Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Large scale visualization on the Powerwall.
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications

2017


B. Peterson, A. Humphrey, J. Schmidt, M. Berzins. “Addressing Global Data Dependencies in Heterogeneous Asynchronous Runtime Systems on GPUs. Awarded Best Paper,” In Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware - ESPM2'17, ACM, 2017.
DOI: 10.1145/3152041.3152082

ABSTRACT

Large-scale parallel applications with complex global data dependencies beyond those of reductions pose significant scalability challenges in an asynchronous runtime system. Internodal challenges include identifying the all-to-all communication of data dependencies among the nodes. Intranodal challenges include gathering together these data dependencies into usable data objects while avoiding data duplication. This paper addresses these challenges within the context of a large-scale, industrial coal boiler simulation using the Uintah asynchronous many-task runtime system on GPU architectures. We show significant reduction in time spent analyzing data dependencies through refinements in our dependency search algorithm. Multiple task graphs are used to eliminate subsequent analysis when task graphs change in predictable and repeatable ways. Using a combined data store and task scheduler redesign reduces data dependency duplication ensuring that problems fit within host and GPU memory. These modifications did not require any changes to application code or sweeping changes to the Uintah runtime system. We report results running on the DOE Titan system on 119K CPU cores and 7.5K GPUs simultaneously. Our solutions can be generalized to other task dependency problems with global dependencies among thousands of nodes which must be processed efficiently at large scale.



P. Seshadri, A. Narayan, S. Mahadevan. “Effectively Subsampled Quadratures for Least Squares Polynomial Approximations,” In SIAM/ASA Journal on Uncertainty Quantification, pp. 1003--1023. Jan, 2017.

ABSTRACT

This paper proposes a new deterministic sampling strategy for constructing polynomial chaos approximations for expensive physics simulation models. The proposed approach, effectively subsampled quadratures involves sparsely subsampling an existing tensor grid using QR column pivoting. For polynomial interpolation using hyperbolic or total order sets, we then solve the following square least squares problem. For polynomial approximation, we use a column pruning heuristic that removes columns based on the highest total orders and then solves the tall least squares problem. While we provide bounds on the condition number of such tall submatrices, it is difficult to ascertain how column pruning effects solution accuracy as this is problem specific. We conclude with numerical experiments on an analytical function and a model piston problem that show the efficacy of our approach compared with randomized subsampling. We also show an example where this method fails.



J. Tate, K. Gillette, B. Burton, W. Good, J. Coll-Font, D. Brooks, R. MacLeod. “Analyzing Source Sampling to Reduce Error in ECG Forward Simulations,” In Computing in Cardiology, Vol. 44, 2017.

ABSTRACT

A continuing challenge in validating ECG Imaging is the persistent error in the associated forward problem observed in experimental studies. One possible cause of error is insufficient representation of the cardiac sources, which is often measured from only the ventricular epicardium, ignoring the endocardium and the atria. We hypothesize that measurements that completely cover the heart are required for accurate forward solutions. In this study, we used simulated and measured cardiac potentials to test the effect of different levels of sampling on the forward simulation. We found that omitting source samples on the atria increases the peak RMS error by a mean of 464 μV when compared the the fully sampled cardiac surface. Increasing the sampling on the atria in stages reduced the average error of the forward simulation proportionally to the number of additional samples and revealed some strategies may reduce error with fewer samples, such as adding samples to the AV plane and the atrial roof. Based on these results, we can design a sampling strategy to use in future validation studies.



W.Thevathasan, B. Debu, T. Aziz, B. R. Bloem, C. Blahak, C. Butson, V. Czernecki, T. Foltynie, V. Fraix, D. Grabli, C. Joint, A. M. Lozano, M. S. Okun, J. Ostrem, N. Pavese, C. Schrader, C. H. Tai, J. K. Krauss, E. Moro. “Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review,” In Movement Disorders, Vol. 33, No. 1, pp. 10--20. 2017.
ISSN: 1531-8257
DOI: 10.1002/mds.27098

ABSTRACT

Pedunculopontine nucleus region deep brain stimulation (DBS) is a promising but experimental therapy for axial motor deficits in Parkinson's disease (PD), particularly gait freezing and falls. Here, we summarise the clinical application and outcomes reported during the past 10 years. The published dataset is limited, comprising fewer than 100 cases. Furthermore, there is great variability in clinical methodology between and within surgical centers. The most common indication has been severe medication refractory gait freezing (often associated with postural instability). Some patients received lone pedunculopontine nucleus DBS (unilateral or bilateral) and some received costimulation of the subthalamic nucleus or internal pallidum. Both rostral and caudal pedunculopontine nucleus subregions have been targeted. However, the spread of stimulation and variance in targeting means that neighboring brain stem regions may be implicated in any response. Low stimulation frequencies are typically employed (20-80 Hertz). The fluctuating nature of gait freezing can confound programming and outcome assessments. Although firm conclusions cannot be drawn on therapeutic efficacy, the literature suggests that medication refractory gait freezing and falls can improve. The impact on postural instability is unclear. Most groups report a lack of benefit on gait or limb akinesia or dopaminergic medication requirements. The key question is whether pedunculopontine nucleus DBS can improve quality of life in PD. So far, the evidence supporting such an effect is minimal. Development of pedunculopontine nucleus DBS to become a reliable, established therapy would likely require a collaborative effort between experienced centres to clarify biomarkers predictive of response and the optimal clinical methodology.



W. Usher, J. Amstutz, C. Brownlee, A. Knoll, I. Wald . “Progressive CPU Volume Rendering with Sample Accumulation,” In Eurographics Symposium on Parallel Graphics and Visualization, Edited by Alexandru Telea and Janine Bennett, The Eurographics Association, 2017.
ISBN: 978-3-03868-034-5
ISSN: 1727-348X
DOI: 10.2312/pgv.20171090

ABSTRACT

We present a new method for progressive volume rendering by accumulating object-space samples over successively rendered frames. Existing methods for progressive refinement either use image space methods or average pixels over frames, which can blur features or integrate incorrectly with respect to depth. Our approach stores samples along each ray, accumulates new samples each frame into a buffer, and progressively interleaves and integrates these samples. Though this process requires additional memory, it ensures interactivity and is well suited for CPU architectures with large memory and cache. This approach also extends well to distributed rendering in cluster environments. We implement this technique in Intel's open source OSPRay CPU ray tracing framework and demonstrate that it is particularly useful for rendering volumetric data with costly sampling functions.



W. Usher, P. Klacansky, F. Federer, P. T. Bremer, A. Knoll, J. Yarch, A. Angelucci, V. Pascucci. “A Virtual Reality Visualization Tool for Neuron Tracing,” In IEEE Transactions on Visualization and Computer Graphics, IEEE, 2017.
ISSN: 1077-2626
DOI: 10.1109/TVCG.2017.2744079

ABSTRACT

Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.



Y. Wan, C. Hansen. “Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking,” In Computer Graphics Forum, Wiley, 2017.

ABSTRACT

Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations.



Y. Wan, H. Otsuna, H. A. Holman, B. Bagley, M. Ito, A. K. Lewis, M. Colasanto, G. Kardon, K. Ito, C. Hansen. “FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis,” In BMC Bioinformatics, Vol. 18, No. 1, Springer Nature, May, 2017.
DOI: 10.1186/s12859-017-1694-9

ABSTRACT

Background:
Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations.

Results:
Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender.

Conclusion:
The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.



L. Yang, A. Narayan, P. Wang. “Sequential data assimilation with multiple nonlinear models and applications to subsurface flow,” In Journal of Computational Physics, Vol. 346, pp. 356--368. Oct, 2017.
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2017.06.026

ABSTRACT

Complex systems are often described with competing models. Such divergence of interpretation on the system may stem from model fidelity, mathematical simplicity, and more generally, our limited knowledge of the underlying processes. Meanwhile, available but limited observations of system state could further complicates one's prediction choices. Over the years, data assimilation techniques, such as the Kalman filter, have become essential tools for improved system estimation by incorporating both models forecast and measurement; but its potential to mitigate the impacts of aforementioned model-form uncertainty has yet to be developed. Based on an earlier study of Multi-model Kalman filter, we propose a novel framework to assimilate multiple models with observation data for nonlinear systems, using extended Kalman filter, ensemble Kalman filter and particle filter, respectively. Through numerical examples of subsurface flow, we demonstrate that the new assimilation framework provides an effective and improved forecast of system behaviour.


2016


K. Aras B. Burton, D. Swenson, R.S. MacLeod. “Spatial organization of acute myocardial ischemia,” In Journal of Electrocardiology, Vol. 49, No. 3, Elsevier, pp. 323–336. May, 2016.

ABSTRACT

Introduction
Myocardial ischemia is a pathological condition initiated by supply and demand imbalance of the blood to the heart. Previous studies suggest that ischemia originates in the subendocardium, i.e., that nontransmural ischemia is limited to the subendocardium. By contrast, we hypothesized that acute myocardial ischemia is not limited to the subendocardium and sought to document its spatial distribution in an animal preparation. The goal of these experiments was to investigate the spatial organization of ischemia and its relationship to the resulting shifts in ST segment potentials during short episodes of acute ischemia.

Methods
We conducted acute ischemia studies in open-chest canines (N = 19) and swines (N = 10), which entailed creating carefully controlled ischemia using demand, supply or complete occlusion ischemia protocols and recording intramyocardial and epicardial potentials. Elevation of the potentials at 40% of the ST segment between the J-point and the peak of the T-wave (ST40%) provided the metric for local ischemia. The threshold for ischemic ST segment elevations was defined as two standard deviations away from the baseline values.

Results
The relative frequency of occurrence of acute ischemia was higher in the subendocardium (78% for canines and 94% for swines) and the mid-wall (87% for canines and 97% for swines) in comparison with the subepicardium (30% for canines and 22% for swines). In addition, acute ischemia was seen arising throughout the myocardium (distributed pattern) in 87% of the canine and 94% of the swine episodes. Alternately, acute ischemia was seen originating only in the subendocardium (subendocardial pattern) in 13% of the canine episodes and 6% of the swine episodes (p < 0.05).

Conclusions
Our findings suggest that the spatial distribution of acute ischemia is a complex phenomenon arising throughout the myocardial wall and is not limited to the subendocardium.



P.R. Atkins, S.Y. Elhabian, P. Agrawal, M.D. Harris, R.T. Whitaker, J.A. Weiss, C.L. Peters, A.E. Anderson. “Quantitative comparison of cortical bone thickness using correspondence-based shape modeling in patients with cam femoroacetabular impingement,” In Journal of Orthopaedic Research, Wiley-Blackwell, Nov, 2016.
DOI: 10.1002/jor.23468

ABSTRACT

The proximal femur is abnormally shaped in patients with cam-type femoroacetabular impingement (FAI). Impingement
may elicit bone remodeling at the proximal femur, causing increases in cortical bone thickness. We used correspondence-based shape modeling to quantify and compare cortical thickness between cam patients and controls for the location of the cam lesion and the proximal femur. Computed tomography images were segmented for 45 controls and 28 cam-type FAI patients. The segmentations were input to a correspondence-based shape model to identify the region of the cam lesion. Median cortical thickness data over the region of the cam lesion and the proximal femur were compared between mixed-gender and gender-specific groups. Median [interquartile range] thickness was significantly greater in FAI patients than controls in the cam lesion (1.47 [0.64] vs. 1.13 [0.22] mm, respectively; p < 0.001) and proximal femur (1.28 [0.30] vs. 0.97 [0.22] mm, respectively; p < 0.001). Maximum thickness in the region of the cam lesion was more anterior and less lateral (p < 0.001) in FAI patients. Male FAI patients had increased thickness compared to male controls in the cam lesion (1.47 [0.72] vs. 1.10 [0.19] mm, respectively; p < 0.001) and proximal femur (1.25 [0.29] vs. 0.94 [0.17] mm, respectively; p < 0.001). Thickness was not significantly different between male and female controls. Clinical significance: Studies of non-pathologic cadavers have provided guidelines regarding safe surgical resection depth for FAI patients. However, our results suggest impingement induces cortical thickening in cam patients, which may strengthen the proximal femur. Thus, these previously established guidelines may be too conservative.



J.L. Baker, J. Ryou, X.F. Wei, C.R. Butson, N.D. Schiff, K.P. Purpura. “Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates,” In Journal of Neurophysiology, Vol. 116, No. 5, American Physiological Society, pp. 2383--2404. Aug, 2016.
DOI: 10.1152/jn.01129.2015

ABSTRACT

The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients.



M. Barjatia, T. Tasdizen, B. Song, K.M. Golden. “Network modeling of Arctic melt ponds,” In Cold Regions Science and Technology, Vol. 124, Elsevier BV, pp. 40--53. April, 2016.
DOI: 10.1016/j.coldregions.2015.11.019

ABSTRACT

The recent precipitous losses of summer Arctic sea ice have outpaced the projections of most climate models. A number of efforts to improve these models have focused in part on a more accurate accounting of sea ice albedo or reflectance. In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that form on the sea ice surface. The transition of pond configurations from isolated structures to interconnected networks is critical in allowing the lateral flow of melt water toward drainage features such as large brine channels, fractures, and seal holes, which can alter the albedo by removing the melt water. Moreover, highly connected ponds can influence the formation of fractures and leads during ice break-up. Here we develop algorithmic techniques for mapping photographic images of melt ponds onto discrete conductance networks which represent the geometry and connectedness of pond configurations. The effective conductivity of the networks is computed to approximate the ease of lateral flow. We implement an image processing algorithm with mathematical morphology operations to produce a conductance matrix representation of the melt ponds. Basic clustering and edge elimination, using undirected graphs, are then used to map the melt pond connections and reduce the conductance matrix to include only direct connections. The results for images taken during different times of the year are visually inspected and the number of mislabels is used to evaluate performance.



J. Beckvermit, T. Harman, C. Wight, M. Berzins. “Physical Mechanisms of DDT in an Array of PBX 9501 Cylinders Initiation Mechanisms of DDT,” SCI Institute, April, 2016.

ABSTRACT

The Deflagration to Detonation Transition (DDT) in large arrays (100s) of explosive devices is investigated using large-scale computer simulations running the Uintah Computational Framework. Our particular interest is understanding the fundamental physical mechanisms by which convective deflagration of cylindrical PBX 9501 devices can transition to a fully-developed detonation in transportation accidents. The simulations reveal two dominant mechanisms, inertial confinement and Impact to Detonation Transition. In this study we examined the role of physical spacing of the cylinders and how it influenced the initiation of DDT.



J. Beckvermit, T. Harman, C. Wight,, M. Berzins. “Packing Configurations of PBX-9501 Cylinders to Reduce the Probability of a Deflagration to Detonation Transition (DDT),” In Propellants, Explosives, Pyrotechnics, 2016.
ISSN: 1521-4087
DOI: 10.1002/prep.201500331

ABSTRACT

The detonation of hundreds of explosive devices from either a transportation or storage accident is an extremely dangerous event. This paper focuses on identifying ways of packing/storing arrays of explosive cylinders that will reduce the probability of a Deflagration to Detonation Transition (DDT). The Uintah Computational Framework was utilized to predict the conditions necessary for a large scale DDT to occur. The results showed that the arrangement of the explosive cylinders and the number of devices packed in a "box" greatly effects the probability of a detonation.



M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J. Schmidt,, C. Wight. “Extending the Uintah Framework through the Petascale Modeling of Detonation in Arrays of High Explosive Devices,” In SIAM Journal on Scientific Computing (Accepted), 2016.

ABSTRACT

The Uintah framework for solving a broad class of fluid-structure interaction problems uses a layered taskgraph approach that decouples the problem specification as a set of tasks from the adaptove runtime system that executes these tasks. Uintah has been developed by using a problem-driven approach that dates back to its inception. Using this approach it is possible to improve the performance of the problem-independent software components to enable the solution of broad classes of problems as well as the driving problem itself. This process is illustrated by a motivating problem that is the computational modeling of the hazards posed by thousands of explosive devices during a Deflagration to Detonation Transition (DDT) that occurred on Highway 6 in Utah. In order to solve this complex fluid-structure interaction problem at the required scale, algorithmic and data structure improvements were needed in a code that already appeared to work well at scale. These transformations enabled scalable runs for our target problem and provided the capability to model the transition to detonation. The performance improvements achieved are shown and the solution to the target problem provides insight as to why the detonation happened, as well as to a possible remediation strategy.



A. Bigelow, R. Choudhury, J. Baumes. “Resonant Laboratory and Candela: Spreading Your Visualization Ideas to the Masses,” In Proceedings of Workshop on Visualization in Practice (VIP '16), Note: Best Paper Award , 2016.

ABSTRACT

Visualization practitioners are constantly developing new, innovative ways to visualize data, but much of the software that practitioners produce does not make it into production in professional systems. To solve this problem, we have developed and informally tested two open source systems. The first, Candela, is a framework and API for creating visualization components for the web that can wrap up new or existing visualizations as needed. Because Candela's API generalizes the inputs to a visualization, we have also developed a system called Resonant Laboratory that makes it possible for novice users to connect arbitrary datasets to Candela visualizations. Together, these systems enable novice users to explore and share their data with the growing library of state-of-the-art visualization techniques.



C. Christensen, S. Liu, G. Scorzelli, J. Lee, P.-T. Bremer, V. Pascucci. “Embedded Domain-Specific Language and Runtime System for Progressive Spatiotemporal Data Analysis and Visualization,” In Symposium on Large Data Analysis and Visualization, IEEE, 2016.

ABSTRACT

As our ability to generate large and complex datasets grows, accessing and processing these massive data collections is increasingly the primary bottleneck in scientific analysis. Challenges include retrieving, converting, resampling, and combining remote and often disparately located data ensembles with only limited support from existing tools. In particular, existing solutions rely predominantly on extensive data transfers or large-scale remote computing resources, both of which are inherently offline processes with long delays and substantial repercussions for any mistakes. Such workflows severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. Here we present an embedded domain-specific language (EDSL) specifically designed for the interactive exploration of largescale, remote data. Our EDSL allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible computation. This system enables, for the first time, interactive remote exploration of massive datasets such as the 7km NASA GEOS-5 Nature Run simulation, which previously have been analyzed only offline or at reduced resolution.



W. Deeb, J. J. Giordano, P. J. Rossi, A. Y. Mogilner, A. Gunduz, J. W. Judy, B. T. Klassen, C. R. Butson, C. Van Horne, D. Deny, D. D. Dougherty, D. Rowell, G. A. Gerhardt, G. S. Smith, F. A. Ponce, H. C. Walker, H. M. Bronte-Stewart, H. S. Mayberg, H. J. Chizeck, J. Langevin, J. Volkmann, J. L. Ostrem, J. B. Shute, J. Jimenez-Shahed, K. D. Foote, A. W. Shukla, M. A. Rossi, M. Oh, M. Pourfar, P. B. Rosenberg, P. A. Silburn, C. de Hemptine, P. A. Starr, T. Denison, U. Akbar, W. M. Grill,, M. S. Okun. “Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies,” In Frontiers in Integrative Neuroscience, Vol. 10, pp. 38. 2016.
ISSN: 1662-5145
DOI: 10.3389/fnint.2016.00038

ABSTRACT

This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual Deep Brain Stimulation Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson’s disease, essential tremor, Alzheimer’s disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year’s international Think Tank, with a view toward current and near future advancement of the field.



S. Elhabian, C. Vachet, J. Piven, M. Styner, G. Gerig. “Compressive sensing based Q-space resampling for handling fast bulk motion in hardi acquisitions,” In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE, pp. 907--910. April, 2016.
DOI: 10.1109/isbi.2016.7493412

ABSTRACT

Diffusion-weighted (DW) MRI has become a widely adopted imaging modality to reveal the underlying brain connectivity. Long acquisition times and/or non-cooperative patients increase the chances of motion-related artifacts. Whereas slow bulk motion results in inter-gradient misalignment which can be handled via retrospective motion correction algorithms, fast bulk motion usually affects data during the application of a single diffusion gradient causing signal dropout artifacts. Common practices opt to discard gradients bearing signal attenuation due to the difficulty of their retrospective correction, with the disadvantage to lose full gradients for further processing. Nonetheless, such attenuation might only affect limited number of slices within a gradient volume. Q-space resampling has recently been proposed to recover corrupted slices while saving gradients for subsequent reconstruction. However, few corrupted gradients are implicitly assumed which might not hold in case of scanning unsedated infants or patients in pain. In this paper, we propose to adopt recent advances in compressive sensing based reconstruction of the diffusion orientation distribution functions (ODF) with under sampled measurements to resample corrupted slices. We make use of Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) basis functions which can analytically model ODF from arbitrary sampled signals. We demonstrate the impact of the proposed resampling strategy compared to state-of-art resampling and gradient exclusion on simulated intra-gradient motion as well as samples from real DWI data.