’s distances reflect the importance of the

choice of time scale, materialized in the form of the kernel size selection. Only for the

largest kernel size (100ms) did these two distances behave as we intuitively expected. This

is not surprising since discrimination can only occur if the dissimilarity can incorporate

an estimation of the firing rate in its evaluation. Even for this kernel size the discriminant

index curve shows a small bias towards smaller firing rates. This is natural since the

optimal kernel size is infinity, and smaller kernel size tends to result in bias related to

the total number of spikes. The discrimination behavior of the CS dissimilarity however

seems nearly insensitive to the choice of the kernel size. On the other hand, when the

firing rate is above the reference the outcome is not the desired. For lower firing rates, the

positive discrimination index is due to the presence of the norm of the spike train in the

denominator of the definition. One of the most remarkable observations is the consistency

of the results for each measure throughout the four kernels. Although there are subtle

differences in values they seem to be of importance only for small kernel sizes for which, as

pointed out, the results are not significant anyway. Comparing with the results for the CC

dissimilarity we verify the resemblance with the CS dissimilarity. Like the latter, the CC
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Figure B-7. Value of the dissimilarity measures for each kernel in terms of the phase
difference of the firing rate modulation. Like in the previous paradigm, results
are shown for each measure, kernel, and four different kernel sizes (shown in
the legend) in terms of the measure average value plus or minus one standard
deviation. The statistics were estimated over 1000 randomly generated pairs
of spike trains.

dissimilarity also is unable to correctly distinguish increases in firing rate of one spike train

with respect to the other.

B.4.2 Discrimination of Phase in Firing Rate Modulation

The scenario depicted in the previous paradigm is obviously simplistic. In this case

study, an alternative situation is considered in which spike trains must be discriminated

through differences in their instantaneous firing rates. Spike trains were generated as

one second long inhomogeneous Poisson processes with instantaneous firing rate given by

sinusoidal waveforms of mean 20 spk/s, amplitude 10 spk/s and frequency 1Hz. A pair of

spike trains was generated at a time and the phase difference of the sinusoidal waveforms
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Figure B-8. Discriminant index of the dissimilarity measures for each kernel in terms of
the phase of the firing rate modulation as given by Figure B-7. The different
curves are for different kernel sizes (shown in the legend).

used to modulate the firing rate of each spike train varied from 0 to 360 degrees. The goal

was to verify if the measures were sensitive to instantaneous differences in the firing rate

as characterized by the modulation phase difference. This too is a simplification of what is

often found in practice where firing rates change abruptly and in an non-period manner.

Nevertheless, the paradigm aims at representing a general situation while simultaneously

being restricted to allow for a tractable analysis. Obviously, the results are somewhat

dependent on our choice of simulation parameters. For example, lower mean firing rates

would mean that the dissimilarity measures would be less reliable and, hence, have higher

variance. This could be partially compensated by increasing the spike train length.

However, the above values are an attempt to approximate real data.
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The simulation protocol is similar to that of the case analyzed in the previous section.

For each phase difference, we randomly generated 1000 spike train pairs such that the

firing rate modulation of the two spike trains differed by the phase difference and applied

the dissimilarity measures using each of the four described kernels. As before, the analysis

was repeated for four kernel sizes, 10, 25, 50 and 100 milliseconds. Again, the kernel sizes

used were chosen large since firing rate information can only be extracted at a slower time

scale. The statistics of the dissimilarity measures are shown in Figure B-7.

The analysis of these results with the discrimination index ν with respect to the

statistics of each measure at zero phase is depicted in Figure B-8. In this paradigm,

the maximum value of the measures was desired to occur at 180◦, with a monotonically

increasing behavior for phase differences smaller and monotonically decreasing for phase

differences greater. As Figure B-8 shows, all measures performed satisfactorily using any

of the four kernels and at any kernel size. The CS dissimilarity has the best discrimination

with the discrimination index reaching 0.8, compared to a maximum value of 0.65 for the

second best. On the other end, overall the CC-based dissimilarity performed the worse.

Comparing with the CS dissimilarity (which differs only because the spike times are not

quantized) we verify once again the disadvantages of doing binning. With regards to the

effect of each kernel, the Gaussian kernel consistently yields the best discrimination for the

same kernel size. Conversely, the Laplacian and rectangular kernels seem to perform the

worst, although this observation is largely measure dependent. As expected, and similarly

to the previous paradigm, the best discrimination is obtained for the largest kernel size

since it yields a better estimation of the intensity function. It is noteworthy however

that in this paradigm the kernel size cannot be chosen too large, otherwise the intensity

function would be over smoothed, thus reducing the differentiation between phases and

decreasing the discrimination performance. This phenomenon was observed when we

attempted a kernel size of 250ms (not shown).
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Figure B-9. Value of the dissimilarity measure for each kernel as a function of the
synchrony among spike trains. The statistics were estimated over 1000
randomly generated pairs of spike trains simulated with MIP model and
average firing rate 20 spk/s. The kernel size was 2ms. The different curves
show result under different levels of jitter standard deviation, with the value
in the legend.

B.4.3 Discrimination of Synchronous Firings

In this scenario we consider that spike trains are to be differentiated based on the

synchrony of neuron firings. More precisely, spike trains are deemed distant (or dissimilar)

with regards to the relative number of synchronous spikes. That is, dissimilarity measures

are expected to be inversely proportional to the probability of a spike co-occur with a

spike in another spike train. This means that, unlike the previous two case studies where

differences in firing rate were analyzed, this case puts the emphasis of analysis in the role

of each spike. Thus, since the time scale of analysis is much more fine, the precision of a

spike time has increased relevance.
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Figure B-10. Discriminant index of the dissimilarity measures for each kernel in terms of
the synchrony between the spike trains as given by Figure B-9. The different
curves are for different standard deviations (shown in the legend) of the jitter
added to the synchronous spikes.

To generate spike trains with a given synchrony the multiple interaction process

(MIP) model was used [Kuhn et al., 2003, 2002]. In the MIP model a reference spike

train is first generated as a realization of a Poisson process. The spike trains are then

derived from this one by copying spikes with probability ε. The operation is performed

independently for each spike and for each spike train. Put differently, ε is the probability

of a spike co-occurring in another spike train, and therefore controls what we refer to as

synchrony. It can also be shown that ε is the count correlation coefficient [Kuhn et al.,

2003]. The resulting spike trains are Poisson processes. By generating the reference spike

train with firing rate ελ it is ensured that the derived spikes trains have firing rate λ. To

make the simulation more realistic, jitter noise was added to each spike time to recreate
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the variability in spike times often encountered in practice, thus making the task of finding

spikes that are synchronous more challenging. Jitter noise was generated as independent

and identically distributed zero-mean Gaussian noise.

For each combination of synchrony and jitter standard deviation, 1000 spike trains

pairs were generated, and the dissimilarity measures in terms of the four different kernels

were evaluated. All spike trains were one second long and the firing rate 20 spk/s, for

similar reasons as in the previous paradigms. The kernel size for the results shown

was 2ms. The kernel size was chosen small since in this scenario the characterizing

feature is synchronous firings. The results are shown in Figure B-9, and in terms of the

discrimination index ν in Figure B-10.

From Figure B-10, the CS and CC dissimilarities have notably better discrimination

ability than VP and van Rossum’s distance. The results also reveal that the CS

dissimilarity is more consistent than the CC dissimilarity since its discrimination decreases

in a more graded manner with the presence of variability in the synchronous spike times

(even for the same kernel function). The VP and van Rossum’s distances have comparable

discrimination ability. Comparing the measurements in terms of the kernel functions, it

was found that the Laplacian kernel provides the best results, followed by the triangular

kernel. Nevertheless, the advantage between different kernels is small.

B.5 Final Remarks

We compared binless spike train measures presented in the literature for their

discrimination ability. Given the wide use of these measures in spike trains analysis,

classification and clustering, we believe this study is fundamental for understanding the

behavior of each measure and deciding which might be more appropriate taking the

intended aim into consideration.

Nevertheless, the aim was not just to directly compare the published measures. Here,

we extended these measures and provided a broader perspective which, in our opinion, was

lacking in the previous presentations. In the review of the measures, it was shown that the
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measures can be reformulated in terms of elementary kernels on differences of single pairs

of spike times. Hence, this kernel can be replaced by any other function able to similarly

capture the “closeness” of the spike times. This point of view is important in showing

the generality and independence of the measures with regards to the kernel. Moreover,

it allows for the comparisons to be done without kernel specific effects. Another, more

important perspective presented was that any of the measures considered is a multi-scale

quantifier of dissimilarity between spike trains, with scale controlled by the kernel size.

This is because, as explicitly verified for the van Rossum’s distance and CS dissimilarity,

the measures implicitly do intensity function estimation. This observation is key for the

understanding of how and why the measures can be utilized to quantify dissimilarity

in instantaneous firing rates, despite their formulation aimed at spike timing-based

paradigms.

The measures were compared in three experiments with the information for

discrimination contained in average firing rates, instantaneous firing rates and synchrony.

These were selected to illustrate the concepts discussed and because they were thought

to represent the hypothesis to be tested with data analysis. Of course, the simulated

paradigms are simplified approximations of the more complex scenarios that may be

observed in practice.

Unfortunately, the results reveals that no single measure performs the best or

consistently throughout all three paradigms. For instance, if the VP and van Rossum’s

distances have consistent discrimination in the constant firing rate paradigm they are

clearly outperformed in the synchrony-based discrimination task by the CS and CC

dissimilarities, but the results of these latter ones are not at all usable in the first

paradigm, mostly because their unstability for small number of spikes. Nevertheless,

all measures are consistent and comparably perform in the second paradigm, in terms of

modulation of the instantaneous firing rates. An intriguing but not entirely surprising

result is that, although the VP distance and van Rossum’s distance yields quite different
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results as noticed clearly in Figure B-5 and Figure B-7, their discrimination is the same in

all paradigms (Figure B-6, Figure B-8 and Figure B-10).

The results also suggest that the dependence of the measures on a specific kernel is

minor. A considerably more relevant issue is the kernel size, as emphasized in the firing

rate paradigms. This is because, as mentioned, the measures quantify relations in terms of

(implicit) intensity functions. Hence, if the kernel size is not properly selected the estimate

of the intensity functions does not account for the desired feature in the spike trains.

Finally, the results depict the importance of binless spike train measures. As stated

earlier, the only difference between the CS dissimilarity evaluated with the rectangular

kernel and the CC dissimilarity is the time quantization incurred with binning. Comparing

the results in these two situations in Figure B-8 and Figure B-10 shows that small

improvements in discrimination and robustness to jitter noise were achieved in the first

and second cases, respectively, by utilizing the spike times directly.
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O. O. Abbé. Über blutkörper-zahlung. Jena Z. Med. Naturwiss., 13:98–105, 1879.

E. D. Adrian. The Basis of Sensation: the action of the sense organs. W. W. Norton &
Co., New York, 1928.

A. M. Aertsen, G. L. Gerstein, M. K. Habib, and G. Palm. Dynamics of neuronal firing
correlation: modulation of “effective connectivity”. Journal of Neurophysiology, 61(5):
900–917, 1989.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337–404, May 1950.
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