
Compression of Spike Data Using the
Self-Organizing Map
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Abstract— Motivated by current attempts to use wireless in
Brain-Machine Interfaces (BMIs), this paper presents a method
for the compression of spike data. Supported by Vector Quanti-
zation (VQ) theory, we use a 1-dimensional Self-Organizing Map
(SOM) to quantize vectors of input samples. The indices are
entropy coded to further reduce the necessary bandwidth, taking
advantage of the non-uniform frequency of firing of the SOM
processing elements (PEs). The complexity of the use of the SOM
is also considered and addressed. After training several SOMs,
the method was simulated with real data achieving compression
ratios as high as 185.7:1, i.e. a bitrate of 862 bits-per-second-per-
channel, assuming sampling at 20 kHz with 8 bits-per-sample
(bps).

I. I NTRODUCTION

Brain-Machine Interfaces (BMI) have been receiving in-
creasing attention in the last years. In this context, a large
number of channels are collected from brain areas through
multi-electrode arrays. Then, these signals are transferred to a
processing unit which decodes the spike firings and predict the
intended action. However, due to the considerable complexity
of the algorithms used, the processing is typically done “re-
motely” [1]. The most common approach is to wire connect
the subject to the processing unit. This is uncomfortable to
the subject and can greatly restrict the experimental setup. A
natural alternative is to replace the connectors with a wireless
link. In this situation, a unit connected to the electrodes would
collect, possibly performing some pre-processing, and transmit
through a wireless communication channel the spike data to
the processing unit.

Although very attractive, the usage of a wireless link gives
rise to other challenges. Due to the large number of channels
to be transmitted and the high bitrate associated with each one,
the bandwidth required for transmitting all the signals is very
large. For instance, even if only 32 channels are selected, and
considering sampling at 20 kHz with 16 bps, a total bandwidth
of more than 9.76 Mbps is required. Associated with this is
the fact that high bandwidth imply high power consumption.
Since current neural decoding algorithms use only the firing
rate of neurons [1], [2], an efficient compression method would
be to perform the spike detection onsite and then transmit
only when a spike occurs, or even the result of binning (i.e.,
counting of the number of spikes in a channel during a given
time interval). In fact, this is the method of choice for current
attempts of using a collecting unit communicating through a

wireless link [3]. The great advantage of this approach is that
only a very small bandwidth is required to transmission. On
the other hand, it does not provide the processing unit with
any other information than the firing rate, which means neither
spike sorting nor correction of spike detection can be made.
Therefore, a large gap exists in the amount of information
available to the processing unit between these two approaches.
A not so drastic alternative, analyzed from the communication
point of view by Bossettiet al. [4], is to do spike detection
and transmit all the samples during the spike. This allows us to
perform spike sorting if such is intended. Nevertheless, there
is still no possibility to recover spikes not detected.

Following a quite different path, our approach tries to trans-
mit as much information as possible, under the constraints on
low bandwidth and low complexity, leaving the responsibility
of spike detection and spike sorting to the processing unit. This
allows for more sophisticated algorithms to be used without
the computational restrictions of a miniaturized unit, while
maintaining all the advantages of a remote collecting unit
communication through wireless. To do so, we vector quantize
the input, using a Self-Organizing Map (SOM), and transmit
and entropy coded version of the index of an approximate
reconstruction vector. Since we group the samples in non-
overlapping vectors, we are able to achieve great compression
ratios while preserving most of the structure of the signal.
The theoretical concept behind this approach is that of vector
quantization (VQ), from which the SOM can be regarded as
a particular case. In the work of Shannon [5], it is proven
that due to correlation between subsequent samples, grouping
samples and coding then jointly results in compression closer
to optimal. Based on this concept, several VQ methods were
developed since then [6].

The remainder of this paper is organized as follows. In
Section II we expose the architecture of our strategy. Then,
in Section III, some considerations are made concerning the
implementation of this method, and results are presented in
Section IV. Finally, some conclusions are drawn in Section V.

II. SYSTEM OVERVIEW

Figure 1 presents a block diagram of the main elements
of the communication process considered in this paper, and
specifically showing the base elements of the encoder and
decoder. As is explicitly depicted in Fig. 1, compression is



Fig. 1. Block diagram of the communication process.

achieved through a two step process. First, through quanti-
zation of the input vector due to the application of a SOM
and, secondly, through entropy coding of the index resulting
from the application of the SOM. Although this process is
lossy (i.e. there is loss of information), this happens only in
the quantization step. The algorithm begins by groupingk
samples1 from the input such as to form a vector, in which each
sample is a component of this vector. This can be thought as
a non-overlapping sliding window over the input. This vector
is then used as input to the SOM, resulting in the index of
the firing neuron for this vector. Then, the index is entropy
coded and transmitted through the communication channel.
Conversely, at the receiver, the index is first entropy decoded
and used as the reference to a lookup table with the weighting
vectors of processing elements (PEs), or neurons, of the SOM.

It is important to note that the SOM, acting as a vector
quantization method, insures through its competitive strategy
that the firing neuron is the one which the corresponding
weighting vector is nearest (according toL2 metric, in our
case) in state space, i.e., the index of the firing neuron is
the one for whicharg mini ||x − wi||, wherex is the input
vector. In other words, if we use this weighting vector as an
approximation of the input vector, it will yield the smallest
reconstruction error. Since we selected the weighting vector
with the smallest reconstruction error, due to the training of
the SOM, at the receiver, this vector can be used as a good
approximation of the input vector.

The entropy coding method to be used can be any. For
example, arithmetic coding or Huffman coding. However, due
to the specific characteristics of each signal it is not possible
to estimate in advance the PDF of the indices, thus an adaptive
method must be used. This, nevertheless, poses no restrictions
since most entropy coding methods have an adaptive version.

III. I MPLEMENTATION REMARKS

In our method, as should be obvious, the application of
the SOM is the most computationally demanding task. While
the entropy coders are generally simple algorithms, the naive
application of the SOM would requirekN multiplies and
(k− 1)N adds for each vector. Of course, such an implemen-
tation would require a powerful DSP, which would consume

1Throughout this paper we will usek as the vector length, andN as the
number of neurons in the SOM.

considerable power to operate. But, as was stated right at
the beginning of this paper, the application serving as our
motivation poses tight constraints in the power consumption.
However, since the competive process of the SOM is basically
a search for the nearest neighbor in high dimension space, fast
search algorithms can be used instead.

Several fast search algorithms where developed in the
context of computational geometry (see e.g. [7]). Although,
generally these algorithms are very fast (O(log2 N) time),
most where developed for approximate search, which would
increase the error and render our approximation through the
SOM non-optimum. In the work by Aryaet al. [8] several
algorithms are presented, most of then based on KD-trees. KD-
trees break the space in hyperrectangles which very unlikely
match the Voronoi division of the space. However, it is also
shown how using KD-trees plus a small distance search in the
neighborhood of the KD-tree hyperrectangle we can ensure
that the found vector is truly the nearest. Comparing with the
original algorithm for the application of the SOM this repre-
sents a great improvement. For instance, for a vector length
of 20 and a SOM with 64 PEs, instead of performing 2496
operations (1280 multiplies and 1216 adds) for each vector,
we would need only a search with 6 steps, plus only a few
distance computations; e.g. for 3 distance computations (60
multiplies and 57 adds) is enough to have a high probability
of being selecting the true nearest vector.

IV. RESULTS

A. Data

Multielectrode array recordings were collected from male
Sprague-Dauley rats performing a go-no go lever pressing task.
Array configurations of2 × 850µm tungsten electrodes were
chronically implanted in the forelimb region of M1 (+1.0mm
anterior, 2.5mm lateral of bregma). Neuronal activity was
collected with a Tucker-Davis recording rig with sampling
frequency of 24414.1Hz and digitized to 16 bits of resolution.
Before being stored to disk the neuronal potentials were band-
pass filtered between 0.5 and 12000Hz. From these recordings
we considered only channels 6 and 7. These signals where
spike detected under human supervision.

B. SOM Training

For training of the SOM we began by creating a signal with
content from both channels. Assuming the width of a spike as



TABLE I

COMPRESSION RESULTS ACHIEVED WITH OUR METHOD. THE SOM QUANTIZATION FACTOR IS THE REDUCTION OF THE BITRATE THROUGH

APPLICATION OF THESOM, WHILE THE CHANNELS BITRATE AND COMPRESSION RATIO TAKES INTO ACCOUNT ALSO ENTROPY CODING OF THE INDICES,

CONSIDERING SAMPLING AT20 KHZ WITH 8 BITS-PER-SAMPLE (BPS) AND “ IDEAL” ENTROPY CODING. THE RECONSTRUCTION ERROR IS THE AVERAGE

OF THE ABSOLUTE DIFFERENCE BETWEEN SAMPLES DURING SPIKES.

Channel 6 Channel 7

Vector
length

No. of
PEs

SOM quantization
factor

Bitrate
(kbits/sec)

Compression
ratio

Normalized
reconstruction
error (×10−2)

Bitrate
(bits/sec)

Compression
ratio

Normalized
reconstruction
error (×10−2)

32 16 4.14 37.7 : 1 3.04 3.76 41.6 : 1 2.37
10 64 13.3 5.44 28.7 : 1 2.61 4.96 31.5 : 1 2.00

128 11 6.73 23.2 : 1 2.22 6.18 25.3 : 1 1.70
64 26 1.71 91.6 : 1 3.37 1.27 123.2 : 1 2.58

20 128 22 2.21 70.7 : 1 3.02 1.95 80.0 : 1 2.35
256 20 2.75 56.9 : 1 2.45 2.34 66.9 : 1 2.04

30 128 34 1.02 152.8 : 1 3.80 0.84 185.7 : 1 3.12
256 30 1.44 108.7 : 1 3.56 1.22 128.4 : 1 2.90

27 samples, we extracted the same number of spikes from each
channel, and concatenated 2% (relative to the samples of from
spikes) of noise samples (1% originating from each channel).
To speed the training of the SOM, for the first five SOMs
considered, we used 1000 spikes and 540 samples of noise
from each channel. For the remaining SOMs, we used 4000
spikes and 2160 samples of noise from each channel. These
values where chosen to ensure that the number of training
vectors is greater than the vector length times the number of
PEs.

The training signals were prepared with two concerns in
mind. First, to emphasize the importance of the spikes in
the training of the SOM. If we had used real data directly,
due to the PDF matching property of the SOM, only a very
little amount of PEs would be assigned to the approxima-
tion of spikes, which is the most important element in the
data. Thus, proceeding this way we make the SOM tuned
to approximate spikes. Secondly, the presence of a small
percentage of background samples (noise) makes the SOM
“noise aware” and prevent PEs dedicated to approximate
spikes from firing through background areas which would
cause misinterpretation, at the decoder, on the content in the
input waveform.

The training of each SOM was made in two steps. We used
1000 iterations for the self-organization step and100×N for
the converge. In the first step, the learning rate exponentially
decreases between 0.1 and 0.02, and the neighborhood func-
tion width parameter also exponentially decreases betweenN
and 0.4. In the second step, both parameters also decrease
exponentially but the former between 0.02 and 0.005, and the
later betweenN/10 and 0.25.

C. Tests

To test the whole framework we simulated the process using
data from the same channels used for training of the SOM
(400,000 samples of each), but we were careful not to use the
portions of the dataset used for training. However, we did one
simplification. We assumed the knowledge of the histogram
of the indices in advance. This is, for testing purposes, we
simply applied the SOM and calculated the entropy of the

resulting histogram of the indices, ash = −∑N
i=1 pi log2 pi,

wherepi is the relative frequency of the index. Then, we used
the entropy (i.e., the average number of bits per index) to
calculate the compression ratios, with8k/h, assuming 8 bps.
The reconstruction error was calculated as the average absolute
value of the difference between the original and reconstructed
signal, but considering spikes only, i.e., just for the samples
that correspond to a spike, accordingly to the spike detection
made.

D. Analysis

Table I presents the compression results. The first two
columns specify the characteristics of the SOM, namely, the
vector length (and, thus, the dimension of state space) and
the number of PEs, respectively. The third column indicates
the quantization factor or compression ratio just from the
application of the SOM. It is calculated as the number of bits
in the input vector over the number of bits of an index of a
PE from the SOM, i.e.,8k/(log2 N). The bitrates, specified
in kbits-per-second, and the compression ratios presented take
into consideration both the quantization factor of the SOM and
the compression due to entropy coding. We achieved results as
impressive as 185.7, i.e. 862 bits-per-second. Although these
results assume prior knowledge of the histogram of the indices,
and hence a effective implementation would not perform as
good, they show the extraordinary potential of this approach.

It is visible that much better compression ratios are achieved
as the vector length is increased, at the expense of a small
decrease in fidelity. But, as Fig. 2 reveals, the increase in dis-
tortion inherently associated to the increase in the quantization
factor, does not increase proportially to the dimension of state
space. This is in fact one of the fundamental consequences of
the rate-distortion theory. Due to the intersample correlation,
increasing the vector length, and consequently the state space
dimension, does not imply a proportional increase ofdimen-
sionality of the vector subset in space. From Fig. 2, we also
notice that for smaller vector length the reconstruction fidelity
is greater, both in the precision as the reconstruction signal
follows the original as in the amplitude of the spikes. In fact,
the precision in reproducing the amplitude of the spikes is



one of greater problems to the SOM since the percentage of
samples corresponding to the peaks of the spikes is very low.

V. CONCLUSIONS

We have presented a method for the compression of spike
data, motivated by the BMI paradigm. Our method uses a SOM
as a vector quantization method, followed by entropy encoding
of the indices of the firing PEs. The key advantage of using a
SOM instead of other VQ methods, and of crucial importance
for future work, is that the SOM is topology preserving, i.e.,
neighbor PEs in the SOM correspond to neighbors in state
space. This allows for the division of PEs in adjacent classes
and coding of PEs as classes when the distortion is bellow
some threshold. Likewise, searches can be made approximate
with very small increase in distortion, following the idea of
hierarchical vector quantization [9]. Nevertheless, the fact that
a SOM is also a particular case of a VQ method allows
us to achieve great compression ratios while providing the
freedom to optimally and smoothly balance the fidelity of
the reconstruction versus the desired/allowable bitrate to the
communication link.

Future work will be mostly concentrated on exploring how
the properties of the SOM can optimally being adjusted
with our knowledge of the data. Furthermore, we have the
conscience that ultimately a fundamental component of this
research must be to quantify the effects of quantization due
to the application of the SOM in spike detection and spike
sorting.
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Fig. 2. Original and reconstructed waveforms at the decoder, for channel 7.
A SOM with vector length of 10, 20 and 30 was used, with 64 PEs in the
first two SOMs and 128 and the last.


