Compression of Spike Data Using the
Self-Organizing Map

Antonio R. C. Paiva, J&sC. Pincipe and Justin C. Sanchez
Computational NeuroEngineering Laboratory
Electrical and Computer Engineering Department
University of Florida, Gainesville, FL 32611 USA
{arpaiva,principe,justin t@cnel.ufl.edu

Abstract—Motivated by current attempts to use wireless in wireless link [3]. The great advantage of this approach is that
Brain-Machine Interfaces (BMIs), this paper presents a method only a very small bandwidth is required to transmission. On
for the compression of spike data. Supported by Vector Quanti- ha other hand, it does not provide the processing unit with

i -di ional Self- izing M . . - . .
fgg?\;])(\t/(?)qhhaencig’e%igﬁsa (}f%n;ﬁ?sslgrrfplis -?f:ga}?]Ié;QGQS ;2 any other information than the firing rate, which means neither

entropy coded to further reduce the necessary bandwidth, taking SPike sorting nor correction of spike detection can be made.
advantage of the non-uniform frequency of firing of the SOM Therefore, a large gap exists in the amount of information

processing elements (PEs). The complexity of the use of the SOMavailable to the processing unit between these two approaches.
Is also considered and addressed. After training several SOMS, A not 50 drastic alternative, analyzed from the communication
the method was simulated with real data achieving compression . . . - . .
ratios as high as 185.7:1, i.e. a bitrate of 862 bits-per-second-per- point of V'e_W by Bossettet al. [4]’ IS to d9 Splkg detection
channel, assuming sampling at 20 kHz with 8 bits-per-sample and transmit all the samples during the spike. This allows us to
(bps). perform spike sorting if such is intended. Nevertheless, there
is still no possibility to recover spikes not detected.

Following a quite different path, our approach tries to trans-

Brain-Machine Interfaces (BMI) have been receiving inmit as much information as possible, under the constraints on
creasing attention in the last years. In this context, a largmv bandwidth and low complexity, leaving the responsibility
number of channels are collected from brain areas throughspike detection and spike sorting to the processing unit. This
multi-electrode arrays. Then, these signals are transferred tallaws for more sophisticated algorithms to be used without
processing unit which decodes the spike firings and predict tthe computational restrictions of a miniaturized unit, while
intended action. However, due to the considerable complexitaintaining all the advantages of a remote collecting unit
of the algorithms used, the processing is typically done “reemmunication through wireless. To do so, we vector quantize
motely” [1]. The most common approach is to wire connethe input, using a Self-Organizing Map (SOM), and transmit
the subject to the processing unit. This is uncomfortable &md entropy coded version of the index of an approximate
the subject and can greatly restrict the experimental setupréconstruction vector. Since we group the samples in non-
natural alternative is to replace the connectors with a wirelesgerlapping vectors, we are able to achieve great compression
link. In this situation, a unit connected to the electrodes wouldtios while preserving most of the structure of the signal.
collect, possibly performing some pre-processing, and transftie theoretical concept behind this approach is that of vector
through a wireless communication channel the spike datadoantization (VQ), from which the SOM can be regarded as
the processing unit. a particular case. In the work of Shannon [5], it is proven

Although very attractive, the usage of a wireless link givethat due to correlation between subsequent samples, grouping
rise to other challenges. Due to the large number of channsésnples and coding then jointly results in compression closer
to be transmitted and the high bitrate associated with each ottepptimal. Based on this concept, several VQ methods were
the bandwidth required for transmitting all the signals is vergeveloped since then [6].
large. For instance, even if only 32 channels are selected, andhe remainder of this paper is organized as follows. In
considering sampling at 20 kHz with 16 bps, a total bandwid®ection Il we expose the architecture of our strategy. Then,
of more than 9.76 Mbps is required. Associated with this ia Section Ill, some considerations are made concerning the
the fact that high bandwidth imply high power consumptionmplementation of this method, and results are presented in
Since current neural decoding algorithms use only the firir@ection IV. Finally, some conclusions are drawn in Section V.
rate of neurons [1], [2], an efficient compression method would
be to perform the spike detection onsite and then transmit
only when a spike occurs, or even the result of binning (i.e., Figure 1 presents a block diagram of the main elements
counting of the number of spikes in a channel during a giveri the communication process considered in this paper, and
time interval). In fact, this is the method of choice for currergpecifically showing the base elements of the encoder and
attempts of using a collecting unit communicating through @ecoder. As is explicitly depicted in Fig. 1, compression is

I. INTRODUCTION

Il. SYSTEM OVERVIEW
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Fig. 1. Block diagram of the communication process.

achieved through a two step process. First, through quarddnsiderable power to operate. But, as was stated right at
zation of the input vector due to the application of a SONhe beginning of this paper, the application serving as our
and, secondly, through entropy coding of the index resultimgotivation poses tight constraints in the power consumption.
from the application of the SOM. Although this process islowever, since the competive process of the SOM is basically
lossy (i.e. there is loss of information), this happens only ia search for the nearest neighbor in high dimension space, fast
the quantization step. The algorithm begins by grouping search algorithms can be used instead.
sample$ from the input such as to form a vector, in which each Several fast search algorithms where developed in the
sample is a component of this vector. This can be thought @ntext of computational geometry (see e.g. [7]). Although,
a non-overlapping sliding window over the input. This vectogenerally these algorithms are very fag®(log, N) time),
is then used as input to the SOM, resulting in the index ofiost where developed for approximate search, which would
the firing neuron for this vector. Then, the index is entropycrease the error and render our approximation through the
coded and transmitted through the communication chann80M non-optimum. In the work by Aryat al. [8] several
Conversely, at the receiver, the index is first entropy decodalgjorithms are presented, most of then based on KD-trees. KD-
and used as the reference to a lookup table with the weightitiges break the space in hyperrectangles which very unlikely
vectors of processing elements (PEs), or neurons, of the SOWAtch the Voronoi division of the space. However, it is also

It is important to note that the SOM, acting as a vect@hown how using KD-trees plus a small distance search in the
guantization method, insures through its competitive strateggighborhood of the KD-tree hyperrectangle we can ensure
that the firing neuron is the one which the correspondirtbat the found vector is truly the nearest. Comparing with the
weighting vector is nearest (according I metric, in our original algorithm for the application of the SOM this repre-
case) in state space, i.e., the index of the firing neurondgents a great improvement. For instance, for a vector length
the one for whicharg min; ||z — w;||, wherez is the input of 20 and a SOM with 64 PEs, instead of performing 2496
vector. In other words, if we use this weighting vector as apperations (1280 multiplies and 1216 adds) for each vector,
approximation of the input vector, it will yield the smalleswve would need only a search with 6 steps, plus only a few
reconstruction error. Since we selected the weighting vectistance computations; e.g. for 3 distance computations (60
with the smallest reconstruction error, due to the training ofiultiplies and 57 adds) is enough to have a high probability
the SOM, at the receiver, this vector can be used as a gawidoeing selecting the true nearest vector.
approximation of the input vector. IV. RESULTS

The entropy coding method to be used can be any. FRr Data
example, arithmetic coding or Huffman coding. However, due’
to the specific characteristics of each signal it is not possibleMultielectrode array recordings were collected from male
to estimate in advance the PDF of the indices, thus an adaptRfague-Dauley rats performing a go-no go lever pressing task.
method must be used. This, nevertheless, poses no restrictofgy configurations o x 850um tungsten electrodes were

since most entropy coding methods have an adaptive versigronically implanted in the forelimb region of M1 (+1.0mm
anterior, 2.5mm lateral of bregma). Neuronal activity was

IIl. I MPLEMENTATION REMARKS collected with a Tucker-Davis recording rig with sampling
In our method, as should be obvious, the application §quency of 24414.1Hz and digitized to 16 bits of resolution.
the SOM is the most computationally demanding task. Whilefore being stored to disk the neuronal potentials were band-
the entropy coders are generally simple algorithms, the naivass filtered between 0.5 and 12000Hz. From these recordings
application of the SOM would requiré N multiplies and we considered only channels 6 and 7. These signals where
(k—1)N adds for each vector. Of course, such an implemegpike detected under human supervision.
tation would require a powerful DSP, which would consumg_ sOM Training

1Throughout this paper we will usk as the vector length, ani¥ as the For training of the SOM we began_ by Creat_ing a signal_ with
number of neurons in the SOM. content from both channels. Assuming the width of a spike as



TABLE |
COMPRESSION RESULTS ACHIEVED WITH OUR METHODTHE SOM QUANTIZATION FACTOR IS THE REDUCTION OF THE BITRATE THROUGH
APPLICATION OF THESOM, WHILE THE CHANNELS BITRATE AND COMPRESSION RATIO TAKES INTO ACCOUNT ALSO ENTROPY CODING OF THE INDICES
CONSIDERING SAMPLING AT20 KHZ WITH 8 BITS-PER-SAMPLE (BPS) AND “IDEAL” ENTROPY CODING THE RECONSTRUCTION ERROR IS THE AVERAGE
OF THE ABSOLUTE DIFFERENCE BETWEEN SAMPLES DURING SPIKES

Channel 6 Channel 7

Normalized Normalized

Vector | No. of SOM quantization Bitrate Compression reconstruction Bitrate Compression reconstruction

length PEs factor (kbits/sec) ratio error (x10~2) (bits/sec) ratio error (x1072)
32 16 4.14 37.7:1 3.04 3.76 416:1 2.37
10 64 13.3 5.44 28.7:1 2.61 4.96 315:1 2.00
128 11 6.73 232:1 2.22 6.18 253:1 1.70
64 26 171 916:1 3.37 1.27 1232:1 2.58
20 128 22 221 70.7: 1 3.02 1.95 80.0:1 2.35
256 20 2.75 56.9:1 2.45 2.34 66.9:1 2.04
30 128 34 1.02 1528 : 1 3.80 0.84 185.7: 1 3.12
256 30 1.44 108.7: 1 3.56 1.22 1284 :1 2.90

27 samples, we extracted the same number of spikes from eeatulting histogram of the indices, as= — Zfil p; logs, pi,
channel, and concatenated 2% (relative to the samples of frarmerep; is the relative frequency of the index. Then, we used
spikes) of noise samples (1% originating from each channahe entropy (i.e., the average number of bits per index) to
To speed the training of the SOM, for the first five SOMsalculate the compression ratios, wih/h, assuming 8 bps.
considered, we used 1000 spikes and 540 samples of ndi$e reconstruction error was calculated as the average absolute
from each channel. For the remaining SOMs, we used 40@8lue of the difference between the original and reconstructed
spikes and 2160 samples of noise from each channel. Thegmal, but considering spikes only, i.e., just for the samples
values where chosen to ensure that the number of trainitigat correspond to a spike, accordingly to the spike detection
vectors is greater than the vector length times the numberroéde.

PEs. :
. . . D. Analysis
The training signals were prepared with two concerns In y

mind. First, to emphasize the importance of the spikes in 1aPle | presents the compression results. The first two
the training of the SOM. If we had used real data directiflUmns specify the characteristics of the SOM, namely, the
due to the PDF matching property of the SOM, only a ver ctor length (and, thus, thg dlmen5|on'of state spacg) and
litle amount of PEs would be assigned to the approxim#1€ number of PEs, respectively. The third column indicates
tion of spikes, which is the most important element in thil€ quantization factor or compression ratio just from the
data. Thus, proceeding this way we make the SOM tuné}.&pllcqnon of the SOM. It is calculated as the number of bits
to approximate spikes. Secondly, the presence of a smigjthe input vector over the number of bits of an index of a
percentage of background samples (noise) makes the SOf from the SOM, i.e.8k/(log, N). The bitrates, specified
“noise aware” and prevent PEs dedicated to approximé{bkblts-p_er-se(_:ond,and the compression ratios presented take
spikes from firing through background areas which woulgto con5|dera_t|on both the quant|zat_|on factor of_ the SOM and
cause misinterpretation, at the decoder, on the content in & compression due to entropy coding. We achieved results as
input waveform. Impressive as 185.7, i.e. 862 bits-per-second. Although these

The training of each SOM was made in two steps. We us&gpults assume prior knowledge of the histogram of the indices,
1000 iterations for the self-organization step and x N for and hence a effective implementation would not perform as

the converge. In the first step, the learning rate exponentiaf§©d. they show the extraordinary potential of this approach.

decreases between 0.1 and 0.02, and the neighborhood fundtis visible that much better compression ratios are achieved
tion width parameter also exponentially decreases between®S the vector Iength IS mcref':lsed, at the expense of a S”?a”
and 0.4. In the second step, both parameters also decrdiggrease in fidelity. But, as Fig. 2 reveals, the increase in dis-
exponentially but the former between 0.02 and 0.005, and dpstion inherently associated to the increase in the quantization

later betweenV/10 and 0.25. factor, doe; no_t increase proportially to the dimension of state
space. This is in fact one of the fundamental consequences of
C. Tests the rate-distortion theory. Due to the intersample correlation,

To test the whole framework we simulated the process usiitgreasing the vector length, and consequently the state space
data from the same channels used for training of the SOdimension, does not imply a proportional increasedimhen-
(400,000 samples of each), but we were careful not to use #ienality of the vector subset in space. From Fig. 2, we also
portions of the dataset used for training. However, we did ometice that for smaller vector length the reconstruction fidelity
simplification. We assumed the knowledge of the histograim greater, both in the precision as the reconstruction signal
of the indices in advance. This is, for testing purposes, viellows the original as in the amplitude of the spikes. In fact,
simply applied the SOM and calculated the entropy of the precision in reproducing the amplitude of the spikes is



one of greater problems to the SOM since the percentage ofx10

samples corresponding to the peaks of the spikes is very low|
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V. CONCLUSIONS

We have presented a method for the compression of spikéﬁ

data, motivated by the BMI paradigm. Our method uses a SOM

as a vector quantization method, followed by entropy encoding,|

of the indices of the firing PEs. The key advantage of using a

SOM instead of other VQ methods, and of crucial importance®[

for future work, is that the SOM is topology preserving, i.e., 1
neighbor PEs in the SOM correspond to neighbors in state
space. This allows for the division of PEs in adjacent classes
and coding of PEs as classes when the distortion is bellow

some threshold. Likewise, searches can be made approximaj

with very small increase in distortion, following the idea of

hierarchical vector quantization [9]. Nevertheless, the fact that|

a SOM is also a particular case of a VQ method allows
us to achieve great compression ratios while providing the
freedom to optimally and smoothly balance the fidelity of

the reconstruction versus the desired/allowable bitrate to thé

communication link.
Future work will be mostly concentrated on exploring how s
the properties of the SOM can optimally being adjusted

with our knowledge of the data. Furthermore, we have the,|

conscience that ultimately a fundamental component of this
research must be to quantify the effects of quantization due

to the application of the SOM in spike detection and spike?|

sorting.
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Communications, Speech and Visionl. 136, no. 6, pp. 405-413, Dec. ki 2 Original and reconstructed waveforms at the decoder, for channel 7.
1989. A SOM with vector length of 10, 20 and 30 was used, with 64 PEs in the
first two SOMs and 128 and the last.



