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Introduction
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Motivation

» Why do we need nonlinear component analysis?
» Linear PCA only fully describes Gaussian distributed data!
» In all other cases the principal components are, in general,
nonlinear and depend on higher order moments.
» Are there methods for nonlinear component analysis
currently available?
» lterative methods (Hastie and Stuetzle, 1989; De’ath, 1999)
» Kernel principal component analysis — Kernel PCA
(Scholkopf et al., 1998)
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Motivation

» Why do we need another nonlinear component analysis
method?

» lteratives methods are time consuming and prone to search
problems (local minima, etc.)

» Kernel PCA needs to solve the eigendecomposition of the
Gram matrix, which has the dimensionally of the data
(1000 data points = 1000 x 1000 Gram matrix.)

» Difficult interpretation
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Motivation

» Why do we need another nonlinear component analysis
method?

» lteratives methods are time consuming and prone to search
problems (local minima, etc.)

» Kernel PCA needs to solve the eigendecomposition of the
Gram matrix, which has the dimensionally of the data
(1000 data points = 1000 x 1000 Gram matrix.)

» Difficult interpretation

» CORRENTROPY PCA:

» Solves nonlinear component analysis
» Incorporates higher order statistics

» Constrained to input dimensionalit - UNVERSITY O
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Definition of correntropy

» The correntropy of two random variables X and Y is
defined as

Vxy £ E [k(x,)].
where

» E[-] denotes mathematical expectation over X and Y
» « is a symmetric positive definite kernel that obeys the
Mercer’s conditions.
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Properties of correntropy

» Correntropy depends on higher order monents.
For example, using a Gaussian kernel the series
expansion is

Viy = — i =" g [[lx = y/1*"]
V2o ‘=0 2ng2np)

» Given any symmetric and positive definite kernel x(x,y),
the correntropy kernel is symmetric and positive definite.
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Kernel mapping

» Since the correntropy kernel is symmetric and positive
definite, the Moore-Aronszajn theorem states that a unique
reproducing kernel Hilbert space (RKHS) — H — exists.

» From Mercer’s theorem, the correntropy kernel can be
decomposed in a sequence of non-negative eigenvalues,
{M:k=1,2,...}, and corresponding (normalized)
eigenfunctions, {¢x(x) : k=1,2,...}.

» This is,
Vir = 3 M@ ee(y) = D (v Aeer@) (v deer ()
k=0 k=0
= (I(x), 1I(y)) JSINE L @RIGRR )
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CORRENTROPY PCA

Mapping input data to feature space

» Given a set of zero mean vectors x; € RE,i=1,...,N,
CORRENTROPY PCA maps the data component-wise in
feature space, i.e.:

M(x) : RE— F
X [H(xl), H(Xz), ce ,H(XL)]

where x; denotes the ith component of the input sample x.
» This leads to the following definition:

Vij £ E [1(xi, )] = (I1(x;), TI(x;))

N
1
— E K x,k,xjk Vi,j=1,. ]@I‘lﬁh'@'@;
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Feature space component analysis (1)

» The covariance matrix of the transformed data is given by

L

C=-> Ix)(x)"

i=1

» Then, we can compute the eigendecomposition of C,
Cq=)\q

» Since all solutions lie in the span of I1(x;), ..., II(x.), we
have that

L
a=Y Gl
= YR, @SR
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Feature space component analysis (2)

» Instead of solving the eigendecomposition we can solve
(II(xx),Cq) = (I(xx), A\q), Vk=1,...,L

» Substituting the expressions for C and q, yields

D223 (M), T(x)) {T(x), T(x))

i=1 j=1

~I =
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Feature space component analysis (3)

» Define the correntropy matrix with the ijth entry,

1

N
Vl‘j = <H(x,~),H(xj)) ~ N Zm(xik,xjk), Vi,j = 1, e ,L

k=1

» Then, the solutions of the previous set of equations
can be found through the eigendecomposition of

V23 =L\Vj3
which has the same solutions as, V3 = L\,

where 8 = [B1,..., 6]
JGNTE L @iRing )
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Computing the data projections

» The data projections are given by the inner product of the
transformed vector with the eigenvectors:

LN
P(a)=>" Py >kl ar)
=1 =
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CORRENTROPY PCA: Summary

1. Compute the correntropy matrix V
2. Compute the eigendecomposition of the correntropy matrix
3. Project the data points onto the eigenvectors
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Data centering in feature space

» So far, the transformed vectors were assumed to be zero
mean, which is not true in general.

» The centered data in feature space is given by:

— () — 3 M)

k=1

where x; is the ith component of the kth sample vector.
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Data centering in feature space: inner product bias

adjustment

» In terms of input samples, the inner product between two
centered vectors in feature space is given by:

N
(TG, Ty ) = (M), T(x) — 2 <H<x,->, = H(x.,-m>>
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Example 1: Mixture of two Gaussians

» Generated 200 samples from mixture of two Gaussians:
f(x) = NV (my, 5y) + N(my, 2))/2

» Kernel size: 0.5

Linear PCA Kernel PCA Correntropy PCA
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Example 2: Mixture of three Gaussians clusters

» Generated 150 samples (50 per cluster) from mixture of
three Gaussians clusters with standard deviation 0.1.
» Kernel size: 0.2

Eigenvalue=29.674 Eigenvalue=28.043

Kernel PCA

Correntropy PCA
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Conclusions

» Proposed novel approach for principal component analysis,
based on the correntropy cost function.

» Incorporates higher order statistics.
» Problem constrained to the dimensionality of the input.
» Much smaller computational complexity.
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