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Abstract

We propose an efficient algorithm to compute the smoothed correlogram for the de-
tection of temporal relationship between two spike trains. Unlike the conventional
histogram based correlogram estimations, the proposed algorithm operates on con-
tinuous time without binning the spike train nor the correlogram. Hence it can be
more precise in detecting the effective delay between two recording sites. Moreover,
it can take advantage of the higher temporal resolution of the spike times provided
by the current recording methods. The Laplacian distribution kernel for smoothing
enables efficient computation of the algorithm. We also provide the basic statistics
of the estimator and a guideline for choosing the kernel size. This new technique
is demonstrated by estimating the effective delays in a neuronal network from syn-
thetic data and recordings of dissociated cortical tissue.
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1 Introduction

Precise time delay in transmission of a spike in the neural system is consid-
ered to be one of the key requirements for efficient computation in the cortex
(Maass, 1997; Mainen and Sejnowski, 1995; Reinagel and Reid, 2000; Van-
Rullen et al., 2005). One of the effective methods for estimating the delay is
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to use a cross correlogram (Perkel et al., 1967). The cross correlogram is a
basic tool to analyze the temporal structure of signals. It is widely applied
in neuroscience to assess oscillation, propagation delay, effective connection
strength, synchronization, and spatiotemporal structure of a network (Brown
et al., 2004; König et al., 1995).

When applied to a pair of action potential trains, the cross correlogram is the
superposition of the relative firing time differences. The peaks and troughs of
the cross correlogram are of most interest. These features can be interpreted
as a functional connectivity among neurons (Aertsen et al., 1989). The shift
of the features can be interpreted as the communication delay (Nikolić, 2007),
and the width of the features as temporal scale of the correlation (Brivanlou
et al., 1998). Since the estimation requires averaging over a period of time,
stationarity needs to be assumed during the period of analysis, and certain
non-stationarities are known to induce spurious features (Brody, 1999). Also,
common input from an unobserved source with delays cannot be distinguished
from direct influences (Nykamp, 2005). There exist variations and extensions of
cross correlation including joint peri-stimulus time histogram (JPSTH) (Aert-
sen et al., 1989), cross intensity function (Hahnloser, 2007), and conditional
firing probability (le Feber et al., 2007).

However, estimating the cross correlation of spike trains is more intricate since
spike trains are point processes. Cross correlation is well defined and intuitively
understood for continuous and discrete-time random signals due the concept
of amplitude, yet spike trains do not have amplitude but are characterized
only by time instances at which the spikes occur. A well known algorithm for
estimating the correlogram from point processes involves histogram construc-
tion with time interval bins (Dayan and Abbott, 2001). The binning process
is effectively transforming the uncertainty in time to the amplitude variabil-
ity. This quantization of time introduces binning error that leads to coarse
time resolution. Furthermore, the correlogram does not take advantage of the
higher temporal resolution of the spike times provided by current recording
methods.

This can be improved using smoothing kernels to estimate the cross correla-
tion function from a finite number of spikes. The resulting cross correlogram
is continuous and provides high temporal resolution in the region where there
is a peak (see Fig. 1 for a comparison between the histogram and kernel
method.) As mentioned earlier, the peaks in a cross correlogram can be cor-
rectly interpreted as long as the signal is stationary. In general, spike trains
are non-stationary, especially when time-varying input is presented to the
neural system. Therefore, caution is required when analyzing cross correla-
tions (Brody, 1999). Nevertheless, occasionally, stationarity can be assumed
during a short period of time, requiring a windowed analysis. This means that
data effective methods are needed, capable of achieving high accuracy with
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Fig. 1. Example of cross correlogram construction. A and C are two spike trains
each with 4 spikes. Each spike in A invokes a spike in C with some small delay
around 10 ms except for the third spike in A. B represents all the positive (black)
and negative (gray) time differences between the spike trains. D shows the position
of delays obtained in B. E is the histogram of D, which is the conventional cross
correlogram with bin size of 100 ms. F shows the continuous cross correlogram with
Laplacian kernel (solid) and Gaussian kernel (dotted) with bandwidth 40 ms. Note
that the Laplacian kernel is more sensitive to the exact delay.

very small amounts of data. Given the sparse nature of the spike trains, the
conventional cross correlogram is unsatisfactory in this scenario.

In this paper, we propose an efficient binless algorithm which can be used to
detect interaction delay between spike trains in continuous time. We achieve
this by estimating the continuous correlogram of spike trains using a smooth-
ing kernel (section 2). However, unlike the smoothed cross correlation his-
togram already used, we exploit the properties of a specific type of kernel
to determine immediately all possible local maxima of the correlogram and
optimize the computation significantly (section 3). The performance of the
proposed and other existing methods are compared in terms of precision and
computation time (section 4.1). In addition, the effectiveness of the algorithm
is demonstrated with a model, and in vitro recordings (section 4.2).

3



2 Continuous Correlogram

In this section, we review the cross correlogram and explain how a smoothed
cross correlogram is obtained. Two simultaneously recorded instances of point
processes are represented as a sum of Dirac delta functions at the time of firing
event, si(t) and sj(t),

si(t) =
Ni∑

m=1

δ(t − tim), (1)

where Ni is the number of spikes and tim is the time of the i-th action potential.
Assuming wide sense stationarity (at least piecewise) and ergodicity, the cross
correlation function can be defined as,

Q†
ij(∆t) = Et [si(t)sj(t + ∆t)] , (2)

where Et [·] denotes expected value over time t. The cross correlation can be
interpreted as the scaled conditional probability of j-th neuron firing given i-th
neuron fired ∆t seconds before (Knox, 1974). In a physiological context, there
is a physical restriction of propagation delay for an action potential to have
a causal influence to invoke any other action potential. Therefore, this delay
would influence the cross correlogram in the form of increased value. Thus,
estimating the delay involves finding the lag at which there is a maximum in
the cross correlogram (inhibitory interaction, which appear as troughs rather
than peaks, is not considered in this article).

Smoothing a point process is superior to the histogram method for the estima-
tion of the intensity function (Nawrot et al., 1999), and especially the maxima
(Kass et al., 2003). The cross correlation function can also be estimated better
with smoothing, which is done in continuous time, so we do not lose the exact
time of spikes while enabling interaction between spikes at a distance.

Instead of smoothing the histogram of time differences between two spike
trains, we could first smooth the spike train to obtain a continuous signal (Ger-
stner, 2001). This is not done explicitly because, as we will show, this is equiv-
alent to smoothing the time differences with a different kernel. A causal ex-
ponential decay was chosen as the smoothing kernel to achieve computational
efficiency (see section 3). This result holds for any non-negative valued smooth-
ing kernel for the spike train, but the computational advantage may disappear.
The inverse relation, finding the smoothing kernel for the spike train given a
histogram smoothing function, can also be found by spectral decomposition
techniques, but the solution may not be unique. In the case considered here,
smoothed spike trains are represented as,

qi(t) =
Ni∑

m=1

1

τ
e−

t−tim
τ u(t − tim), (3)
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where u(t) is the unit step function and τ is the time constant (kernel size).
The cross correlation function of the smoothed spike trains is,

Q∗
ij(∆t) = Et [qi(t)qj(t + ∆t)] . (4)

Given a finite length of observation, the expectation in (4) can be estimated
from samples as,

Q̂∗
ij(∆t) =

1

T

∫ ∞

0
qi(t)qj(t + ∆t)dt, (5)

where T is the length of the observation. After evaluation of the integral, the
resulting estimator becomes,

Q̂∗
ij(∆t) =

1

2τT

Ni∑
m=1

Nj∑
n=1

e−
|tim−t

j
n−∆t|
τ , (6)

which is equivalent to the kernel intensity estimation (Diggle and Marron,
1988; Parzen, 1962) from time differences using a Laplacian distribution kernel.

To determine the significance of a correlation, the mean and variance of the
estimator is analyzed assuming the spike trains are realizations of two inde-
pendent homogeneous Poisson processes (null hypothesis).

E
[
Q̂∗

ij(∆t)
]
' λIλJ , (7)

var(Q̂∗
ij(∆t)) ' λIλJ

4τT
, (8)

where λI and λJ denote the firing rate of the Poisson processes, corresponding
realizations are i-th and j-th spike train, respectively (see Appendix for the
derivation). Note that the variance reduces linearly as the duration of the spike
train is elongated. This was an expected result because more information is
available for the estimation. Based on these quantities, we standardize the
measure for inter-experiment comparison by removing the mean and dividing
by the standard deviation:

Q̃ij(∆t) =

√
4τT (Qij(∆t) − λIλJ)√

λIλJ

. (9)

All the figures of cross correlograms in this paper are standardized, that is,
the y-axis in Figs. 6, 7 and 8 can be interpreted as the deviation from the null
hypothesis in the scale of standard deviations.
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Fig. 2. Illustration of the decomposition and shift of the multiset A (see (11)). {θi}
are the time differences between spike timing across spike trains as in Fig. 1D.

3 Algorithm

In the following, an efficient algorithm to compute the continuous cross cor-
relogram peaks is presented. It is also shown that there are only finite possible
local maxima for the continuous cross correlogram, therefore the computation
on continuous time can be done with finite operations. The algorithm divides
the computation of the summation part of the continuous cross correlogram
into disjoint regions and combines the result. By storing the intermediate
computation results for all time lags, the cross correlation of each lag can be
computed in constant time using its neighboring values. Therefore, the total
computation time will depend on the number of lags and the sorting cost.

The essential quantity to be computed is the following double summation,

Qij(∆t) =
Ni∑

m=1

Nj∑
n=1

e−
|tim−t

j
n−∆t|
τ . (10)

The basic idea for efficient computing is that a single multiplication results in
shifting the collection of points for a summation of exponential functions eval-
uated at these points, that is,

∑
i e

xi+δ = (
∑

i e
xi) eδ. This is the fundamental

reason for the choice of this particular kernel. Now, since a Laplacian kernel
can be seen as two exponentials stitched together, we need only to carefully
separate the computation of the two sides of the kernel.

Let us define the multiset of all time differences between two spike trains,

A = {θ | θ = tim − tjn, m = 1, . . . , Ni, n = 1, . . . , Nj}. (11)

Even though A is not strictly a set, since it may contain duplicates, we will
abuse the set notation for simplicity. Note that the cardinality of the multiset
A is NiNj. Now (10) can be rewritten as

Qij(∆t) =
∑
θ∈A

e−
|θ−∆t|

τ . (12)
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Now let us define a series of operations for a multiset B ⊂ R and δ ∈ R,

B+ = {x | x ∈ B and x ≥ 0}, (non-negative lag) (13a)

B− = {x | x ∈ B and x < 0}, (negative lag) (13b)

Bδ = {x | y ∈ B and x = y − δ}. (shift) (13c)

Since B can be decomposed into two exclusive sets B+ and B−, (12) can also
be rewritten and decomposed as,

Qij(∆t) =
∑

θ∈A∆t

e−
|θ|
τ =

∑
θ∈(A∆t)+

e−
|θ|
τ +

∑
θ∈(A∆t)−

e−
|θ|
τ (14a)

=
∑

θ∈(A∆t)+

e−
θ
τ +

∑
θ∈(A∆t)−

e
θ
τ . (14b)

For convenience, we define the following summations

Q±
ij(∆t) =

∑
θ∈(A∆t)±

e∓
θ
τ . (15)

Let us sort the multiset A in ascending order and denote the elements as
θ1 ≤ θ2 ≤ . . . ≤ θn ≤ θn+1 ≤ . . . θNiNj

. Observe that within an interval
∆t ∈ (θn, θn+1], the multiset ((A∆t)

±)−∆t is always the same (see Fig. 2). In
other words, if ∆t = θn+1, for a small change δ ∈ [0, θn+1−θn), the multisets do
not change their membership, i.e. ((A∆t)

±)δ = (A(∆t−δ))
±. Therefore, we can

simplify an arbitrary shift of Q±
ij with a single multiplication of an exponential

as,

Q±
ij(∆t − δ) =

∑
t∈(A∆t−δ)±

e∓
t
τ =

∑
t∈((A∆t)±)δ

e∓
t
τ (16a)

=
∑

t∈(A∆t)±

e∓
t−δ

τ =
∑

t∈(A∆t)±

e∓
t
τ e±

δ
τ = Q±

ij(∆t)e±
δ
τ . (16b)

Thus, local changes of Qij can be computed by a constant number of operations
no matter how large the set A is, so that

Qij(∆t − δ) = Q+
ij(∆t − δ) + Q−

ij(∆t − δ) (17a)

= Q+
ij(∆t)e

δ
τ + Q−

ij(∆t)e−
δ
τ . (17b)

Now we can compute Qij(·) on a set of points efficiently, but on which points
should it be computed? Can we find the local maxima and minima that we are
mostly interested in? Indeed, it can be shown that Qij(·) has all its maxima
on the points on A. If there is a local maximum or minimum of Qij(∆t − δ),

it would be where dQij(∆t−δ)

dδ
= 0, which is,

δ∗ =
τ

2

(
ln(Q−

ij(∆t)) − ln(Q+
ij(∆t))

)
. (18)
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Also note that since the second derivative,

d2Qij(∆t − δ)

dδ2
=

1

τ 2

(
Q+

ij(∆t)e
δ
τ + Q−

ij(∆t)e−
δ
τ

)
≥ 0, (19)

Qij(∆t − δ) is a convex function of δ within the range. Thus, the maximum
of the function value is always on either side of its valid range, only local
minimum can be in between.

In principle, we need to compute (10) for all ∆t ∈ [−T ∗, T ∗] to achieve con-
tinuous resolution, where T ∗ is the maximum time lag of interest. However,
if we only want all local minima and maxima, we just need to evaluate on all
∆t ∈ A, and compute the minima and maxima using (17b) and (18). There-
fore, if we compute the Q±

ij(θn) for all θn ∈ A, we can compute δ∗ for all
intervals (θn, θn+1] if a local extremum exists. These can be computed using
the following recursive formulae,

Q−
ij(θn+1) = Q−

ij(θn)e−
θn+1−θn

τ + 1, (20a)

Q+
ij(θn+1) = Q+

ij(θn)e
θn+1−θn

τ − 1. (20b)

In practice, due to accumulation of numerical error, the following form is
preferable for Q+

ij,

Q+
ij(θn) = (Q+

ij(θn+1) + 1)e−
θn+1−θn

τ . (21)

Initial conditions for the recursions are Q−
ij(θ1) = 1 and Q+

ij(θN) = 0. The
resulting pseudocode is listed as in Algorithm 1. 1

The bottleneck for time complexity is the sorting of the multiset A, thus the
overall time complexity is O(NiNj log(NiNj)), where O is the big-O notation
for the asymptotic upper bound. 2 Note that the time complexity of direct
evaluation of (10) is O(NiNj) for each time lag ∆t, which makes it O((NiNj)

2)
for all time lags. Assuming homogeneous Poisson process for individual spike
trains, the average time complexity becomes O(N∗ log N∗) with N∗ = λIλJT ,
where T is the length of spike train and λI represents the average firing rate
for the Poisson process. The conventional cross correlogram algorithm (Dayan
and Abbott, 2001) has the time complexity of O(N∗) on average, which is
slightly better than the proposed algorithm.

A näıve way to compute the smoothed histogram is to directly apply ker-
nels to the data points and discretizing (as in Fig. 1 D to F). If evaluated in

1 The MATLAB (The MathWorks, Inc.) implementation of the algorithm is avail-
able at http://www.cnel.ufl.edu/~memming/research/ccc.html.
2 It is possible to reduce the sorting to O(NiNj log(min(Ni, Nj))) using merge sort-
ing partially sorted lists. However, it is only a minor improvement in general.
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Algorithm 1 Calculate Qij

Require: τ > 0, A 6= ∅, N = |A|
Ensure: Qij(∆t) =

∑
t∈A e−

|t−∆t|
τ ,∀∆t ∈ A

1: A ⇐ sort(A) {O(N log N)}
2: Q−(1) ⇐ 1
3: Q+(N) ⇐ 0
4: for k = 1 to N − 1 do
5: ed(k) ⇐ e−

A(k+1)−A(k)
τ

6: end for
7: for k = 1 to N − 1 do
8: Q−(k + 1) ⇐ 1 + Q−(k) · ed(k)
9: Q+(N − k) ⇐ (Q+(N − k + 1) + 1) · ed(N − k)

10: end for
11: for k = 1 to N do
12: Qij(A(k)) ⇐ Q+(k) + Q−(k)
13: end for

Method Time complexity Space complexity

CCH O(N∗) O(T ∗

γ )

CCC O(N∗ log N∗) O(N∗)

CCSH O(N∗T ∗

γ ) O(T ∗

γ )
Table 1
Average time and space complexity of different methods. N∗ is the expected number
time differences in the window of [−T ∗, T ∗], γ is the bin size for discretizing the time
difference. Notice that because the CCC does not force a discretization on the time
domain it does not depend on the bin size γ. If N∗ > T ∗/γ, the space complexity
(memory requirement) of CCC is worse than the other two algorithms, but the time
complexity is still better than the cross correlation smoothed histogram (CCSH) and
always worse than the cross correlation histogram (CCH).

continuous time, this is equivalent to (6). However, discrete point evaluation
is required for representation, therefore the result is quantized in the form
of histogram we call cross correlation smoothed histogram (CCSH). The ad-
vantage of CCSH is that any type of kernel, such as Gaussian or polynomial
kernel, can be used. The time complexity between CCSH, the proposed al-
gorithm (denoted CCC, for continuous cross correlogram estimator), and the
histogram method (denoted CCH, for cross correlation histogram) is given in
table 1. Computer simulation results will be shown in the next section where
these three algorithms, CCC, CCH and CCSH, are compared for computation
time and precision in table 2.
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4 Results

In this section, we analyze the statistical properties and demonstrate the use-
fulness of the continuous cross correlogram estimator (CCC) compared to the
cross correlation histogram (CCH). The CCC is defined by the linear inter-
polation of (9) between the possible maxima (but not the minima). CCH
discretizes the time difference between spikes rather then the time of action
potentials, which is superior on error performance. In order to compare with
CCC, CCH is standardized in a similar way to (9) with estimators for mean
and variance according to Palm et al. (1988).

Since CCH is essentially equivalent to using a uniform distribution kernel
(or a boxcar kernel) and sampling at equally spaced intervals (of the time
differences) as opposed to the Laplacian distribution kernel used in CCC, in
order to make a fair comparison we choose the kernel size (bin size) of both
distributions to have the same standard deviation. To be specific, if the time
bin size of CCH is h, then we compare the result to CCC with kernel size of
τ = h

2
√

6
.

Moreover, since the histogram method is highly sensitive to bin size, we used
the procedure of optimal bin size selection of Poisson processes suggested by
Shimazaki and Shinomoto (2006). The method is designed for the estimation of
firing rate or PSTH from a measurement assuming a Poisson process. However,
since the time difference between two Poisson processes of finite length can be
considered as a realization of a Poisson process, it is possible to directly apply
it to the CCH.

4.1 Analysis

For a pair of directly synapsing neurons, the delay from the generation of
an action potential of the presynaptic neuron to the generation of an action
potential of the post synaptic neuron is not always precise. Various sources
of noise such as variability in axon conduction delay, presynaptic waveform,
probability of presynaptic vesicle release, and threshold mechanism (Sabatini
and Regehr, 1999) effect the location, significance and width of the cross cor-
relogram peak. Furthermore, if the neurons are in a network, multiple paths,
common input sources, recurrent feedback and local field potential fluctuation
can influence the cross correlogram.

In this section, we model the timing jitter with a Gaussian distribution and
analyze the statistical properties of CCC and CCH on time delay estimation.
A pair of Poisson spike trains of firing rate 10 spikes/s were correlated by
copying a portion of the spikes from one to another and then shifting by the
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Fig. 3. Effect of the length of spike train and strength of connectivity on precision
of delay estimation. The precision is estimated by the standard deviation in 1000
Monte Carlo runs with kernel size τ = 0.4 ms (or bin size h = 1.96 ms). (Smaller
precision indicates higher temporal resolution.)
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Fig. 4. Effect of kernel size (bin size) of CCC (CCH) to the performance. The
connection strength was 5% and the spike trains are 10 seconds long, i.e. 5 spikes
are correlated on average. (a) Sensitivity of CCC and CCH on kernel size for noise
standard deviation 0.25 ms. The horizontal dotted line indicates the performance
when optimal bin size is chosen for each set of simulated spike time differences.
The median of the optimal bin size chosen (right) and corresponding kernel size for
CCC (left) are plotted as vertical dashed lines. Note that CCC is more robust to
the kernel size selection and always performs better than CCH. (b) For different
standard deviations of jitter noises, the precision is plotted versus the kernel size τ .
Note that the optimal kernel size increases as the jitter variance increases. For each
point, 3000 Monte Carlo runs are used, and the actual delay is uniformly distributed
from 3 ms to 4 ms to reduce the bias of CCH.

delay with the Gaussian jitter noise. The fraction of spikes copied represents
the effective synaptic connectivity.

The total number of correlated spikes depend on two factors: the length of
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spike train, and the synaptic connectivity. In figure 3, the precision of CCC
and CCH are compared according to these factors. The precision is defined to
be the standard deviation of the error in estimating the exact delay. Precision
of both CCC and CCH improves as the number correlated spikes increases in
a similar trend. CCC converges to a precision lower than half the jitter noise
standard deviation (500 µs).

The optimal kernel size (or bin size) which gives the best precision depends
on the noise jitter level. In figure 4(a), CCC and CCH is compared across
different kernel sizes. In general, CCC performs better than optimal bin size
and most of the bin sizes CCH. As mentioned above, CCH is sensitive to bin
size, but CCC is robust to the kernel size for precision performance. Also note
that the optimal kernel size for CCC corresponds to equal median value of the
variance optimal bin size selected (vertical dash lines). Increasing the jitter
level worsens the best precision and increases the optimal kernel size for CCC
as shown in Fig. 4(b).

The computational time is also compared by using the same task. Table 2
shows the results for the computer simulation. The same Laplacian distribu-
tion kernel is used to compute the CCSH. We can observe that CCC is faster
than CCSH almost always, and always better in precision. This is obvious
from the fact that CCSH is a discretization of CCC. In fact, even in the most
favorable situation for CCSH, CCC shows better precision with 8 ∼ 200 times
less computation time. As expected, CCH is always faster than CCC but al-
ways less precise. This is most notorious for small amounts of data where the
precision with CCH clearly depends on the bin size.

4.2 Examples

In this section, we demonstrate the power of CCC using two examples: the first
example uses synthetic spike trains from a simple spiking neuronal network
model, and for the second we use recordings from a cortical culture on a
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Fig. 6. Comparison between CCC and CCH on synthesized data.
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Fig. 7. Effect of length of spike trains. Comparison of continuous cross correlogram
(left) and cross correlation histogram (right) with different length of spike trains
(2.5, 5, 10 seconds). Note that when there are less time differences CCC is sparse
and flat (e.g., 2.5 s), whereas CCH is uniformly dense and the values are fluctuating.
Estimated optimal bin size is 0.267 ms.
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Length
Method

Bin size

(sec) 10 ms 1 ms 0.1 ms 0.02 ms

1

CCC 0.19 / 0.12

CCSH 0.18 / 14.73 0.29 / 0.47 1.63 / 0.11 7.72 / 0.12

CCH 0.12 / 5.78 0.11 / 2.00 0.12 / 7.89 0.11 / 12.61

10

CCC 0.47 / 0.05

CCSH 0.79 / 14.95 2.04 / 0.29 14.95 / 0.05 72.10 / 0.05

CCH 0.16 / 3.98 0.16 / 0.29 0.17 / 0.09 0.16 / 0.11

100

CCC 3.43 / 0.02

CCSH 6.93 / 15.67 19.21 / 0.29 145.54 / 0.03 709.83 / 0.02

CCH 0.58 / 3.84 0.58 / 0.29 0.58 / 0.06 0.57 / 0.06

1000

CCC 33.51 / 0.001

CCSH 67.71 / 14.18 190.04 / 0.28 1457.27 / 0.03 7104.35 / 0.01

CCH 4.81 / 3.97 4.77 / 0.28 4.82 / 0.03 4.86 / 0.04
Table 2
Execution time / delay detection precision comparison of three methods. All units
are milliseconds. The fastest runs are underlined and the most precise runs are
highlighted in bold. Continuous cross correlogram (CCC) is not dependent on bin
size. Cross correlation smoothed histogram (CCSH) and cross correlation histogram
(CCH) depends on the number of time bins to use which is usually limited by the
sampling rate. The task is same as Fig. 3 and 4 with 25 Hz firing rate, 0.2 ms jitter,
20% correlated spikes, T ∗ = 20 ms, and τ = 0.4 ms. Precision and run time are
average values from 100 Monte Carlo runs using MATLAB version 7.2 on an Intel
machine with a 2.6GHz Pentium 4 processor and 1G RAM.

microelectrode array (MEA).

Two standard leaky-integrate-and-fire neurons are configured with 4 synapses,
two from neuron A to neuron B, and two for the other direction as illustrated
in figure 5. Individual synapses are static (no short/long-term plasticity), with
equal weights and generate EPSP with a time constant of 1 ms. Each neuron
is injected with positively biased Gaussian white noise current, so that they
would fire with mean firing rate of 35 spikes/s. The simulation step size is 0.1
ms.

As shown in figure 6, both CCH and CCC identifies the delays imposed by the
conduction delay, synaptic delay, and the delay for the generation of action
potential by noisy fluctuation of membrane potential. However, the time lag
identified by CCC is more accurate than that of CCH, since the temporal
precision provided by CCH is limited by the bin size and the jitter noise on
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delay, but for CCC, it is only limited by the jitter. In other words, if there
is no jitter, or a sufficient amount of spike timings has the exact delay, then
CCC is capable of quantifying the delay with infinite resolution (although, in
practice, the resolution is always limited by the sampling period).

In figure 7, we illustrate the difference in performance of the methods according
to the length of the spike trains. When the spike trains are only of length 2.5
seconds, the CCC has significantly lower time resolution where no spikes had
that time difference, yet maintaining the high resolution in highly correlated
peaks. In contrast, the CCH is uniformly sampled regardless of the amount
of data. The non-uniform sampling gives significant advantage to CCC when
only a short segment of data is available.

Spike trains recorded in vitro were used to further test the method. We
recorded electrical activity from dissociated E-18 rat cortex cultured on a 60
channel microelectrode array from MultiChannel Systems with sampling rate
25 kHz (Potter and DeMarse, 2001). For a particular pair of electrodes, spe-
cific delays were observed as shown in Fig. 8. Those delays are rarely observed
(3 to 5 times through 5 to 10 minutes of recording), however the dispersion of
the delay is less than 2 ms which makes it significant in CCC. The delays per-
sisted at least 2 days, and many more interaction delays were observable as the
culture matured. As observable in the CCH analysis, it is almost impossible
to detect the delays and their consistency.

Note that the delays are much longer (> 40 ms) than the expected conduction
time which is estimated to be in the order of 2 ms for conduction speed of
100 µm/ms (Kawaguchi and Fukunishi, 1998). One possible mechanism would
be a rarely activated chain of synaptic pathway from a common source neuron
with different delays.

The time scale of our analysis is smaller compared to a recent study by le Feber
et al. (2007) where a single delay between two channels is estimated with a
single approximated Gaussian shape with bandwidth much larger than 10
ms. It would result in estimating the firing rate response from the network
dynamics rather than propagation of a single action potential.

5 Discussion

We proposed an estimator of cross correlogram from an observation of a point
process, and provide a efficient algorithm to compute it. The method utilizes
the fact that there are more samples where the correlation is stronger (cf. Fig.
7). Thus, computing the continuous correlogram at the lags of samples provides
an advantage for the delay estimation by this non-uniform sampling effect.
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Fig. 8. CCC (top) and CCH (bottom) of 7 DIV (days in vitro) and 9 DIV cortical
culture recordings. Spike trains from two adjacent electrodes are analyzed. On 7
DIV, CCC shows two significant peaks (larger than 4 standard deviations, see Eq.
(9)) and they are also observable on 9 DIV, and some non-significant spike time
differences corresponds to peaks on 9 DIV (marked with arrows). In contrast, this
structure is difficult to note from CCH. The optimal bin size is 3.8 ms for 7 DIV
and 3.3 ms for 9 DIV data. The total recording time is 350 seconds for 7 DIV and
625 seconds for 9 DIV. The average firing rates were 0.57 Hz and 0.53 Hz on 7 DIV
and 0.15 Hz and 1.11 Hz on 9 DIV.

Unfortunately, this non-uniform sampling is disadvantageous for inhibitory
relations, therefore only positively related delays can be accurately estimated.
To achieve computational efficiency, as presented here, the algorithm is limited
to the use of Laplacian distribution as the kernel. However, it has been shown
that the bandwidth (kernel size) is more important than the shape of the
kernel for the performance of intensity estimation (Nawrot et al., 1999).

The only free parameter is the kernel size which determines the amount of
smoothing. Unlike the conventionally used histogram method, the proposed
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method is much more robust to the choice kernel size, however, the optimal
kernel size depends on the noise level of the delay. In a biological neuronal
network, the noise level may depend on which path the signal was transmitted.
Therefore each peak of the correlogram may have different amount of noise. We
suggest using the optimal bin size for histogram as a guideline for the kernel
size selection. Although it is possible to empirically determine the optimal
kernel size given a model (as in Fig. 4(a)), the general problem of optimal
kernel size for delay estimation remains as an open problem.

The proposed algorithm is not limited to cross correlations, it can be used to
smooth any type of point process histograms, and also to find the similarity
between two spike trains over continuous time lags. However, due to accumu-
lation of numerical error, the algorithm has to be non-causal (see (21)). This
prevents the algorithm to be used as an online filter to detect certain spike
train patterns, while offline analysis can still be done.

Appendix

To assess the significance of the correlation, it is necessary to know the prob-
ability distribution of the estimator given the null hypothesis (independent
Poisson spike trains). However, instead of calculating the complicated closed
form of the distribution for Q̂∗

ij(∆t), we derive of mean and variance of the

estimator Q̂∗
ij(∆t), and assume Gaussianity. For the time binning with suffi-

ciently small bin size case, Palm and coworkers have derived statistics for the
histogram of a Poisson process (Palm et al., 1988).

Let Ω(λ, T ) be the class of all possible homogeneous Poisson spike trains of
rate λ and length T . A Poisson process can be decomposed into a pair of
independent random variables – a discrete random variable for the number
of spikes, and a continuous random variable for the distribution of the spikes
(Snyder and Miller, 1991). The probability density of having a realization
Ωi = {ti1, ti2, . . . , tiNi

} of Ω(λI , T ) is,

fΩ(Ωi|λI , T ) = Pr[N(T ) = Ni]fΩ|N(ti
1 = ti1, t

i
2 = ti2, . . . , t

i
Ni

= tiNi
|Ni) (22)

=
(λIT )Ni

Ni!
e−λIT

Ni∏
m=1

ft[t = tim] (23)

=
(λIT )Ni

Ni!
e−λIT

Ni∏
m=1

1

T
=

λNi
I

Ni!
e−λIT , (24)

where ft is the pdf for a uniform distribution. The expected value of the
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estimator for all possible pairs of independent spike trains is,

Eij

[
Q̂∗

ij(∆t)
]

=
∫ ∞

−∞

∫ ∞

−∞
fΩ(Ωi|λI , T )fΩ(Ωj|λJ , T )Q∗

ij(∆t)dΩidΩj (25a)

=
∞∑

Ni=0

∞∑
Nj=0

∫ ∞

−∞
· · ·

∫ ∞

−∞

λNi
I

Ni!
e−λIT λ

Nj

J

Nj!
e−λJT

1

2τT

Ni∑
m=1

Nj∑
n=1

e−
|tim−t

j
n−∆t|
τ dti1dti2 · · · dtiNi

dtj1dtj2 · · · dtjNj
(25b)

=
1

2τT
e−(λI+λJ )T

∞∑
Ni=0

∞∑
Nj=0

(λIT )Ni

Ni!

(λJT )Nj

Nj!

NiNj

T 2∫ T

0

∫ T

0
e−

|tim−t
j
n−∆t|
τ dtimdtjn (25c)

Let us evaluate the integral first, from the symmetry of tim and tjn we can
assume ∆t ≥ 0 without loss of generality.

∫ T

0

∫ T

0
e−

|tim−t
j
n−∆t|
τ dtimdtjn (26a)

=
∫ ∆t

0

∫ T

0
e

tim−t
j
n−∆t

τ dtimdtjn

+
∫ T

∆t

∫ tim−∆t

0
e−

tim−t
j
n−∆t

τ dtimdtjn

+
∫ T

∆t

∫ T

tim−∆t
e

tim−t
j
n−∆t

τ dtimdtjn (26b)

= −τ
∫ ∆t

0

(
e

tim−T−∆t

τ − e
tim−∆t

τ

)
dtim

+ τ
∫ T

∆t

(
1 − e−

tim−∆t

τ

)
dtim − τ

∫ T

∆t

(
e

tim−T−∆t

τ − 1
)

dtim (26c)

= −τ 2
(
e

∆t−T−∆t
τ − e

0−T−∆t
τ − e

∆t−∆t
τ + e

0−∆t
τ

)
+ τ(T − ∆t) − τ 2

(
−e−

T−∆t
τ + e−

∆t−∆t
τ

)
− τ 2

(
e

T−T−∆t
τ − e

∆t−T−∆t
τ

)
+ τ(T − ∆t) (26d)

= 2τ(T − ∆t) + τ 2(e
−T+∆t

τ + e
−T−∆t

τ − 2e−
∆t
τ ) (26e)

= 2τ(T − ∆t) + O(τ 2). (26f)

Approximating λI = Ni

T
, and substituting the integral to (25c) gives,

Eij

[
Q̂∗

ij(∆t)
]
' λIλJ

2τ(T − ∆t) + O(τ 2)

2τT
, (27)

where O(τ 2) are the terms with order of τ 2 or higher. Assuming τ ¿ 1 and
∆t ¿ T , (27) can be approximated by λIλJ which is the desired value.
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Now let us evaluate the second-moment of the estimator.

Eij

[
Q̂∗

ij(∆t)2
]

=
∫ ∞

−∞

∫ ∞

−∞
fΩ(Ωi|λI , T )fΩ(Ωj|λJ , T ) Q∗

ij(∆t)2dΩidΩj (28a)

=
∞∑

Ni=0

∞∑
Nj=0

∫ ∞

−∞
· · ·

∫ ∞

−∞

λNi
I

Ni!
e−λIT λ

Nj

J

Nj!
e−λJT

1

4τ 2T 2

Ni∑
p=1

Nj∑
q=1

Ni∑
r=1

Nj∑
s=1

e−
|tip−t

j
q−∆t|
τ e−

|tir−t
j
s−∆t|
τ

dti1dti2 · · · dtiNi
dtj1dtj2 · · · dtjNj

(28b)

=
∞∑

Ni=0
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Nj=0

λNi
I

Ni!
e−λIT λ

Nj

J

Nj!
e−λJT 1

4τ 2T 2
TNiTNj

1

T 4

∫ T

0

∫ T

0

∫ T

0

∫ T

0

Ni∑
p=1

Nj∑
q=1

Ni∑
r=1

Nj∑
s=1

e−
|tip−t

j
q−∆t|
τ e−

|tir−t
j
s−∆t|
τ

dtipdtjqdtirdtjs (28c)

Let us consider the integral part first.

1

T 4

∫ T

0

∫ T

0

∫ T

0

∫ T

0

Ni∑
p=1

Nj∑
q=1

Ni∑
r=1

Nj∑
s=1

e−
|tip−t

j
q−∆t|
τ e−

|tir−t
j
s−∆t|
τ dtipdtjqdtirdtjs (29a)

=
1

T 4
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∑
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s 6=q
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0
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0
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0
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0
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1
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0
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0
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1
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∑
r 6=p

∫ T

0

∫ T

0
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0
e−

|tip−t
j
q−∆t|
τ e−
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j
s−∆t|
τ dtipdtjqdtir

+
1
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Ni∑
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Nj∑
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s 6=q

∫ T

0

∫ T

0
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0
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|tip−t
j
q−∆t|
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|tir−t
j
s−∆t|
τ dtipdtjqdtjs (29b)

=
NiNj(Ni − 1)(Nj − 1)

T 4
(2τ(T − ∆t) + O(τ 2))2

+
NiNj

T 2
(τ(T − ∆t) + O(τ 2))

+
NiNj(Ni − 1)

T 3
(τ 2(2T (2 + e−

T
τ )) + O(τ 3)

+
NiNj(Nj − 1)

T 3
(τ 2(2T (2 + e−

T
τ )) + O(τ 3) (29c)

By assuming τ ¿ 1 ¿ T , we can approximate e−
T
τ ' 0, O(τ 3) ' 0. And we
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further approximate λI = Ni

T
, and Ni−1 ' Ni. These approximations lead to,

Eij

[
Q̂∗

ij(∆t)2
]
' 1

4τ 2T 2
{(λIλJ)2(2τ(T − ∆t))2

+ (λIλJ)(τ(T − ∆t)) + (λIλJ)(λI + λJ)(4τ 2T )}

= (λIλJ)2
(

T − ∆t

T

)2

+
λIλJ

4τT

T − ∆t

T

+ (λIλJ)(λI + λJ)
1

T
. (30)

Finally, the variance of the estimator is given by

Eij

[
(Q̂∗

ij(∆t) − λIλJ)2
]
' λIλJ(T − ∆t)

4τT 2
. (31)
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