
 
 

 

  

Abstract—The previous decoding algorithms for Brain 
Machine Interfaces are normally utilized to estimate animal’s 
movement from binned spike rates, which loses spike timing 
resolution and may exclude rich neural dynamics due to single 
spikes. Based on recently proposed Monte Carlo sequential 
estimation algorithm on point process, we present a decoding 
framework to reconstruct the kinematic states directly from the 
multi-channel spike trains. Starting with analysis on the 
differences between the simulation and real BMI data, neural 
tuning properties are modeled to encode the movement 
information of the experimental primate as the pre-knowledge 
for Monte-Carlo sequential estimation for BMI. The 
preliminary kinematics reconstruction shows better results 
when compared with Kalman filter. 

I. INTRODUCTION 
RAIN Machine Interface (BMI) is a framework in which 
the understanding of the spatial and temporal structure of 
neural activity is used to control a prosthetic device with 

the intention of movement. In the experiments [1][2], the 
microelectrode arrays were implanted into multiple cortical 
areas of a primate’s brain to collect different signals of neural 
activity, such as local field potentials and single unit 
activities, while the primate was performing a 3-D food 
reaching task, or a 2-D target-tracking task. 

On these recording results, several signal-processing 
approaches have been applied toward extracting the 
functional relationship between the neural recordings and the 
animal’s kinematic trajectories. The inputs to these models 
are usually multi-channel neuronal binned spike rates 
collected from selected regions of a primate’s brain. The 
outputs of these models are the predicted movements, and 
control a prosthetic robot arm to coordinate the intended 
movements. 

One of the best well known methods is the population 
vector algorithm proposed by Georgopoulos et al. [3]. In this 
method the movement direction is predicted from all cells 
preferred direction vectors appropriately weighted according 
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to each cell tuning property. An alternative decoding 
methodology uses binned spike trains to predict movement 
based on linear or nonlinear optimal filters. These methods 
avoids the need for explicit knowledge of the neurological 
dynamic encoding model of the neural receptive field, and 
standard linear or nonlinear regression is used to fit the 
relationship directly into the decoding operation. The Wiener 
filter or time delay neural network (TDNN) was designed to 
predict the 3D hand using neuronal binned spike rates 
embedded by a 10-tap delay line [1]. In addition to this 
forward model, a recursive multilayer perceptrons (RMLP) 
model was proposed by Sanchez et al. [4]. Subsequently, Kim 
et al. [5] proposed the development of switching multiple 
linear models combined with a nonlinear network to increase 
prediction performance in food reaching. 

Yet another methodology can be derived probabilistically 
using a Bayesian formulation. From a sequence of noisy 
observations of the neural activity, the probabilistic approach 
analyzes and infers the response as a state variable of the 
neural dynamical system. The neural tuning property relates 
the measurement of the noisy neural activity to the stimuli, 
and builds up the observation measurement model. 
Consequently, a recursive algorithm based on all available 
statistical information can be used to construct the posterior 
probability density function of the biological response for 
each time, and in principle yields the solution to the decoding 
problem. Movements can be recovered probabilistically from 
the multi-channel neural recordings by estimating the 
expectation of the posterior density or by maximum 
likelihood estimation. 

The Kalman filter is a special case of this framework and 
was previously applied to BMI [6].  Two strong assumptions 
of the Kalman filter are that time-series neural activities are 
generated from the stimulus through a linear system and that, 
given the neural spiking activities at every time step, the 
posterior density of the kinematic variable is Gaussian. These 
two assumptions may be too restrictive for BMI applications. 
The particle filter algorithm, generalizes the Kalman filter, 
and was also investigated to recover movement velocities 
from binned neural activity [7] [8]. 

The above algorithms are coarse approaches that lose spike 
timing resolution due to binning and may exclude rich neural 
dynamics due to single spikes. The primary reason for this 
limitation is that the methods are designed for continuous 
random valued observations, and cannot be applied directly 
to point processes. Indeed, a spike train point process is 
completely specified by the spike times.  

A general point process adaptive filtering paradigm was 
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recently proposed [9] to probabilistically reconstruct a freely 
running rat’s position from the discrete observation of the 
neural firing. This algorithm modeled the neural spike train as 
an inhomogeneous Poisson process feeding a kinematic 
model through a nonlinear tuning function. This approach 
also embodies the conceptual Bayesian filtering algorithm: 
predicting the posterior density by a linear state update 
equation and revising it with the next observation 
measurement. Nevertheless, the method still assumes the 
posterior density of the state vector, given the discrete 
observation, is always Gaussian distributed. 

Recently, we proposed a Monte Carlo sequential 
estimation algorithm on point process as a probabilistic 
approach to infer the kinematic information directly from the 
neural spike train [10]. The posterior density of the kinematic 
stimulus, given the neural spike train was estimated at each 
time step non-parametrically. The preliminary simulations 
showed a better velocity reconstruction from the 
exponentially tuned neural spike train without imposing a 
Gaussian assumption. 

To derive the kinematic information from the neural 
activity for the BMI all the probabilistic approaches discussed 
require pre-knowledge of the neuron receptive properties 
(tunning functions). This is because the probabilistic 
approaches use the Bayesian formulation to construct the 
posterior density at each time step from the prior density of 
the kinematic state, from which we infer the kinematic value. 
For this reason such, these tunning functions need to be 
estimated from the data. 

In this paper, we emphasize spike-based modeling of the 
functional relationship between neuron spike trains and 
kinematics. Our goal is to build an adaptive signal processing 
framework for Brain Machine Interfaces working directly in 
the spike domain, where the binning window size is not a 
concern. Multi-channel spike trains reserve the time 
resolution of neuron activities, where the algorithm could 
deal with the randomness of the neuron behaviors. Such an 
algorithm could be performed online to reconstruct the 
kinematics from observation of the neuron spike trains and 
also construct the base to adaptively model the nonstationary 
aspects of the neuron receptive fields. In this sense, the 
analysis of the neuron encoding properties and decoded 
movement results could contribute to the understanding of the 
physiologic reasoning of the neuron behaviors. 

The remainder of this paper is organized as follows. In Part 
II, we review the Monte-Carlo sequential estimation for the 
point process optimum filtering algorithm and apply this 
algorithm toward solving the decoding of the Brain Machine 
Interfaces. Starting by exposing the differences between the 
simulation data and real BMI data, neural tuning properties 
are modeled to encode the movement information of the 
experimental primate as the pre-knowledge for Monte-Carlo 
sequential estimation for BMI. The final decoding framework 
for Brain Machine Interfaces is presented directly in the spike 
domain and is followed with preliminary kinematics 
reconstruction results in Part III. 

II. DECODING IN THE SPIKE DOMAIN FOR BRAIN MACHINE 
INTERFACES 

In this section, we review the Monte-Carlo sequential 
estimation algorithm for the point process optimum filtering, 
followed by the framework of BMI decoding in spike 
domain. 

A. Monte Carlo Sequential Estimation for Point Processes 
Given an observation interval ],0( T , the number )(tN of 

events (e.g. spikes) can be modeled as a stochastic 
inhomogeneous Poisson process characterized by its 
conditional intensity function ))(),(),(|( tttt Hθxλ , i.e. the 
instantaneous rate of events, defined as 
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where )(tx  is the system state, )(tθ  is the parameter of the 
adaptive filter, and )(tH  is the history of all the states, 
parameters and the discrete observations up to time t. The 
relationship between the single parameter Poisson process λ , 
the state )(tx , and the parameter )(tθ is a nonlinear model 
represented by 

))(),(())(),(|( ttfttt θxθx =λ                             (2) 
Using the nonlinear function )(⋅f , assumed to be known or 

specified according to the application, such as tuning function 
in BMI decoding. Let us consider hereafter the parameter 

)(tθ  as part of the state vector )(tx . Suppose at time instant k 
the previous system state is 1−kx . Recall that because the 
parameter θ  was embedded in the state, all we need is the 
estimation of the state from the conditional intensity function 
(1), since the nonlinear relation )(⋅f  is assumed known. 
Random state samples are generated using Monte Carlo 
simulations [11] in the neighborhood of the previous state 
according to 

kkkk F η+= −1xx                                (3) 
 Then, weighted Parzen windowing [12] was used with a 

Gaussian kernel to estimate the posterior density. The process 
is recursively repeated for each time instant propagating the 
estimate of the posterior density, and the state itself, based on 
the discrete events over time. Notice that due to the recursive 
approach the algorithm not only depend on the previous 
observation, but also depend on the whole path of the spike 
observation events. 
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the set of all state samples up to time k with associated 
normalized weights },,1,{ S

i
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number of samples generated at each time index. Then, the 
posterior density at time k can be approximated by a weighted 
convolution of the samples with a Gaussian kernel as 
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where kN :1  is the spike observation events up to time k 
modeled by an inhomogeneous Poisson Process, and 

),( σxxk −  is the Gaussian kernel in term of x  with mean 

x  and covariance σ . i
kw  is the weight derived by Bayes’ 

rule and Markov Chain property 
)|( i

kk
i
k Npw xΔ∝                                  (5) 

where )|( i
kkNp xΔ  is the probability of observing spikes in 

the interval ],( 1 kk tt − . The posterior density of the current 
state given the observation is modified by the latest 
probabilistic measurement of the observing spike event 

)|( i
kkNp xΔ , which is the updating stage in adaptive filtering. 

Without a close form of the state estimation, we measure 
the posterior density of the state given the observed spike 
event )|( :1 kk Np x every time and apply two methods to get 
the state estimation kx~ by Maximum Likelihood Estimation 
(MLE), or  the expectation of the posterior density as (6) and 
(7): 
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B. Data Collection and Analysis of Difference between 
Simulation and Real Data 
In the one-neuron spike train decoding simulation, the 

Monte Carlo sequential estimation algorithm provided a 
better estimate of the state recursively without Gaussian 
distribution [10]. The Monte Carlo sequential estimation in 
spike domain is a promising signal processing tool to decode 
the continuous kinematics variable directly from neural spike 
trains in Brain Machine Interfaces. With this method, spike 
binning window size is no longer a concern, as one can 
directly utilize the spike timing event. The online state 
estimation is suitable for real-time BMIs decoding without 
the desired signal; however, both the neural activity recoding 
and desired trajectories are required to estimate the neuron 
tuning function. The decoding results by Monte Carlo 
estimation could be different between realizations because of 
the random manner in which samples are generated to 
construct the posterior density. 

 The Brain Machine Interfaces paradigm was designed and 
implemented by the Nicolelis lab at Duke University. The 
electrical neural activities were recorded invasively in the 
brain of an adult female Rhesus monkey named Aurora, and 
synchronized with her task behaviors. Several 
micro-electrode arrays were chronically implanted in five of 
the monkey’s cortical neural structures: right dorsolateral 
premotor area (PMd), right primary motor cortex (MI), right 
primary somatosensory cortex (S1), right supplementary 
motor area (SMA), and the left primary motor cortex (MI). 
Each electrode array consisted of up to 128 microwires (30 to 
50 μm in diameter, spaced 300 μm apart), distributed in a 
16×8 matrix. Each recording site occupied a total area of 15.7 

mm2 (5.6×2.8 mm) and was capable of recording up to four 
single cells from each microwire for a total of 512 neurons (4
×128) [14]. 

After the surgical procedure, a multi-channel acquisition 
processor (MAP, Plexon, Dallas, TX) cluster was used in the 
experiments to record the neuronal action potentials 
simultaneously. Analog waveforms of the action potential 
were amplified and band pass filtered from 500 Hz to 
5KHz.The spikes of a single neuron from each microwire 
were discriminated  based on time-amplitude discriminators 
and a principal component (PC) algorithm [1][15] . The firing 
times of each spike were stored.  

The monkey performed a two-dimensional target-reaching 
task to move the cursor on a computer screen by controlling a 
hand-held manipulandum in order to reach the target. The 
monkey was rewarded when the cursor intersected the target. 
The corresponding position of the manipulandum was 
recorded continuously for an initial 30-min period at a 50Hz 
sampling rate, referred to as the “pole control” period [16] . 

BMI data provides us with 185 neural spike train channels 
and 2-dimensional movement trajectories for about 30 
minutes. Compared to the one-neuron decoding simulation in 
[10], there are big differences.  

At first glance, it is remarkable that the time resolution for 
the neural spike train is about a millisecond, while the 
movement trajectories have a sampling frequency 50Hz.The 
neural spike trains allow us to more closely observe the true 
random neural behavior. Consequently, however the 
millisecond scale requires more computational complexity. 
We must bridge the disparity between the microscopic neural 
spikes and the macroscopic kinematics.  

The tuning function provides a basis on which to build a 
simultaneously functional relationship. In the simulation 
[10], tuning function is simply assumed as exponentially 
increasing firing rate conditioned on the velocity. For the real 
BMI data, is this tuning function still valid and cogent? The 
Monte Carlo sequential estimation algorithm works as 
probabilistic approach directly in the spike domain with 
major assumption that we have enough knowledge of both the 
system model and the observation model. This assumption 
establishes a reliable base to propagate the posterior density 
leading to the state estimation at each time iteration. The 
knowledge should be gained as insight into neural tuning 
properties by analyzing the existing neuron and kinematics 
data, which leads to better kinematics decoding from neural 
activities in the future.  

Anther issue to resolve is dealing with multi-channel 
neural spike trains when there is only one neural channel in 
the simulation. In the real BMI data, how can we account for 
the association between channels? Most of the work focused 
on the exclusive relationship between neural activities, such 
as the correlation between neurons characterized by the 
neural firing, or between neuron microscopic spiking and 
field potentials. With regard to both external kinematics and 
neural activities, neural spike trains between channels are 
usually assumed to be conditionally independent of 
kinematics. In other words, spike generation is determined 
once the kinematics and parameters of the neuron tuning are 



 
 

 

known. We should emphasize that the assumption of 
conditional independence does not conflict with the 
association analysis between neurons. If the firing rates of 
two neurons are generated independently through two similar 
tuning functions in a certain time period, similar firing 
patterns are expected during this time period, and the analysis 
on the correlation between them is still valid.  

C. Neuron Tuning Analysis 
The literature contains many different examples of tuning 

functions relating movement to neural activities. Most were 
linear weight combinations of the projection on 2 or 3 
dimensions of kinematic vectors and bias, including the 
direction angle information. Moran and Schwartz [17]  
introduced an exponential velocity and direction tuned motor 
cortical model. Emery Brown used a Gaussian tuning 
function for the hippocampal pyramidal neurons [9]. These 
nonlinear mathematical models are not optimal for dealing 
with the real data because the tuned cells can have very 
different tuning properties and probably change over time. 
The accuracy of the tuning function estimation can directly 
affect the pre-knowledge of the Bayesian approach and, 
therefore, the results of the kinematic estimation. Marmarelis 
and Naka [18]  developed a statistical method, called white 
noise analysis, to model the neural responses with stochastic 
stimuli. This method was improved by Simoncelli, Paninski 
and colleagues [19] . By parametric model identification, the 
nonlinear property between the neural spikes and the stimuli 
was directly estimated from data, which is more reliable than 
just assuming a linear or Gaussian format. In our BMI, we 
want to use sequential state estimation on a point process 
algorithm to infer the kinematic vectors from the neural spike 
train, which is the opposite of sensory neurons. However, we 
can regard the proper kinematic vector as the outcome of the 
motor cortex neurons. The tuning function between the 
kinematic vector and the neural spike train is exactly the 
observation model between the state and observation in our 
algorithm.  

The tuning function is modeled as a linear filter followed 
by a static nonlinearity followed by a Poisson model, as 
shown in Figure 1 [19].  
 

 
Fig. 1 Block diagram of linear-nonlinear-Poisson model 
 

At each time step, the multi-dimensional kinematic vector 
is converted by linearly combining it with a weight vector k to 
a scalar output. The linear filter also represents the preferred 
kinematic direction. This linear filter response is then passed 
through a nonlinear function f, the output of which is 
determined by the instantaneous firing rate of a Poisson spike 
generator. The tuning function can be shown as (8) and (9). 

)( lagtt kf +⋅= xr
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)( tt Poissonspike λ=                             (9) 
where txr is the instantaneous kinematics vector, which 

contains all the relevant information of position, velocity and 
acceleration T
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, with the causal time 
delay estimated for the motor cortical neurons [20] . 

D. Monte Carlo Sequential Estimation Framework for 
BMI Decoding 
We have thus far presented background on the difference 

between simulation and BMI real data, and have elaborated 
on the Monte Carlo sequential estimation algorithm. Based on 
this information, we now present a systematic framework for 
BMI decoding using a probabilistic approach. 

The decoding of Brain Machine Interfaces is intended to 
infer the primate’s movement from the multi-channel neuron 
spike trains. The spike time is our observation signal. The 
kinematics is the state that needs to be derived from the point 
process observation through the tuning function by our 
Monte Carlo sequential estimation algorithm. The following 
steps represent the entire process: 
Step 1: Preprocess and analysis. 
1) Generate spike trains from stored spike times. 
2) Synchronize all the kinetics with the spike trains.  
3) Evaluate the information theoretic tuning depth for all 

neurons. Label the important tuned neurons as the 
candidates for the subset. 

4) Assign the kinematic vector xr  to reconstruct. 
Step 2: Model estimation. 
1) Estimate the kinematics dynamic system model 
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Step 3: Monte Carlo sequential kinematics estimation 

For each time k, a set of samples for state 
i
kx  are 

generated, i=1:N 
1) Predict new state samples k

i
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2) For each neuron j, 

- Estimate the conditional firing rate 
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3) Draw the weight for the joint posterior density 
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6) Estimate the state *
kx  from the joint posterior density by 

MLE or expectation. 
7) Resample i

kxr  according to the weights i
kW . 

III. RESULTS OF MONTE CARLO SEQUENTIAL ESTIMATION 
ON BMI DECODING IN SPIKE DOMAIN 

We first preprocessed the 185 channels of the neuron 
spiking time as a 0, 1 point process. A small time interval was 
chosen as 10 ms. The interval is small enough so that 99.62% 
of intervals had a spikes count less than 2.  For each neuron, 1 
was assigned when 1 or more than 1 spikes appeared during 
this interval, otherwise 0 was assigned. 185 multi-channel 
spike trains were generated 1750 seconds long. The recorded 
2-D position vector p

r
 is interpolated to be synchronized 

with the spike trains. The velocity vr  is derived as the 
difference between the current and previous positions, and 
the acceleration a

r
 is derived the same way from the velocity. 

10000 samples of kinematics vectors were generated as 
training set for the parameter estimations. The neural 
activities were aligned with the kinematics according to their 
best causal time delay lag, which is estimated by information 
theoretical analysis on the mutual information between the 
spike and the delayed linear filter kinematics vector [20]. The 
kinematics dynamic system model kF  was estimated by the 
least square solution as stated in the framework. The noise 
distribution )(ηp is approximated by the histogram of 

1−−= kkkk F xxη . For each neuron j, the linear parameter 
j

k and nonlinear function jf  in the tuning function 

)( k
jjj

k kf xr
r

⋅=λ  are estimated and stored using the 
method shown in part II.D. The kernel size in estimation 
nonlinear function jf  was assigned 0.02. 

Monte Carlo sequential estimation for point process was 
then implemented on the 185 aligned neural spike trains to 
reconstruct the kinematics vector for 1000 samples long, 
referred as test data set. Through the dynamic system model 
at each time index, the noise was randomly generated 
according to )(ηp . With the conditionally independent 
assumption, the joint posterior density of 185 neurons was 
calculated as the product of the posterior density for each 
neuron by weighted Parzon window. The posterior density 
was smoothed by convolving with a Gaussian kernel, where 
the kernel size was designed according to the Silverman’s 
rule [21]. The kinematics vector was estimated and compared 
by both Maximum Likelihood Estimation and the expectation 
by collapse. 

Figure 2 shows the reconstructed kinematics from all 185 
neuron spike trains for test data. The left and right column 
plots display the reconstructed kinematics for x-axis and 
y-axis. The 3 rows of plots illustrate from top to bottom the 
reconstructed position, the velocity and the acceleration. In 
each subplot, the red line indicates the desired signal, the blue 
line indicates the expectation estimation, and the green line 
indicates the MLE estimation. The correlation coefficients 
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Fig 2. The reconstructed kinematics for 2-D reaching task 
 

TABLE 1 CORRELATION COEFFICIENT EVALUATED BY THE SLIDING WINDOW 
Position Velocity Acceleration CC x y x y x y 

EXP. 0.8401 ± 0.0738 0.8945 ± 0.0477 0.7944 ± 0.0578 0.8142 ± 0.0658 0.5256 ± 0.0658 0.4460 ± 0.1495 Training 
MLE 0.7984 ± 0.0963 0.8721 ± 0.0675 0.7805 ± 0.0491 0.7918 ± 0.0710 0.4950 ± 0.0430 0.4471 ± 0.1399 
EXP. 0.7555 ± 0.1085 0.8596 ± 0.1267 0.6980 ± 0.0764 0.7395 ± 0.0341 0.4312 ± 0.1619 0.4100 ± 0.0850 

Testing 
MLE 0.7257 ± 0.1051 0.8345 ± 0.1422 0.6670 ± 0.0762 0.7053 ± 0.0343 0.4186 ± 0.1568 0.3785 ± 0.0903 



 
 

 

between the desired signal and the estimations were shown at 
upper right corners of each plot. 

Another probabilistic approach, the Kalman filter 
algorithm, was applied to the same data [14] to predict the 
animal’s positions from the binned neural spiking rate. 
Compared to our approach here, the Kalman filter simply 
assumes that both the kinematic dynamic system model and 
the tuning function are linear, and that the posterior density is 
Gaussian distributed. The average correlation coefficient for 
the reconstructed position x was 0.62 ± 0.26 and for y was 
0.82 ± 0.11 [14] with a sliding window of 4 seconds for 40 
sample predictions. Because we have a different sampling 
frequency, 100Hz for kinematics, rather than 10Hz, our 
average correlation coefficients are calculated with an 
overlapping window, also 4 seconds long, for 400 sample 
predictions. The average correlation for position x is 
0.7555 ± 0.1085 and for y is 0.8596 ± 0.1267, which is better 
than the Kalman filter results. The correlation evaluations by 
the sliding window for both training and testing reconstructed 
kinematics are shown in Table 1.  

Our approach resulted in a reasonable reconstruction of the 
position and the velocity. The reconstructed kinematics 
estimated from the expectation of the joint posterior density 
performed better than the one from the noise maximum 
likelihood estimation. The position shows that the best 
correlation coefficients. This result may be due to the fact that 
the velocity and the acceleration were derived as differential 
variables, where the noise in the estimation might be 
magnified. Another interesting phenomenon is that the 
y-kinematics is consistently reconstructed better than x, 
which agrees with previous approaches.  

IV. CONCLUSION 
The Monte Carlo sequential estimation framework for BMI 

is a probabilistic approach to reconstruct the kinematics 
directly from the neural spike trains. It requires knowledge of 
physiology and of novel signal processing techniques. The 
neural activities are observed directly in the spike domain, 
which reserves the time resolution of the random neuron 
behaviors. The tuning functional relationship between the 
kinematics and neuron spikes is properly designed by a 
parametric linear-nonlinear-Poisson model. Based on the 
knowledge gained from the neuron physiology function 
analysis, the Monte-Carlo sequential estimation for the point 
process adaptive filtering was implemented on real-time BMI 
to infer the kinematics from a multi-channel spike train. The 
algorithm estimates the posterior density more accurately 
without any assumptions. Compared to the same task data 
with another probabilistic approach, Kalman filter, Monte 
Carlo estimation proved to be better capable of 
probabilistically inferring the kinematic states. 
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