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Introduction CORRENTROPY PCA Results

Motivation

I Why do we need nonlinear component analysis?

I Linear PCA only fully describes Gaussian distributed data!
I In all other cases the principal components are, in general,

nonlinear and depend on higher order moments.

I Are there methods for nonlinear component analysis
currently available?

I Iterative methods (Hastie and Stuetzle, 1989; De’ath, 1999)
I Kernel principal component analysis – Kernel PCA

(Schölkopf et al., 1998)
I ...
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Introduction CORRENTROPY PCA Results

Motivation

I Why do we need another nonlinear component analysis
method?

I Iteratives methods are time consuming and prone to search
problems (local minima, etc.)

I Kernel PCA needs to solve the eigendecomposition of the
Gram matrix, which has the dimensionally of the data
(1000 data points =⇒ 1000 × 1000 Gram matrix.)

I Difficult interpretation

I CORRENTROPY PCA:
I Solves nonlinear component analysis
I Incorporates higher order statistics
I Constrained to input dimensionality
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Definition of correntropy

I The correntropy of two random variables X and Y is
defined as

VXY , E [κ(x, y)] .

where
I E [·] denotes mathematical expectation over X and Y
I κ is a symmetric positive definite kernel that obeys the

Mercer’s conditions.
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Properties of correntropy

I Correntropy depends on higher order monents.
For example, using a Gaussian kernel the series
expansion is

VXY =
1√
2πσ

∞∑
n=0

(−1)n

2nσ2nn!
E

[
‖x− y‖2n]

I Given any symmetric and positive definite kernel κ(x, y),
the correntropy kernel is symmetric and positive definite.
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Kernel mapping

I Since the correntropy kernel is symmetric and positive
definite, the Moore-Aronszajn theorem states that a unique
reproducing kernel Hilbert space (RKHS) – H – exists.

I From Mercer’s theorem, the correntropy kernel can be
decomposed in a sequence of non-negative eigenvalues,
{λk : k = 1, 2, . . .}, and corresponding (normalized)
eigenfunctions, {ϕk(x) : k = 1, 2, . . .}.

I This is,

VXY =
∞∑

k=0

λkϕk(x)ϕk(y) =
∞∑

k=0

(
√

λkϕk(x))(
√

λkϕk(y))

= 〈Π(x),Π(y)〉
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Mapping input data to feature space

I Given a set of zero mean vectors xi ∈ RL, i = 1, . . . , N,
CORRENTROPY PCA maps the data component-wise in
feature space, i.e.:

Π(x) : RL 7−→ F

x 7−→ [Π(x1),Π(x2), . . . ,Π(xL)]

where xi denotes the ith component of the input sample x.
I This leads to the following definition:

Vij , E [κ(xi, xj)] = 〈Π(xi),Π(xj)〉

≈ 1
N

N∑
k=1

κ(xik, xjk), ∀i, j = 1, . . . , L
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Feature space component analysis (1)

I The covariance matrix of the transformed data is given by

C =
1
L

L∑
i=1

Π(xi)Π(xi)T

I Then, we can compute the eigendecomposition of C,

Cq = λq

I Since all solutions lie in the span of Π(x1), . . . ,Π(xL), we
have that

q =
L∑

j=1

βjΠ(xj)
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Feature space component analysis (2)

I Instead of solving the eigendecomposition we can solve

〈Π(xk), Cq〉 = 〈Π(xk), λq〉 , ∀k = 1, . . . , L

I Substituting the expressions for C and q, yields

1
L

L∑
i=1

L∑
j=1

βj 〈Π(xk),Π(xi)〉 〈Π(xi),Π(xj)〉

= λ

L∑
j=1

βj 〈Π(xk),Π(xj)〉 , ∀k = 1, . . . , L
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Feature space component analysis (3)

I Define the correntropy matrix with the ijth entry,

Vij = 〈Π(xi),Π(xj)〉 ≈
1
N

N∑
k=1

κ(xik, xjk), ∀i, j = 1, . . . , L

I Then, the solutions of the previous set of equations
can be found through the eigendecomposition of

V2β̄ = LλVβ̄

which has the same solutions as, Vβ̄ = Lλβ̄,
where β̄ = [β1, . . . , βL]T .
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Computing the data projections

I The data projections are given by the inner product of the
transformed vector with the eigenvectors:

P(a) =
L∑

i=1

βi
1
N

N∑
j=1

κ(xij, ai)
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CORRENTROPY PCA: Summary

1. Compute the correntropy matrix V

2. Compute the eigendecomposition of the correntropy matrix

3. Project the data points onto the eigenvectors
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Data centering in feature space

I So far, the transformed vectors were assumed to be zero
mean, which is not true in general.

I The centered data in feature space is given by:

Π(xi) = Π(xi)− E [Π(xi)]

= Π(xi)−
1
N

N∑
k=1

Π(xik)

where xik is the ith component of the kth sample vector.
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Data centering in feature space: inner product bias
adjustment

I In terms of input samples, the inner product between two
centered vectors in feature space is given by:

〈
Π(xi),Π(xj)

〉
= 〈Π(xi),Π(xj)〉 − 2

〈
Π(xi),

1
N

N∑
m=1

Π(xjm)

〉

+

〈
1
N

N∑
k=1

Π(xik),
1
N

N∑
m=1

Π(xjm)

〉

= E [κ(xi − xj)]−
1
N

N∑
k=1

N∑
m=1

κ(xik − xjm)
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Example 1: Mixture of two Gaussians

I Generated 200 samples from mixture of two Gaussians:

f (x) = (N (m1,Σ1) +N (m2,Σ2))/2

I Kernel size: 0.5
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Example 2: Mixture of three Gaussians clusters

I Generated 150 samples (50 per cluster) from mixture of
three Gaussians clusters with standard deviation 0.1.

I Kernel size: 0.2
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Conclusions

I Proposed novel approach for principal component analysis,
based on the correntropy cost function.

I Incorporates higher order statistics.

I Problem constrained to the dimensionality of the input.

I Much smaller computational complexity.
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